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Abstract The present paper studies the pulse narrowing nonlinear transmission lines

equation, describing pulse narrowing in the field of communication engineering. More

precisely, the pulse narrowing nonlinear transmission line equation is solved analytically

using the recently developed techniques viz the modified Kudraysov method, the sine-

Gordon equation expansion method and the extended sinh-Gordon equation expansion

method. As a result, a wide range of dark, bright, dark–bright, singular or combined

singular and optical soliton solutions for the pulse narrowing nonlinear transmission lines

equation is formally obtained. All solutions have been verified back into its corresponding

equation with the aid of maple package program.
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1 Introduction

The study of the nonlinear dynamics of electrical transmission line equation are used in the

numerous applied field like as distributing cable television signals, connecting radio

transmitters and receivers with their antennas, computer network connections and high-

speed computer data buses, trunk lines routing calls between telephone switching centers

(Afshari and Hajimiri 2005; Zayed and Alurrfi 2015a, b; Malwe et al. 2014, 2016; El-Borai

et al. 2017; Younis et al. 2015; Younis and Ali 2014; Kengne and Lakhssassi 2015;

Kengne et al. 2007). In communication engineering, a electrical transmission line is a

specialized medium or other structure designed to carry alternating current of radio fre-

quency (El-Borai et al. 2017). More precisely, currents with a frequency high enough that

their wave nature must be taken into account their natural phenomena (El-Borai et al.

2017). The nonlinear transmission lines (NLTLs) also provide a useful way to check how

the nonlinear excitations behave inside the nonlinear medium and to model the exotic

properties of new systems (Sekulic et al. 2012; Pelap and Faye 2005). Nonlinear systems

are generic in the mathematical representation of physical phenomena. In order to

understand the mechanisms of those physical phenomena which can be described by

nonlinear evolution equations (NLEEs), it is necessary to explore their solutions and

properties. So, the effort in finding exact solitary wave solutions of nonlinear evolution

equations by means of different schemes has grown rapidly in recent years which is one of

the most excited advances of nonlinear science and theoretical physics. These exact

solutions are important to understand the mechanism of the complicated nonlinear physical

phenomena. Thus, it is very important to know the theory of the special waves called

solitons. Solitons play an imperative role in many physical systems and it appears in

various forms like as kink, pulse, envelope, bright, breather, dark and many others. A

soliton is a localized wave form that travels along the system with constant velocity and

undeformed shape. Researchers in physics and engineering have proved that solitons are

extremely interesting to due their localized and stable nature in applied field like nonlinear

optics, plasma physics, communication engineering, ocean engineering, fluid mechanics

and so on. Physically, signal shaping means changing certain features of incoming signals,

such as the frequency content, pulse width, and amplitude. At the present time, there are

many influential integration schemes have developed and utilized for seeking the exact and

approximated solutions of these NLEEs, such as the G0

G

� �
-expansion method, extended G0

G

� �
-

expansion method, auxiliary equation method, new auxiliary equation method, new Jacobi

elliptic function expansion method, modified Kudryashov method, the improved extended

tanh-function method, the generalized Riccati equation mapping method, the sine-Gordon

equation expansion method, the extended sinh-Gordon equation method, exp function

method, semi-inverse variational principle, and many more (Afshari and Hajimiri 2005;

Zayed and Alurrfi 2015a, b; Malwe et al. 2014, 2016; El-Borai et al. 2017; Younis et al.

2015; Younis and Ali 2014; Kengne and Lakhssassi 2015; Kengne et al. 2007; Sekulic

et al. 2012; Pelap and Faye 2005; Lu et al. 2017, 2018; Hosseini et al. 2017a, b, 2018;

Kumar et al. 2017, 2018; Yan and Zhang 2001; Bulut et al. 2017a, b, 2018; Khater et al.

2000, 2003, 2018; Seadawy and Lu 2016; Seadawy et al. 2017a, b, 2017; Seadawy 2016;

Ma and Lee 2009; Ma and Zhu 2012; Ma and Fuchssteiner 1996; Ma and Zhou 2018;

Zhang and Ma 2017; Zhao and Ma 2017; Yang et al. 2017; Ma et al. 2017; Baskonus 2016;

Baskonus and Sulaiman 2017; Baskonus et al. 2017).

Many integration schemes including auxiliary equation method, new Jacobi elliptic

function expansion method, the Kudryashov method, the G0

G

� �
-expansion method, the
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improved extended tanh-function method and the generalized Riccati equation mapping

method was executed and to generate explicit solitary wave solutions of the electrical

transmission lines equation (NETLEs) in the past (Afshari and Hajimiri 2005; Zayed and

Alurrfi 2015a, b; Malwe et al. 2014, 2016; El-Borai et al. 2017). The NETLEs are very

convenient tools to study the propagation of electrical solitons which can propagate in the

form of voltage waves in nonlinear dispersive media. Afshari and Hajimiri (2005), Zayed

and Alurrfi (2015a, b) solved the electrical transmission lines equation using first-order

linear approximation and Malwe et al. (2014, 2016) and El-Borai et al. (2017) used the

second order curve fitting for the diode characteristics. However, the main aim of this study

is to produce new dark, bright, dark–bright, singular or combined singular and optical

soliton solutions of the pulse narrowing nonlinear transmission lines equation using three

efficient distinct methods, known as the modified Kudryashov method, the sine-Gordon

equation expansion method and the extended sinh-Gordon equation expansion method.

Under investigation in this work, we consider the nonlinear PDE describing pulse nar-

rowing nonlinear transmission lines equation with first-order linear approximation (Afshari

and Hajimiri 2005; Zayed and Alurrfi 2015a, b):

d2Vðx; tÞ
dt2

� 1

LC0

d2Vðx; tÞ
dx2

� b1

2

d2V2ðx; tÞ
dt2

þ d2

12LC0

d4Vðx; tÞ
dx4

¼ 0: ð1Þ

where V(x, t) is the voltage pulse, and C0, L, b1 are all constants. The physical details of the

derivation of Eq. (1) is elaborated in Afshari and Hajimiri (2005) using the Kirchhoffs

current law and Kirchhoffs voltage law, which are omitted here for simplicity. It is well-

known (Afshari and Hajimiri 2005) that Eq. (1) has the solution:

Vðx; yÞ ¼
3 v2 � v20
� �

b1v2
sech2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 v2 � v20
� �

v0

s
x� vt

d

� �
2

4

3

5 ð2Þ

where v is the propagation velocity of the pulse and v0 ¼ 1=ðLC0Þ, provided that v[ v0.

Afshari and Hajimiri (2005) and Zayed and Alurrfi (2015a) solved the Eq. (1) by using

the new Jacobi elliptic function expansion method, auxiliary equation method and the

generalized projective Riccati equations method respectively. The obtained solutions of

Eq. (1) expressed by kink and anti-kink solitons, bell (bright) and anti-bell (dark) solitary

wave solutions, hyperbolic solutions and trigonometric solutions.

The remainder of the paper is organized as follows. A brief discussion modified

Kudryashov method is presented and its application in Sect. 2. Section 3 and its sub-

sections deal with the description of the sine-Gordon equation expansion method and its

application are discussed. Algorithm of the extended sinh-Gordon equation expansion

method and its application are also discussed in Sect. 4. Finally, we draw a concluding

remark about the generated results in Sect. 5.

2 Modified Kudryashov method for solving the pulse narrowing
nonlinear transmission lines equation

We consider the modified Kudryashov method as a new problem-solving technique to

obtain new exact soliton solutions of nonlinear differential equations which used in

mathematical physics.
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2.1 Description of modified Kudryashov method

Now, we give a brief description of the modified Kudryashov method to find new exact

soliton solutions for a given nonlinear partial differential equation. A general form of

nonlinear partial differential equation can be written as

F V;Vx;Vt;Vxx;Vxt;Vtt; . . .ð Þ ¼ 0: ð3Þ

where F is a polynomial function with respect to some functions or specified variables,

which contains nonlinear terms and highest order derivatives of the V(x, t) and the function

V ¼ Vðx; tÞ is unknown. The main steps are as follows:

Step-1 By introducing the transformation Vðx; tÞ ¼ VðnÞwhere n ¼ x� vtð Þ, converts
Eq. (3) to the following nonlinear ordinary differential equation

GðV ; V
0
; V

00
; . . .Þ ¼ 0: ð4Þ

where G is a polynomial of V and its derivatives and the superscripts indicate the ordinary

derivatives with respect to n.
Step-2 Let us assume that the solution UðnÞof the nonlinear Eq. (4) can be presented as

V nð Þ ¼ a0 þ
XN

i¼1

aiQ
i nð Þ: ð5Þ

where the arbitrary constants aiði ¼ 1; 2; . . .;NÞ are determined latter but aN 6¼ 0 and is a

positive integer, which can be determined by using balancing principle on Eq. (4) and

satisfies the following new ansatz equation

Q
0
nð Þ ¼ Q2 nð Þ � Q nð Þ

� �
lnðaÞ: ð6Þ

where a 6¼ 0; 1 and the general solution of the Eq. (6) is

Q nð Þ ¼ 1

1þ dan
:

Step-3 By inserting Eq. (5) along with Eq. (6) into Eq. (4) and equating the coefficients

of powers of Qi nð Þ to zero, we get a system of algebraic equations in parameters a0; a1 and

v. Setting the obtained values in Eq. (5), finally generates new exact solutions for the

Eq. (3).

2.2 Solution of the pulse narrowing nonlinear transmission lines equation

By considering the traveling wave transformation as:

V x; tð Þ ¼ VðnÞ; n ¼ x� vtð Þ ð7Þ

where k and v are arbitrary constant to be determined later. Using the transformation

Eq. (7), the pulse narrowing nonlinear transmission lines Eq. (1) can be reduced to a

nonlinear ordinary differential equation as below

d2c20V
00 � 12 v2 � c20

� �
V þ 6b1v

2V2 ¼ 0: ð8Þ

Now balancing between V
00
and V2, we obtain N = 2. Then, assuming solution of the

Eq. (8) is
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V nð Þ ¼ a0 þ a1Q nð Þ þ a2Q
2 nð Þ: ð9Þ

By substituting Eq. (9) along with its first and second derivatives into Eq. (8) and com-

paring the terms in the resulting equation, a nonlinear system is gained which by solving it,

we determined the following sets:

Set 1 a0 ¼ 0; a1 ¼ 12d2 lnðaÞð Þ2

12þd2 lnðaÞð Þ2ð Þb1 ; a2 ¼� 12d2 lnðaÞð Þ2

12þd2 lnðaÞð Þ2ð Þb1, and v¼�1
2
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 lnðaÞð Þ2

3
þ4

q
.

Now, the following new exact traveling wave solutions to the pulse narrowing nonlinear

transmission lines equation is extracted:

V1;2 x; tð Þ ¼ 12d2 lnðaÞð Þ2

12þ d2 lnðaÞð Þ2
� �

b1

1

1þ da
x�1

2
c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 lnðaÞð Þ2

3
þ4

q� � � 1

1þ da
x�1

2
c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 lnðaÞð Þ2

3
þ4

q� �2

0

BBB@

1

CCCA
:

ð10Þ

Set 2 a0 ¼ 2d2 lnðaÞð Þ2

12þd2 lnðaÞð Þ2ð Þb1 ; a1 ¼ � 12d2 lnðaÞð Þ2

12þd2 lnðaÞð Þ2ð Þb1 ; a2 ¼ 12d2 lnðaÞð Þ2

12þd2 lnðaÞð Þ2ð Þb1, and

v ¼ � 1
2
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d2 lnðaÞð Þ2

3
þ 4

q
.

Now, the following new exact traveling wave solutions to the pulse narrowing nonlinear

transmission lines equation is determined:

V3;4 x; tð Þ ¼ 2d2 lnðaÞð Þ2

12þ d2 lnðaÞð Þ2
� �

b1

1� 6

1þ da
x�1

2
c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 lnðaÞð Þ2

3
þ4

q� � þ 6

1þ da
x�1

2
c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 lnðaÞð Þ2

3
þ4

q� �2

0

BBB@

1

CCCA
:

ð11Þ

3 Sine-Gordon expansion approach for solving the pulse narrowing
nonlinear transmission lines equation

The sine-Gordon equation expansion method (Kumar et al. 2017; Yan and Zhang 2001) is

one of the most efficient techniques for seeking the exact solutions of various forms of

nonlinear differential equations. The fundamental of the sine-Gordon expansion approach

can be summarized as follows:

3.1 The fundamental factors of the sine-Gordon approach

Consider the following sine-Gordon equation

uxx � utt ¼ m2sin uð Þ; ð12Þ

where u ¼ uðx; tÞ and m is a constant. By using the transformation uðx; tÞ ¼ UðnÞ where
n ¼ lðx� ctÞ, we obtain Eq. (12) in form of the following nonlinear ordinary differential

equation:
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U
00 ¼ m2

l2 1� c2ð Þ sin Uð Þ: ð13Þ

Multiplying U0 on the both sides of Eq. (13) and integrating it once gives

U

2

� �0" #2

¼ m2

l2ð1� c2Þ sin
2 U

2

� �
þ K; ð14Þ

where K is an integration constant.

By setting K = 0, U
2
¼ wðnÞ, and m2

l2ð1�c2Þ ¼ p2 in Eq. (14), we obtain

w0 ¼ p sinðwÞ: ð15Þ

If we take p = 1 in Eq. (15), we find

w0 ¼ sin wð Þ: ð16Þ

This is a simplified form of the sine-Gordon equation. Therefore, Eq. (16) has the fol-

lowing solutions:

sin wð Þ ¼ sech nð Þ; cos wð Þ ¼ tanh nð Þ ð17Þ

and

sin wð Þ ¼ icsch nð Þ; cos wð Þ ¼ coth nð Þ: ð18Þ

Now, consider a nonlinear partial differential equation as

FðV;Vx;Vt;Vxx;Vxt;Vtt;Vxxx; . . .Þ ¼ 0: ð19Þ

Consider the following transformation:

Vðx; tÞ ¼ VðnÞ; n ¼ lðx� ctÞ: ð20Þ

Implementing the transformation of Eq. (20) into Eq. (19), then Eq. (20) converted to the

following nonlinear ordinary differential equation

GðV;V 0
;V

00
; . . .Þ ¼ 0; ð21Þ

where G is a polynomial of V and its derivatives and the superscripts indicate the ordinary

derivatives with respect to n. If possible, we should integrate Eq. (21) term by term one or

more times.

Now, we use the following transformation

V wð Þ ¼
XN

j¼1

cosj�1 wð Þ Bj sin wð Þ þ Aj cos wð Þ
	 


þ A0: ð22Þ

It is assumed that the solution VðnÞ of the nonlinear Eq. (22) along with Eqs. (17) and (18)

can be presented as follows

V nð Þ ¼
XN

j¼1

tanhj�1 nð Þ Bjsech nð Þ þ Aj tanh nð Þ
	 


þ A0; ð23Þ

and
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V nð Þ ¼
XN

j¼1

cothj�1 nð Þ iBjcsch nð Þ þ Aj coth nð Þ
	 


þ A0: ð24Þ

By determining the value of N using the homogeneous balance principle, substituting the

value of N into Eq. (21) and putting the result into the reduced ordinary differential

equation using Eq. (16) give a nonlinear algebraic system. Equating the coefficients of

sinjðwÞ and cosjðwÞ equal to zero and solving the acquired system give the values of Aj, Bj,

l and c. Finally, after substituting the values of Aj, Bj and c into Eqs. (23) and (24), we can

retrieve the solitary wave solutions of Eq. (19).

3.2 Solution of the pulse narrowing nonlinear transmission lines equation

To determine the parameter N, we balance the linear terms of highest order in Eq. (7) with

the highest order nonlinear terms and we obtain N = 2. As a result, Eqs. (22) and (23)

takes the sine-Gordon expansion approach in the finite expansion form

V nð Þ ¼ B1sech nð Þ þ B2tanh nð Þsech nð Þ þ A1tanh nð Þ þ A2tanh
2 nð Þ þ A0; ð25Þ

and

V nð Þ ¼ iB1csch nð Þ þ iB2coth nð Þcsch nð Þ þ A1coth nð Þ þ A2coth
2 nð Þ þ A0; ð26Þ

and so from Eq. (21)

U wð Þ ¼ B1 sin wð Þ þ B2 sin wð Þ cos wð Þ þ A1 cos wð Þ þ A1 cos
2 wð Þ þ A0; ð27Þ

where either A2 or B2 may be zero, but both A2 and B2 cannot be zero simultaneously.

By substituting Eq. (27) into Eq. (8) and using some mathematical operations, we arrive

at a nonlinear algebraic system. Solving the resulting system with the help of symbolic

computation package, results in:

Set 1 A0 ¼ � d2

d2�3ð Þb1, A1 ¼ 0, A2 ¼ 3d2

d2�3ð Þb1, B1 ¼ 0, B2 ¼ 0 and v ¼ �c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� d2

3
þ 1

q
.

Therefore, we substitute the values of Set 1-1 into Eqs. (25) and (26), we generate the

following new solitary wave solutions for the pulse narrowing nonlinear electric trans-

mission lines equation:

V5;6 x; tð Þ ¼ d2

d2 � 3
� �

b1
3tanh2 x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 1

s0

@

1

A� 1

0

@

1

A: ð28Þ

and

V7;8 x; tð Þ ¼ d2

d2 � 3
� �

b1
3coth2 x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 1

s0

@

1

A� 1

0

@

1

A: ð29Þ

Set 2 A0 ¼ 3d2

d2�3ð Þb1, A1 ¼ 0, A2 ¼ � 3d2

d2�3ð Þb1, B1 ¼ 0, B2 ¼ 0 and v ¼ �c0

ffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 1

q
.

Therefore, we substitute the values of Set 2 into Eqs. (25) and (26), we find the fol-

lowing new solitary wave solutions for the pulse narrowing nonlinear electric transmission

lines equation:
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V9;10 x; tð Þ ¼ � 3d2

d2 � 3
� �

b1
tanh2 x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 1

s0

@

1

A� 1

0

@

1

A: ð30Þ

and

V11;12 x; tð Þ ¼ � 3d2

d2 � 3
� �

b1
coth2 x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 1

s0

@

1

A� 1

0

@

1

A: ð31Þ

Set 3-1 A0 ¼ � 4d2

d2�12ð Þb1, A1 ¼ 0, A2 ¼ 6d2

d2�12ð Þb1, B1 ¼ 0, B2 ¼ 6id2

d2�12ð Þb1 and

v ¼ �c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� d2

3
þ 4

q
.

Therefore, we substitute the values of Set 3-1 into Eqs. (25) and (26), we produce the

following new solitary wave solutions for the pulse narrowing nonlinear electric trans-

mission lines equation:

V13;14 x; tð Þ ¼ d2

d2 � 12
� �

b1
�4þ 6tanh2 x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 4

s0

@

1

A

0

@

þ 6i tanh x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 4

s0

@

1

Asech x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 4

s0

@

1

A

1

A:

ð32Þ

and

V15;16 x; tð Þ ¼ d2

d2 � 12
� �

b1
�4þ 6coth2 x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 4

s0

@

1

A

0

@

� 6coth x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 4

s0

@

1

Acsch x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 4

s0

@

1

A

1

A:

ð33Þ

Set 3-2 A0 ¼ � 4d2

d2�12ð Þb1, A1 ¼ 0, A2 ¼ 6d2

d2�12ð Þb1, B1 ¼ 0, B2 ¼ � 6id2

d2�12ð Þb1 and

v ¼ �c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� d2

3
þ 4

q
.

Therefore, we substitute the values of Set 3-2 into Eqs. (25) and (26), we extract the

following new solitary wave solutions for the pulse narrowing nonlinear electric trans-

mission lines equation:

V17;18 x; tð Þ ¼ d2

d2 � 12
� �

b1
�4þ 6tanh2 x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 4

s0

@

1

A

0

@

�6i tanh x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 4

s0

@

1

Asech x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 4

s0

@

1

A

1

A:

ð34Þ

and
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V19;20 x; tð Þ ¼ d2

d2 � 12
� �

b1
�4þ 6coth2 x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 4

s0

@

1

A

0

@

þ6coth x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 4

s0

@

1

Acsch x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� d2

3
þ 4

s0

@

1

A

1

A:

ð35Þ

Set 4-1 A0 ¼ 6d2

d2�12ð Þb1, A1 ¼ 0, A2 ¼ � 6d2

d2�12ð Þb1, B1 ¼ 0, B2 ¼ 6id2

d2�12ð Þb1 and

v ¼ �c0

ffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

q
.

Therefore, we substitute the values of Set 4-1 into Eqs. (25) and (26), we obtain the

following new solitary wave solutions for the pulse narrowing nonlinear electric trans-

mission lines equation:

V21;22 x; tð Þ ¼ 6d2

d2 � 12
� �

b1
1� tanh2 x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

s0

@

1

A

0

@

þi tanh x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

s0

@

1

Asech x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

s0

@

1

A

1

A:

ð36Þ

and

V23;24 x; tð Þ ¼ 6d2

d2 � 12
� �

b1
1� coth2 x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

s0

@

1

A

0

@

� coth x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

s0

@

1

Acsch x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

s0

@

1

A

1

A:

ð37Þ

Set 4-2 A0 ¼ 6d2

d2�12ð Þb1, A1 ¼ 0, A2 ¼ � 6d2

d2�12ð Þb1, B1 ¼ 0, B2 ¼ � 6id2

d2�12ð Þb1 and

v ¼ �c0

ffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

q
.

Therefore, we substitute the values of Set 4-2 into Eqs. (25) and (26), we receive the

following new solitary wave solutions for the pulse narrowing nonlinear electric trans-

mission lines equation:

V25;26 x; tð Þ ¼ 6d2

d2 � 12
� �

b1
1� tanh2 x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

s0

@

1

A

0

@

�i tanh x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

s0

@

1

Asech x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

s0

@

1

A

1

A:

ð38Þ

and
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V27;28 x; tð Þ ¼ 6d2

d2 � 12
� �

b1
1� coth2 x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

s0

@

1

A

0

@

þ coth x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

s0

@

1

Acsch x� c0t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3
þ 4

s0

@

1

A

1

A:

ð39Þ

4 The fundamental aspects of the extended sinh-Gordon equation
expansion method

Consider the following sine-Gordon equation

uxt ¼ msinh uð Þ; ð40Þ

where u ¼ uðx; tÞ and m is a constant. Introducing the transformation uðx; tÞ ¼ UðnÞ where
n ¼ kðx� ltÞ, reduces Eq. (40) to the following nonlinear ordinary differential equation:

U
00 ¼ � m

k2l
sinh Uð Þ: ð41Þ

Multiplying U0 on the both sides of Eq. (41) and integrating it once gives

U

2

� �0" #2

¼ � m

k2l
sinh2

U

2

� �
þ p; ð42Þ

where p is an integration constant.

By setting U
2
¼ wðnÞ, and � m

k2l
¼ q in Eq. (42), we obtain

w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ q sinh2 wð Þ

q
: ð43Þ

For different values of parameters p and q, Eq. (43) possess the following set of solutions:

Case-I When we take p = 0 and q = 1, Eq. (43) becomes

w0 ¼ sinh wð Þ: ð44Þ

This is a simplified form of the sinh-Gordon equation. Simplifying Eq. (44), the following

solutions are obtained:

sinh wð Þ ¼ �isech nð Þ; cosh wð Þ ¼ �tanh nð Þ ð45Þ

and

sinh wð Þ ¼ �csch nð Þ; cosh wð Þ ¼ �coth nð Þ: ð46Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
represent an imaginary number.

Case-II When we take p = 1 and q = 1, Eq. (43) becomes

w0 ¼ cosh wð Þ: ð47Þ

This is also a simplified form of the sinh-Gordon equation. Simplifying Eq. (47), the

following solutions are obtained:
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sinh wð Þ ¼ tan nð Þ; cosh wð Þ ¼ �sec nð Þ ð48Þ

and

sinh wð Þ ¼ �cot nð Þ; cosh wð Þ ¼ �csc nð Þ: ð49Þ

Now, consider a nonlinear partial differential equation as

FðV;Vx;Vt;Vxx;Vxt;Vtt;Vxxx; . . .Þ ¼ 0: ð50Þ

Consider the following transformation:

Vðx; tÞ ¼ VðnÞ; n ¼ kðx� ltÞ: ð51Þ

Implementing the transformation of Eq. (51) into Eq. (50), then Eq. (50) converted to the

following nonlinear ordinary differential equation

GðV;V 0
;V

00
; . . .Þ ¼ 0; ð52Þ

where G is a polynomial of V and its derivatives and the superscripts indicate the ordinary

derivatives with respect to n. If possible, we should integrate Eq. (52) term by term one or

more times.

Now, we use the following transformation

V wð Þ ¼
XN

j¼1

coshj�1 wð Þ Bj sinh wð Þ þ Aj cosh wð Þ
	 


þ A0: ð53Þ

It is assumed that the solution VðnÞ of the nonlinear Eq. (53) along with Eq. (44), Eq. (45)

and Eq. (46) can be presented as follows

V nð Þ ¼
XN

j¼1

� tanh nð Þð Þj�1 �iBjsech nð Þ � Aj tanh nð Þ
	 


þ A0; ð54Þ

and

V nð Þ ¼
XN

j¼1

� coth nð Þð Þj�1 �Bjcsch nð Þ � Aj coth nð Þ
	 


þ A0; ð55Þ

Similarly, it is supposed that the solution VðnÞ of the nonlinear Eq. (53) along with

Eqs. (47), (48) and (49) can be presented as follows

V nð Þ ¼
XN

j¼1

� sec nð Þð Þj�1
Bjtan nð Þ � Aj sec nð Þ
	 


þ A0; ð56Þ

and

V nð Þ ¼
XN

j¼1

� csc nð Þð Þj�1 �Bjcot nð Þ � Aj csc nð Þ
	 


þ A0; ð57Þ

By determining the value of N using the homogeneous balance principle, substituting the

value of N into Eq. (53) and putting the result into the reduced ordinary differential

equation using Eqs. (45) and (46) give a nonlinear algebraic system. Equating the
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coefficients of sinhjðwÞ and coshjðwÞ equal to zero and solving the acquired system give

the values of Aj, Bj, l and k. Finally, after substituting the values of Aj, Bj, l and k into

Eqs. (54), (55), (56) and (57), we can retrieve the solitary wave solutions of Eq. (53).

Remarks For the similar techniques of the sine-Gordon equation expansion method, we

do not show the solutions elaborately for the extended sinh-Gordon equation expansion

method. To the best of our knowledge all the solutions mentioned above have not been

reported so far by other authors in the literature. All solutions have been verified by putting

back into original equation via the symbolic software maple and found them correct.

5 Discussion of results

The modified Kudrayshov method, the sine-Gordon expansion method and the extended

sinh-Gordon equation expansion method are utilized to look for new closed form complex

hyperbolic and trigonometric function solution, especially dark, bright, dark–bright, sin-

gular or combined singular and optical soliton solutions for the pulse narrowing nonlinear

transmission lines equation are acquired. The pulse narrowing nonlinear transmission lines

equation have studied several researchers in past (Zayed and Alurrfi 2015a, b). Zayed and

Alurrfi (2015a, b) only found kink and anti-kink solitons, bell (bright) and anti-bell (dark)

solitary wave solutions, hyperbolic solutions and trigonometric solutions by utilizing the

generalized projective Riccati equations method, the Jacobi elliptic expansion method and

the auxiliary equation method. But, in our case, we employed three distinct integration

schemes viz modified Kudryashov method, sine-Gordon expansion equation method and

extended sinh-Gordon equation expansion method for seeking new soliton and other

solutions and found some different solutions from Zayed and Alurrfi (2015a) and Zayed

and Alurrfi (2015b). In our case, combined soliton solutions are totally new and have

different physical significance.

6 Conclusion

In this article, we have solved the nonlinear PDE describing the pulse narrowing nonlinear

transmission lines using three distinct integration schemes such as modified Kudryashov

method, sine-Gordon expansion equation method and extended sinh-Gordon equation

expansion method. As a results, a series of dark, bright, dark–bright, singular or combined

singular and optical soliton solutions for the pulse narrowing nonlinear transmission lines

equation is formally extracted. The extracted results emphasized the power of executed

methods are robust and effective than other methods for acquiring new and more general

soliton and other solutions in the field of mathematical physics and engineering.
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