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Abstract We investigate numerically light propagation in a single spiraling waveguide

formed in a nonlinear photorefractive medium for high spatial frequency of the waveguide

rotation. High here means above the frequencies that correspond to the stable rotary

motion. The general procedure for finding exact fundamental solitonic solutions in the

spiraling guiding structures is based on the modified Petviashvili’s iteration method. In the

high frequency regime, the method gives only the solitons of low accuracy, that is, the

quasi-stable solitonic solutions that radiate while propagating. Such solitons, still supported

by the spiraling waveguide, perform quasi-stable rotational oscillatory motion, with

inevitable soliton decay. We find that, for each set of physical parameters, there exists a

beam power with minimal (in some cases practically negligible) wave radiation.
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1 Introduction

Nonlinear localized structures or solitons are ubiquitous in nature (Kivshar and Agrawal

2003). Rotating propagation systems provide more interesting dynamics than their straight

counterparts, because the centripetal force modifies the effect of potentials present and the

interaction with the medium or other beams. Rotating structures in optical photonic lattices

are of special interest (Petrović 2006). Rotating soliton states in radial invariable potentials

was first presented in Kartashov et al. (2004a, b); controlled soliton rotation in the opti-

cally-induced periodic Bessel-like ring lattices was demonstrated experimentally in Wang

et al. (2006), Huang et al. (2010). Rotating multipole modes in dynamical Bessel lattices

were predicted in Kartashov et al. (2005). Solitons in rotating periodic lattices were

considered in Cuevas et al. (2007), Longhi (2007), Jia and Fleischer (2009), Sakaguchi and

Malomed (2009). The starting point in understanding these curious optical phenomena is

the analogy between paraxial beam propagation in an optical waveguide with a bent axis

and the single-electron dynamics in an atomic system (Longhi et al. 2003). This analogy

originates from the formal equivalence of the scalar beam propagation equation for the

waveguide in the paraxial approximation and the one-electron temporal Schrödinger

equation, represented in the Kramers–Henneberger (KH) reference frame (Henneberger

1968).

2 The model

We start from the well-known paraxial wave equation for the beam propagation in a

nonlinear photorefractive crystal. The model equation in the steady-state and in the

dimensionless three-dimensional (3D) computational region (one x or y coordinate unit

corresponds to 8.5 lm and the z unit corresponds to 4 mm) is given by Petrović et al.

(2005), Belić et al. (2002):

i
oW
oz

þ MWþ C
I þ Iw

1þ I þ Iw
W ¼ 0; ð1Þ

where W is the beam envelope, M is the transverse Laplacian, C is the coupling constant,

I ¼ jWj2 is the laser light intensity measured in units of the background intensity, and Iw is

the intensity of the optically-induced spiraling waveguide. We assume that the refractive

index change of the waveguide channel has a Gaussian shape.

We transform the coordinates into a reference frame where the waveguide is straight:

x0 ¼ x� R cosðXzÞ; y0 ¼ y� R sinðXzÞ; z0 ¼ z; ð2Þ
where R is the helix radius, X is the spatial frequency and K ¼ 2p=X is the period of

rotation. A single spiral waveguide is sketched in Fig. 1. In the transformed reference

frame ðx0; y0Þ, the light evolution is described by:

i
oW
oz

¼ ir!0 þ 1

2
A
!ðz0Þ

� �2

W� 1

4
R2X2Wþ VW; ð3Þ

where W ¼ Wðx0; y0; z0Þ is the transformed envelope, r!0 ¼ o
ox0 ex0

�!þ o
oy0 ey0

�! the transformed

gradient, A
!ðz0Þ ¼ RX½� sinðXz0Þ ex0�!þ cosðXz0Þ ey0�!� the vector potential, and V ¼

�CðI þ IwÞ=ð1þ I þ IwÞ the scalar potential.
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3 The eigenvalue procedure

There are no known exact analytical solitonic solutions for our system. Owing to the

symmetry and dynamics of the problem, we are searching for the self-localized wave

packet continuously rotating and recreating its shape periodically (in every cycle of the

rotation), following the waveguide. The numerical solutions can be found from Eq. (3),

using the modified Petviashvili’s iteration method Petviashvili (1976), Yang et al. (2004),

Aleksić et al. (2012). Our system allows the existence of a fundamental soliton solution in

the form:

Wðx0; y0; z0Þ ¼ aðx0; y0; z0Þeilz0 ð4Þ
where l is the propagation constant and aðx0; y0; z0Þ is a z-periodic complex function of

period K. Physical requirements for obtaining a rotationally-invariant solution lead to the

following mathematical condition:

oa
oz0

¼ Xy0
oa
ox0

� Xx0
oa
oy0

: ð5Þ

After substituting Eqs. (4) and (5) into Eq. (3), one obtains the soliton equation in a

reference frame where the waveguide is straight:

iX R sinðXz0Þ þ y0ð Þ o
ox0

þ �R cosðXz0Þ � x0ð Þ o
oy0

� �
a� laþ M0a� CVa ¼ 0 ð6Þ

We separate linear and nonlinear terms on different sides of the equation for the complex-

valued amplitude function aðx0; y0Þ (Petrović et al. 2017). We first perform Fourier trans-

formation of that equation, and then apply the modified Petviashvili’s iteration method. In

this manner, starting from a calculated initial soliton profile at z0 ¼ 0, we find stable self-

consistent fundamental soliton solutions. The details of the eigenvalue procedure and the

iteration method are given in Petrović et al. (2017). In the regime of high spatial fre-

quencies of the waveguide rotation—of interest here—the Petviashvili’s iteration method

Fig. 1 Sketch of the single spiral
waveguide
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gives only solutions of low accuracy (relative error is between 0.01 and 0.001), that is, the

solutions that do not follow the waveguide closely.

The fundamental soliton solution for l ¼ 25L�1
D at z ¼ 0 is presented in Fig. 2. One can

see that the optical field intensity jaðx; yÞj2 is almost perfectly radially-symmetric. The

main quantity characterizing the spatial soliton is its power

P ¼ R R
Idxdy ¼ R R jaðx; yÞj2dxdy. The imprinted spiral waveguide can also be charac-

terized by its power. Since it carries its own intensity, which we take to be Gaussian,

Iwðx0; y0Þ ¼ Iw0 exp½�ðx02 þ y02Þ=W2
w�, one obtains Pw ¼ R R

Iwðx0; y0Þdx0dy0 ¼ pIw0W2
w. In

Fig. 3 we present a family of fundamental solitonic solutions with different propagation

constants and beam powers. The solutions are located close to the waveguide center (the

helix radius is R ¼ 0:5) and exactly at the potential barrier minimum, as expected. Because

of the saturation nature of the photorefractive nonlinearity, for large intensities the

potential V tends to �C (C ¼ 30 here).

The soliton power, width, and peak intensity as functions of the propagation constant

are shown in Fig. 4. We marked the unstable solutions in Fig. 4 in red: below the lower

power threshold they start to radiate, and above the upper power threshold they escape

from the potential well. One can notice from Fig. 4 that the obtained solitonic solution is

stable, according to the Vakhitov–Kolokolov stability criterion (Vakhitov and Kolokolov

1973), which posits that the solitary wave should be stable as long as dP=dl[ 0.

4 Results

Numerical procedure applied to the propagation equation is the split-step beam propaga-

tion method based on the fast Fourier transform. We apply the fourth-order symplectic

algorithm. We launch a soliton (from the point y ¼ 0) with an initial angular momentum in

the form of an input phase tilt in the y direction, which introduces beam velocity tangential

to the spiral waveguide; the helix radius is constant here, in difference to Longhi (2005).

The beam can be set into a steady spiraling motion with a period dictated by the period of

the helical waveguide. To check the iterative procedure for finding such solitons with low

accuracy, we propagate this input solution in the stationary frame of reference.

The peak intensity as a function of the propagation distance for several different values

of the propagation constant is shown in Fig. 5. At the lower power threshold, the solitons

radiate energy in the beginning. In the central part of the existence domain, the funda-

mental solutions perform persistent quasi-stable rotary motion (three such cases,

l ¼ 15L�1
D , l ¼ 20L�1

D , and l ¼ 26L�1
D , are shown in Fig. 5). Above the upper power

Fig. 2 Fundamental soliton
intensity profile for l ¼ 25L�1

D .
Parameters: X ¼ �2 rad=LD,
Pw ¼ 10:05 (Iw0 ¼ 5, Ww ¼ 0:8),
R ¼ 0:5, C ¼ 30
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threshold, the solitons escape from the waveguide. We present one case of a higher value

of the propagation constant, l ¼ 35L�1
D , where one can observe an unstable soliton

propagation supported by the spiraling waveguide.

Characteristic oscillatory trajectories of the quasi-stable rotating soliton supported by

the spiral waveguide are presented in Fig. 6, for three different propagation constants. One

can notice that for l ¼ 15L�1
D , the quasi-soliton oscillates around the waveguide during

propagation fairly regularly. However, for the propagation constants significantly higher

than l ¼ 15L�1
D , solitons escape from the waveguide fast, with significant decay through

radiation. We present one case with such high value of the propagation constant,

l ¼ 35L�1
D , where the unstable trajectory escapes the waveguide rapidly. Overall, one can

observe interesting quasi-stable and unstable cases of soliton propagation supported by the

spiral waveguide. We thus demonstrate a novel interesting type of soliton dynamics.

In Fig. 7, we present the power output of quasi-solitons as a function of the propagation

distance, for several values of the propagation constant and three values of the spatial

frequency. One can notice that for each frequency there exists the value of the propagation

constant where the decay of power is minimal. The radiation or decay, over many rotation

periods and diffraction lengths, increases with the increase in frequency.

Potential experimental verification of this effect for the photorefractive type of non-

linearity is open question at the moment. In spite of the great advance in our knowledge of

the femtosecond-laser micromachining for direct three-dimensional fabrication of trans-

parent optical materials in recent years (Chen and de Aldana 2014), unsatisfactory progress

has been made in the field of research which deals with the photorefractive direct laser

writing of arbitrary optical waveguiding structures (Kroesen et al. 2014; Vittadello et al.

Fig. 3 Fundamental soliton intensity profiles (left) and the corresponding potential profiles (right) at y ¼ 0.
The parameters are as in Fig. 2. (Colour figure online)

Fig. 4 Fundamental soliton power, width, and peak intensity as functions of the propagation constant. The
black dots represent the stable rotary solitonic solutions, the red dots the unstable solutions. The parameters
are as in Fig. 3. (Colour figure online)
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2016). But, in the regime where quasi-stable rotating solitons supported by a single spi-

raling waveguide exist, parameter Iw0 which characterize intensity of the imprinted spiral

waveguide is large (Iw0=5 for the cases presented here), then scalar potential V ! �C, and
Eq. (1) transforms to:

i
oW
oz

þ MWþ CW � 0: ð7Þ

This equation is analogous to the linear Schrödinger-type equation for paraxial propagation

of light in fused silica and other glasses (Rechtsman et al. 2013), where fabrication of

various waveguiding structures is easily feasible by using the laser writing technique. All

this means that experimental realization of these spiraling solitons is possible in some

glasses, if parameters in Eq. (7) are appropriately chosen for the specific glass; the

rescaling of parameters from the (photorefractive) propagation Eq. (1) is straightforward.

The region in the parameter space, where such solitonic solutions may exist, is large.

Fig. 5 Peak intensity as a function of the propagation distance (z ¼ 8K left, z ¼ 96K right) for four
different values of the propagation constant. Parameters are as in Fig. 3
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5 Conclusions

In this paper, we have studied numerically nonlinear light propagation in a helically

twisted optical waveguide formed in a photorefractive medium, for the high spatial fre-

quency. The general procedure for finding exact fundamental solitonic solutions in the

spiraling guiding structures is based on the modified Petviashvili’s iteration method. We

showed that there exist only the solitons of low accuracy—that is, the solutions that do not

follow the waveguide too closely. A region in the parameter space is determined, in which

quasi-stable rotating solitons exist. Below the lower power threshold, the rotating solitons

supported by the spiral waveguide start to radiate, and above the upper threshold, they

escape from the waveguide. Their stability was tested by a direct numerical simulation of

propagation. Spiraling spatial solitons supported by the 3D helical waveguide structure

perform quasi-stable rotational-oscillatory motion, over many rotation periods and

diffraction lengths. We demonstrated that there exists the beam power with the minimal

Fig. 6 Typical trajectory of a rotating soliton (red line) supported by the spiral waveguide (black line): 3D
view (the first row), 2D view (the second row). Propagation distances are given in the pictures, K ¼ 3:14LD.
The first, second and third columns are for l ¼ 15L�1

D , l ¼ 25L�1
D and l ¼ 35L�1

D , respectively. Parameters
are as in Fig. 3. (Colour figure online)

Fig. 7 Power output as a function of the propagation distance for the three values of the spatial frequency
and several different values of the propagation constant. a X ¼ � 1 rad=LD, b X ¼ � 2 rad=LD, c X ¼ � 3
rad=LD. Parameters are as in Fig. 3. (Colour figure online)
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wave radiation. Also, we presented the influence of the spatial frequency of waveguide

rotation on the stability of solitons. As the frequency which corresponds to the quasi-

stable rotary motion increases, the radiation and decay od the soliton accelerates.
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