
Modified Kudryashov method and its application
to the fractional version of the variety of Boussinesq-like
equations in shallow water

D. Kumar1,2 • M. T. Darvishi3 • A. K. Joardar4

Received: 1 November 2017 / Accepted: 19 February 2018 / Published online: 22 February 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract The present study emphasis to look for new closed form exact solitary wave

solutions for the variety of fractional Boussinesq-like equations using the modified

Kudryashov method with the help of symbolic computation. As a consequence, the

modified Kudryashov method is successfully employed and acquired some new exact

solitary wave solutions in terms of exponential based functions with fractional version. All

solutions have been verified back into its corresponding equation with the aid of Maple

package program. We depicted the physical explanation of the extracted solutions with the

free choice of the different parameters by plotting some 3D and 2D illustrations. Finally,

we believe that the executed method is robust and efficient than other methods and the

obtained solutions in this paper can help us to understand the variation of solitary waves in

the field of oceanography.
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1 Introduction

This study focuses on the following nonlinear variety of Boussinesq-like equa-

tions (Wazwaz 2012; Eslami and Mirzazadeh 2014; Lee and Rathinasamy 2014; Darvishi

et al. 2017a, b):

utt � uxx � ð6u2ux þ uxxxÞx ¼ 0;

utt � uxx � ð6u2ux þ uxttÞx ¼ 0;

utt � uxt � ð6u2ux þ uxxtÞx ¼ 0;

and

utt � ð6u2ux þ uxxxÞx ¼ 0;

which play a prominent role in the propagation of long waves in shallow water and arises

also in other physical applications such as nonlinear lattice waves, the propagation of

waves in elastic rods, in vibrations in a nonlinear string, the dynamics of the thin inviscid

layers with free surface, the shape-memory alloys and in the coupled electrical cir-

cuits (Wazwaz 2012; Eslami and Mirzazadeh 2014; Lee and Rathinasamy 2014; Darvishi

et al. 2017a, b).

During last several years, exact solutions of the Boussinesq and its related equations in

shallow water are significantly important for coastal scientists and engineers to apply the

nonlinear water wave, port-offshore and harbors modelling in the field of coastal and ocean

engineering. These equations are also appeared in many scientific applications such as

nonlinear fiber optics, plasma physics, fluid dynamics, and ocean engineering (Wazwaz

2012; Eslami and Mirzazadeh 2014; Lee and Rathinasamy 2014; Darvishi et al. 2017a, b;

Wazwaz 2007; Bulut et al. 2016). Due to rapid expansion of some powerful symbolic

computations based mathematical packages such as Maple and Mathematica, extraction

process of exact solutions is very much easier than the past. In this context, researchers

have gained a platform to produce new exact solutions of well-known partial differential

equations (PDEs) that arise in applied sciences by numerous robust influential methods

such as the first integral method (Eslami and Mirzazadeh 2014), modified tanh–coth

method (Lee and Rathinasamy 2014), extended Jacobi elliptic function expansion meth-

od (Lee and Rathinasamy 2014), the semi-inverse variational principle (Darvishi et al.

2017b), the sine–cosine method (Darvishi et al. 2017a), the Darboux transform meth-

od (Gu et al. 1999), Backlund transformation and inverse scattering method (Vakhnenko

et al. 2003), the homogenous balance method (Wang 1995), exp-function method (Liu

2009), multiple exp-function method (Ma et al. 2010), sine–Gordon expansion

method (Kumar et al. 2017a), Qimproved tanhð/ðnÞ=2Þ-expansion method (Lakestani and

Manafian 2017), the exponential rational function method (Bekir and Kaplan 2016), the

modified simple equation method (Roshid 2017), the extended simple equation meth-

od (Lu et al. 2017), the modified Kudryashov method (Kumar et al. 2017b), the hyperbolic

function method (Xie et al. 2001), the ðG0

G
Þ-expansion method (Wang et al. 2008), the

improved ðG0

G
Þ-expansion method (Hawlader and Kumar 2017), the solitary ansatz meth-

od (Guner et al. 2017), the auxiliary equation method (Kumar et al. 2008) and the ðG0

G
; 1
G
Þ-

expansion method (Miah et al. 2017).

Several researchers work out some new solutions from the family of variety of

Boussinesq-like equations using different analytical methods. We review some literatures

about Boussinesq-like equations and analytical methods. In this respect, Wazwaz (2012)
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first introduced a variety of Boussinesq-like equations and investigated to determine one

soliton solutions and one singular soliton solutions for each Boussinesq-like model. After

that, Eslami and Mirzazadeh (2014) applied the first integral method and obtained exact

1-soliton solutions for each Boussinesq-like equation. Later on, Lee and Rathinasamy

(2014) obtained exact traveling wave solutions of a variety of Boussinesq-like equations by

using two distinct methods, namely, modified tanh–coth method and the extended Jacobi

elliptic function method with the aid of symbolic computation Maple package. In fact, by

employing the modified tanh–coth method and the extended Jacobi elliptic function

method, they obtained single soliton solutions and doubly periodic wave solutions,

respectively. They also recommended that soliton solutions and triangular solutions can be

established as the limits of the Jacobi doubly periodic wave solutions. Recently, Darvishi

et al. (2017b) adopted the semi-inverse variational principle (SVP) to search soliton

solutions of the Boussinesq-like equations with spatio-temporal dispersion. The derived

soliton solutions depicted the dynamics of thin inviscid layers with free surface, solitons

solutions, and other nonlinear phenomena. Very recently, Darvishi et al. (2017a) derived

some new traveling wave solutions for the four distinct non-integrable Boussinesq-like

equations with the effect of spatial dispersion for two variants of the Boussinesq equation,

and with the effect of spatial–temporal dispersion for other two variants by using the sine–

cosine method. As a matter of fact, authors of Refs. Wazwaz (2012), Eslami and Mirza-

zadeh (2014), Lee and Rathinasamy (2014) and Darvishi et al. (2017a, b) explored the

exact solutions for a variety of Boussinesq-like equations with integer order.

In this paper, we will introduce and solve a variety of the fractional order of Boussinesq-

like equations especially the conformable fractional derivative and fractional complex

transform sense via the modified Kudryashov method.

Recently, many researchers have introduced and solved the nonlinear conformable

time-fractional Boussinesq equation using various analytical techniques in the sense of

conformable fractional derivative and fractional complex transform such as Jacobi elliptic

function expansion method (Tasbozan et al. 2016), the expð�/ðnÞÞ-expansion
method (Hosseini et al. 2017a), the modified simple equation method and the exponential

rational function method (Kaplan 2017). More works (Eslami and Rezazadeh 2016;

Hosseini et al. 2017b; Iyiola et al. 2017; Cenesiz and Kurt 2016; Kurt et al. 2015, 2017;

Cenesiz et al. 2017), have been found about conformable fractional derivative and com-

plex transforms for converting nonlinear PDEs to ordinary differential equations (ODEs)

and then solving fractional differential equations with the aid of different methods. For

instance, Eslami and Rezazadeh (2016) implemented the first integral method for Wu–

Zhang system with conformable time-fractional derivative. Hosseini et al. (2017b) exe-

cuted the modified Kudryashov method for seeking new exact solutions of the conformable

time-fractional Klein Gordon equations with quadratic and cubic nonlinearities and Iyiola

et al. (2017) solved the system of conformable time-fractional Robertson equations with

one-dimensional diffusion coefficients with the help of the q-homotopy analysis method

(q-HAM). Finally, Darvishi et al. (2018) solved conformable time–space fractional

Schrödinger model by sine–cosine method.

Now, we consider the following form of the space–time-fractional Boussinesq-like

equations (Rahmat et al. 2017):

D2a
t u� D2b

x u� Db
x ð6u2Db

xuþ D3b
x uÞ ¼ 0; ð1Þ

D2a
t u� D2b

x u� Db
x ð6u2Db

xuþ Db
xD

2a
t uÞ ¼ 0; ð2Þ

Modified Kudryashov method and its application to the... Page 3 of 17 128

123



D2a
t u� Db

xD
a
t u� Db

x ð6u2Db
xuþ D2b

x Da
t uÞ ¼ 0; ð3Þ

and

D2a
t u� Db

x ð6u2Db
xuþ D3b

x uÞ ¼ 0; ð4Þ

where Da
t , D

b
x denote the conformable fractional derivative of order a, b with respect to t

and x, respectively, and 0\a� 1, 0\b� 1. Also, u(x, t) is a differentiable function in

respect with two independent variables x and t.

Very recently, Rahmat et al. (2017) solved these fractional equations by using Exp-

function method with the help of fractional complex transformation and modified Rie-

mann–Liouville fractional order operator.

When we substitute a ¼ 1 and b ¼ 1 in Eqs. (1)–(4), the variety of space–time-frac-

tional Boussinesq-like equations convert to the nonlinear integer order variety of

Boussinesq-like equations. In this purpose, researchers in Wazwaz (2012), Eslami and

Mirzazadeh (2014), Lee and Rathinasamy (2014) and Darvishi et al. (2017a, b) have

received the distinct new abundant analytical solutions and distinct physical phenomena

which have already discussed in the literature review section.

The main aim of this study is to introduce the variety of space–time-fractional

Boussinesq-like equations with conformable fractional derivative for converting the frac-

tional differential equations into the ordinary differential equations with integer order with

the help of fractional complex transform (Cenesiz and Kurt 2016). Besides, we explore the

new exact solutions for the variety of space–time-fractional Boussinesq-like equations with

the aid of modified Kudryashov method. The obtained solutions of the variety of space–

time-fractional Boussinesq-like equations are expressed by exponential function forms.

The exponential function is based on an arbitrary variable a in which a 6¼ 0 and a 6¼ 1.

The remainder of the paper is organized as follows. A brief discussion about the

conformable fractional derivative and the modified Kudryashov method is presented in

Sect. 2. Section 3 and its sub-sections deal with the applications of the modified

Kudryashov method to look for new closed form exact solutions for the variety of space–

time-fractional Boussinesq-like equations. Finally, we draw a conclusion about executed

method and the generated results in Sect. 4.

2 Conformable fractional derivative and the modified Kudryashov
method

2.1 A brief description of conformable fractional derivative

The definition of conformable fractional derivative with the limit operator is as fol-

lows (Khalil et al. 2014):

Definition 1 Let f : ð0;1Þ ! R, the conformable fractional derivative of f from order a
is defined as
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Da
t ðf ÞðtÞ ¼ lim

�!0

f ðt þ �t1�aÞ � f ðtÞ
�

; for all t[ 0; 0\a� 1:

Further, f is called an a-conformable differentiable function at a point t[ 0.

For this differentiation, the chain rule, exponential functions, Gronwalls inequality,

integration by parts, Taylor power series expansions and Laplace transform are introduced

by Abdeljawad (2015). Also, the conformable fractional derivative satisfies some feasible

features which are mentioned in the following theorems (for more details see Khalil et al.

2014; Abdeljawad 2015):

Theorem 1 Let a 2 ð0; 1�, and f ¼ f ðtÞ; g ¼ gðtÞ be a-conformable differen-

tiable functions at a point t[ 0, then:

ðiÞ Da
t ðc1f þ c2gÞ ¼ c1D

a
t f þ c2D

a
t g; for all c1; c2 2 R:

ðiiÞ Da
t ðtlÞ ¼ ltl�a; for all l 2 R:

ðiiiÞ Da
t ðfgÞ ¼ gDa

t ðf Þ þ fDa
t ðgÞ:

ðivÞ Da
t

f

g

� �
¼ gDa

t ðf Þ � fDa
t ðgÞ

g2
:

Furthermore, if f is differentiable, then Da
t ðf ðtÞÞ ¼ t1�a df

dt
.

Theorem 2 Let f : ð0;1Þ ! R be a function such that f is differentiable and a-con-
formable differentiable. Also, let g be a differentiable function defined in the range of

f. Then

Da
t ðfogÞðtÞ ¼ t1�agðtÞa�1

g0ðtÞDa
t ðf ðtÞÞt¼gðtÞ;

where prime denotes the classical derivatives with respect to t.

The above definition of conformable fractional derivative and some of its properties are

also used by several researchers (Tasbozan et al. 2016; Eslami and Rezazadeh 2016;

Kaplan 2017; Hosseini et al. 2017a, b; Iyiola et al. 2017; Kurt et al. 2015, 2017; Cenesiz

et al. 2017; Rahmat et al. 2017).

It is worth noting that recently a various significance study appeared in the cited

references on conformable fractional derivative (Kurt et al. 2017; Zhao and Luo 2017;

Zhou et al. 2018; Yang et al. 2018). Zhao and Luo (2017) explained the geometric and

physical interpretation of the conformable fractional derivatives. The definition of the

generalized conformable fractional derivative (GCFD) to general conformable derivative

by means of linear extended Gateaux derivative, and employed this definition to describe

that the physical interpretation of the conformable derivative is a modification of classical

derivative in direction and magnitude (Zhao and Luo 2017). After that, Zhou et al. (2018)

described the anomalous diffusion based on the conformable derivative (Zhao and Luo

2017) and analytical solutions of the conformable derivative model are obtained in terms of

Error function and Gauss kernel. Finally, authors conclude that the conformable derivative

model results good agreements with experimental data than the conventional diffusion

equation. Very recently, Yang et al. (2018) developed the Swartzendruber model for

description of non-Darcian flow in porous media by considering conformable derivative.

Authors also explained that the proposed conformable Swartzendruber models are solved

employing the Laplace transform method and validated on the basis of water flow in

compacted fine-grained soils. The obtained results of fitting analysis present a good
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agreement with experimental data. The physical significance of conformable derivative is

also described in Refs. Eslami et al. (2017a, b).

2.2 A brief description of the modified Kudryashov method

In this sub-section, we will describe all procedures of the modified Kudryashov

method (Tasbozan et al. 2016) for solving fractional differential equations. The essential

steps of this method are described as follows:

Consider a general form of a nonlinear fractional differential equation (FDE), say in two

independent variables x and t as

Fðu;Da
t u;D

b
x u;D

2a
t u;D2b

x u;Da
t D

b
x u; . . .Þ ¼ 0; t[ 0; 0\a; 0\b� 1: ð5Þ

In Eq. (5) Da
t u and Db

x u are conformable fractional derivatives of u, u ¼ uðx; tÞ is an

unknown function, F is a polynomial in u(x, t) and its various partial derivatives, in which

the nonlinear terms and highest order derivatives are involved. The main steps of the

modified Kudryashov method are as follows:

Step-1 Conversion of the nonlinear FDE into an ordinary differential equation (ODE)

has been overcome by using simple fractional calculus. In this respect, first we introduce

the wave transformation

uðx; tÞ ¼ UðnÞ; n ¼ k
xb

b
� l

ta

a
; ð6Þ

where k and l are arbitrary constants to be determined later. After that, implementing the

transformation of Eq. (6) into Eq. (5), converts the latter to the following nonlinear ODE:

QðU;U0;U00; . . .:Þ ¼ 0; ð7Þ

where Q is a polynomial of U and its derivatives and the superscripts indicate the ordinary

derivatives with respect to n. If possible, we should integrate Eq. (7) term by term one or

more times.

Step-2 It is supposed that the solution of Eq. (7) can be demonstrated as follows

UðnÞ ¼ a0 þ a1QðnÞ þ � � � þ aNQ
NðnÞ; ð8Þ

wherein the arbitrary constants ai; ði ¼ 1; 2; . . .;NÞ are evaluated later but aN 6¼ 0 and

QðnÞ ¼ 1
1þdan

is a function satisfying the following auxiliary equation:

Q0ðnÞ ¼ ðQ2ðnÞ � QðnÞÞ ln a; ð9Þ

where N is a natural number which is determined by the homogeneous balance principle

and a 6¼ 0; 1.
Step-3 Inserting new solution from Eq. (8) into Eq. (7) along with Eq. (9) and com-

paring the terms results in a set of nonlinear equations which by solving it using Maple, we

will acquire new exact solutions for the fractional partial differential equation (5).

3 Application of the modified Kudryashov method

In this section, the modified Kudryashov method will be performed to handle the space–

time-fractional variety of Boussinesq-like equations for acquiring new soliton solutions.
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3.1 Exact solutions of the first fractional Boussinesq-like equation

By setting the complex transformation (6) into Eq. (1), we obtain

ðl2 � k2ÞU � 2k2 ðUÞ3 � k4 U00 ¼ 0: ð10Þ

Now, balancing between U00 and U3, gives N ¼ 1: Then we consider solution of Eq. (10) as

UðnÞ ¼ a0 þ a1QðnÞ: ð11Þ

Substituting Eq. (11) along with its first and second derivatives into Eq. (10) and equating

the coefficients of similar powers of QðnÞ in the obtained equation, results in

� 2ðln aÞ2k4a1 � 2k2a31 ¼ 0;

3ðln aÞ2k4a1 � 6k2a0a
2
1 ¼ 0;

�ðln aÞ2k4a1 � k2a1 � 6k2a20a1 þ l2a1 ¼ 0;

� k2a0 � 2k2a30 þ l2a0 ¼ 0:

By solving the above nonlinear system using symbolic computation package, the following

cases are determined:

Set-1:

a0 ¼ � 1

2
ik ln a; a1 ¼ ik ln a; and l ¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2
ðln aÞ2k2

r
:

Substituting the values of Set-1 into Eq. (11) along with the general solution of Eq. (6), the

following exact soliton solutions of the first fractional Boussinesq-like equation is

obtained:

u1;2ðx; tÞ ¼ � 1

2
ik ln aþ ik ln a

1þ dak
xb
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1

2
ðln aÞ2k2

p
ta
a

� � : ð12Þ

Set-2:

a0 ¼
1

2
ik ln a; a1 ¼ �ik ln a; and l ¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2
ðln aÞ2k2

r
:

By substituting the values of Set-2 into Eq. (11) along with the general solution (6), we

receive the following exact soliton solutions of the first fractional Boussinesq-like

equation:

u3;4ðx; tÞ ¼
1

2
ik ln a� ik ln a

1þ dak
xb
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1

2
ðln aÞ2k2

p
ta
a

� � : ð13Þ

The 3D and 2D modulus snapshots of solutions (12) and (13) are shown in Figs. 1 and 2,

respectively, with free choices of arbitrary parameters in different fractional values of

a ¼ b ¼ 0:5; a ¼ b ¼ 0:75 and a ¼ b ¼ 1. The figures demonstrate the anti-bell or dark

soliton profile. The behavior of the solitons depends on the free choices of arbitrary

parameters.
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3.2 Exact solutions of the second fractional Boussinesq-like equation

By considering the traveling wave transformation (6) into Eq. (2), we obtain

ðl2 � k2ÞU � 2k2 ðUÞ3 � k2l2 U00 ¼ 0: ð14Þ

Using homogeneous balance principle, we obtain N ¼ 1. Then we assume that solution of

Eq. (14) is

UðnÞ ¼ a0 þ a1QðnÞ: ð15Þ

Substituting Eq. (15) along with its first and second derivatives into Eq. (14) and equating

the coefficients of same powers of QðnÞ in the resulting equation, gives

� 2ðln aÞ2k2l2a1 � 2k2a
3

1 ¼ 0;

3ðln aÞ2k2l2a1 � 6k2a0a
2
1 ¼ 0;

�ðln aÞ2k2l2a1 � k2a1 � 6k2a
2

0a1 þ l2a1 ¼ 0;

� k2a0 � 2k2a30 þ l2a0 ¼ 0:

By solving the above nonlinear system using symbolic computation package, the following

cases are determined:

Fig. 1 a–c 3D snapshots for the solution of the first fractional Boussinesq-like equation extracted by the
modified Kudryashov method for the free choices of arbitrary parameters a ¼ 3, d ¼ 1:5, and k ¼ 0:5 with
a ¼ b ¼ 0:5; a ¼ b ¼ 0:75; a ¼ b ¼ 1, respectively. d 2D snapshots of a–c at t ¼ 0

128 Page 8 of 17 D. Kumar et al.

123



Set-1:

a0 ¼
k ln affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð2 k2 ln að Þ2þ4Þ
q ; a1 ¼

k ln a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2 k2 ln að Þ2þ4Þ

q
k2 ln að Þ2þ2

; and l ¼ � 2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 k2 ln að Þ2þ4

q :

Substituting the values of Set-1 into Eq. (15) along with the general solution of Eq. (6), we

determine the following exact soliton solutions of the second fractional Boussinesq-like

equation:

u1;2ðx; tÞ ¼
k ln affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð2 k2 ln að Þ2þ4Þ
q þ

k ln a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2 k2 ln að Þ2þ4Þ

q
k2 ln að Þ2þ2

1

1þ da
k xb

b� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 k2 ln að Þ2þ4

p ta
a

� �
0
BBB@

1
CCCA:

ð16Þ

Set-2:

a0 ¼ � k ln affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2 k2 ln að Þ2þ4Þ

q ; a1 ¼ �
k ln a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2 k2 ln að Þ2þ4Þ

q
k2 ln að Þ2þ2

; and l ¼ � 2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 k2 ln að Þ2þ4

q :

Fig. 2 a–c 3D snapshots for the solution of the first fractional Boussinesq-like equation constructed by the
modified Kudryashov method for the free choices of arbitrary parameters a ¼ 3, d ¼ 1:5, and k ¼ 1 with
a ¼ b ¼ 0:5; a ¼ b ¼ 0:75; a ¼ b ¼ 1, respectively. d 2D snapshots of a–c at t ¼ 1
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Substituting the values of Set-2 into Eq. (15) along with the general solution (6), the

following exact soliton solutions of the second fractional Boussinesq-like equation are

explored:

u3;4ðx; tÞ ¼ � k ln affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2 k2 ln að Þ2þ4Þ

q �
k ln a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2 k2 ln að Þ2þ4Þ

q
k2 ln að Þ2þ2

1

1þ da
k xb

b� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 k2 ln að Þ2þ4

p ta
a

� �
0
BBB@

1
CCCA:

ð17Þ

The 3D and 2D modulus snapshots of solutions (16) and (17) are exhibited in Figs. 3

and 4, respectively, with free choices of arbitrary parameters in different fractional values

of a ¼ b ¼ 0:5; a ¼ b ¼ 0:75 and a ¼ b ¼ 1. The figures also demonstrate the anti-bell or

dark soliton profile.

3.3 Exact solutions of the third fractional Boussinesq-like equation

Putting the transformation (6) into Eq. (3), yields

ðl2 þ lkÞU � 2k2 ðUÞ3 þ k3l U00 ¼ 0: ð18Þ

Homogeneous balance principle gives N ¼ 1. As usual the solution of Eq. (18) is taken as

Fig. 3 a–c 3D snapshots for the solution of second fractional Boussinesq-like equation obtained by the
modified Kudryashov method for the free choice of arbitrary parameters a ¼ 3, d ¼ 1:5, and k ¼ 0:5 with
a ¼ b ¼ 0:5; a ¼ b ¼ 0:75; a ¼ b ¼ 1, respectively. d 2D snapshots of a–c at t ¼ 0
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UðnÞ ¼ a0 þ a1QðnÞ: ð19Þ

Substituting Eq. (19) along with its first and second derivatives into Eq. (18) and equating

the coefficients of same powers of QðnÞ in the resulting equation, yields

2ðln aÞ2k3la1 � 2k2a31 ¼ 0;

� 3ðln aÞ2k2la1 � 6k2a0a
2
1 ¼ 0;

ðln aÞ2k3la1 þ kla1 � 6k2a20a1 þ l2a1 ¼ 0;

l2a0 � 2k2a
3

0 þ kla0 ¼ 0:

After solving the above nonlinear system by using Maple, the following cases are

determined:

Set-1:

a0 ¼
1

4
k ln a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2ðln aÞ2 � 4

q
; a1 ¼ � k ln aððln aÞ2k2 � 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðln aÞ2k2 � 4

q ; and l ¼ k
1

2
ðln aÞ2k2 � 1

� �
:

Substituting the values of Set-1 into Eq. (19) along with the general solution of Eq. (6), we

extract the following exact soliton solutions of the third fractional Boussinesq-like

equation:

Fig. 4 a–c 3D snapshots for the solution of second fractional Boussinesq-like equation found by the
modified Kudryashov method for the free choices of arbitrary parameters a ¼ 3, d ¼ 1:5, and k ¼ 1 with
a ¼ b ¼ 0:5; a ¼ b ¼ 0:75; a ¼ b ¼ 1, respectively. d 2D snapshots of a–c at t ¼ 1
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u1ðx; tÞ ¼
1

4
k ln a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðln aÞ2k2 � 4

q
� k ln aððln aÞ2k2 � 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðln aÞ2k2 � 4

q 1

1þ dak
xb
b� 1

2
ðln aÞ2k2�1ð Þtaa

� � :
ð20Þ

Set-2:

a0 ¼ � 1

4
k ln a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2ðln aÞ2 � 4

q
; a1 ¼

k ln aððln aÞ2k2 � 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðln aÞ2k2 � 4

q ; and l ¼ k
1

2
ðln aÞ2k2 � 1

� �
:

Substituting the values of Set-2 into Eq. (19) along with the general solution (6), we

generate the following exact soliton solutions of the third fractional Boussinesq-like

equation:

u2ðx; tÞ ¼ � 1

4
k ln a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðln aÞ2k2 � 4

q
þ k ln aððln aÞ2k2 � 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðln aÞ2k2 � 4

q 1

1þ dak
xb
b� 1

2
ðln aÞ2k2�1ð Þtaa

� � :
ð21Þ

The 3D and 2D modulus snapshots of solutions (20) and (21) are shown in Figs. 5 and 6,

respectively, with free choices of arbitrary parameters in different fractional values of

Fig. 5 a–c 3D snapshots for the solution of third fractional Boussinesq-like equation generated by the
modified Kudryashov method for the free choices of arbitrary parameters a ¼ 3, d ¼ 1:5, and k ¼ 1 with
a ¼ b ¼ 0:5; a ¼ b ¼ 0:75; a ¼ b ¼ 1, respectively. d 2D snapshots of a–c at t ¼ 1
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a ¼ b ¼ 0:5; a ¼ b ¼ 0:75 and a ¼ b ¼ 1. The figures also demonstrate the anti-bell or

dark soliton profile.

3.4 Exact solutions of the fourth fractional Boussinesq-like equation

Similar to the previous parts, we use the same transformation (6) into Eq. (4), which yields

l2 U � 2k2 U3 � k4 U00 ¼ 0: ð22Þ

We obtain N ¼ 1 using homogeneous balance principle. Then solution of Eq. (22) is

assumed as

UðnÞ ¼ a0 þ a1QðnÞ: ð23Þ

Substituting Eq. (23) along with its first and second derivatives into Eq. (22) and equating

the coefficients of same powers of QðnÞ in the resulting equation, results in

� 2ðln aÞ2k4a1 � 2k2a31 ¼ 0;

3ðln aÞ2k4a1 � 6k2a0a
2
1 ¼ 0;

�ðln aÞ2k4a1 þ l2a1 � 6k2a20a1 ¼ 0;

l2a0 � 2k2a30 ¼ 0:

Fig. 6 a–c 3D snapshots for the solution of third fractional Boussinesq-like equation acquired by the
modified Kudryashov method for the free choices of arbitrary parameters a ¼ 4, d ¼ 1:5, and k ¼ 1 with
a ¼ b ¼ 0:5; a ¼ b ¼ 0:75; a ¼ b ¼ 1, respectively. d 2D snapshots of a–c at t ¼ 0
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Solution sets of the above nonlinear system which have obtained by Maple are:

Set-1:

a0 ¼ � 1

2
ik ln a; a1 ¼ ik ln a; and l ¼ � 1ffiffiffi

2
p ik2 ln a:

Substituting the values of Set-1 into Eq. (23) along with the general solution (6) gives the

following exact soliton solutions of the fourth fractional Boussinesq-like equation:

u1;2ðx; tÞ ¼ � 1

2
ik ln aþ ik ln a

1þ da
k xb

b� 1ffiffi
2

p ik ln a ta
a

� � : ð24Þ

Set-2:

a0 ¼
1

2
ik ln a; a1 ¼ �ik ln a; and l ¼ � 1ffiffiffi

2
p ik2 ln a:

Substituting the values of Set-2 into Eq. (23) along with the general solution (6), we obtain

the following exact soliton solutions of the fourth fractional Boussinesq-like equation:

Fig. 7 a–c 3D snapshots for the solution of fourth fractional Boussinesq-like equation produced by the
modified Kudryashov method for the free choices of arbitrary parameters a ¼ 4, d ¼ 1:5, and k ¼ 1 with
a ¼ b ¼ 0:5; a ¼ b ¼ 0:75; a ¼ b ¼ 1, respectively. d 2D snapshots of a–c at t ¼ 0
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u3;4ðx; tÞ ¼
1

2
ik ln a� ik ln a

1þ da
k xb

b� 1ffiffi
2

p ik ln a ta
a

� � : ð25Þ

The 3D and 2D modulus snapshots of solutions (24) and (25) are presented in Figs. 7 and

8, respectively, with free choices of arbitrary parameters in different fractional values of

a ¼ b ¼ 0:5; a ¼ b ¼ 0:75 and a ¼ b ¼ 1. The figures also demonstrate the periodic

behaviors.

4 Conclusions

The basic goal of this work was to execute the modified Kudryashov method for exactly

solving the variety of space–time-fractional Boussinesq-like equations. As a result, we

received many new exact soliton solutions for the space–time-fractional variety of

Boussinesq-like equations which are expressed by exponential function forms. The

exponential function is based on an arbitrary variable a in which a 6¼ 0 and a 6¼ 1. To the

best of our knowledge, the received results have not been reported in other studies on the

fractional case of Boussinesq-like equations. Therefore, the obtained results show that the

implemented method along with the symbolic computation package suggest a promising,

robust, and well-built mathematical tool to handle for any nonlinear partial differential

Fig. 8 a–c 3D snapshots for the solution of fourth fractional Boussinesq-like equation extracted by the
modified Kudryashov method for the free choice of arbitrary parameters a ¼ 4, d ¼ 1:5, and k ¼ 1 with
a ¼ b ¼ 0:5; a ¼ b ¼ 0:75; a ¼ b ¼ 1, respectively. d 2D snapshots of a–c at t ¼ 0
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equations with integer and fractional order arising in mathematical physics and other

applied fields.
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