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Abstract We compare three thermodynamically consistent Scharfetter–Gummel schemes

for different distribution functions for the carrier densities, including the Fermi–Dirac

integral of order 1/2 and the Gauss–Fermi integral. The most accurate (but unfortunately

also most costly) generalized Scharfetter–Gummel scheme requires the solution of an

integral equation. Since one cannot solve this integral equation analytically, several

modified Scharfetter–Gummel schemes have been proposed, yielding explicit flux

approximations to the implicit generalized flux. The two state-of-the-art modified fluxes

used in device simulation software are the diffusion-enhanced flux and the inverse activity

coefficient averaging flux. We would like to study which of these two modified schemes

approximates the implicit flux better. To achieve this, we propose a new method to solve

the integral equation numerically based on Gauss quadrature and Newton’s method. This

numerical procedure provides a highly accurate reference flux, enabling us to compare the

quality of the two modified Scharfetter–Gummel schemes. We extend previous results

(Farrell in J Comput Phys 346:497–513, 2017a) showing that the diffusion-enhanced

ansatz leads to considerably lower flux errors for the Blakemore approximation to the

physically more relevant Fermi–Dirac and Gauss–Fermi statistics.
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1 Introduction

The classical Scharfetter–Gummel scheme in combination with a Voronoı̈ finite volume

method provides a discrete approximation to drift-diffusion currents in non-degenerate

semiconductors (Boltzmann regime). The scheme is consistent with the thermodynamic

equilibrium in the sense that the (full) zero-bias solution coincides with the unique ther-

modynamic equilibrium. This consistency helps to avoid unphysical steady state dissipa-

tion, see Bessemoulin-Chatard (2012). Furthermore, the consistent discretization of

dissipative effects is crucial when coupling the semiconductor equations to heat transport

models. Among all discretization schemes this finite volume method is the most estab-

lished one for simulating the current flow in opto-electronic devices.

However, the classical Scharfetter–Gummel scheme is only consistent when one is

justified in using the Boltzmann approximation. Non-Boltzmann distribution functions

describing degenerate semiconductors are required for organic semiconductors, highly

doped materials and semiconductor devices operated at cryogenic temperatures as shown

e.g. by Kantner and Koprucki (2016). Strong degeneracy effects make it mandatory to

employ Fermi–Dirac statistics. Therefore, it is crucial to develop generalizations of the

Scharfetter–Gummel scheme beyond the Boltzmann approximation. A number of schemes

for degenerate semiconductors proposed in the literature Purbo et al. (1989), Jüngel

(1995), Stodtmann et al. (2012) are not thermodynamically consistent.

Bessemoulin-Chatard (2012), Koprucki et al. (2015), and Fuhrmann (2015) proposed

modified Scharfetter–Gummel schemes which are thermodynamically consistent. Based on

Eymard et al. (2006), Koprucki and Gärtner (2013) introduced (an accurate but costly)

thermodynamically consistent generalized Scharfetter–Gummel scheme which requires the

solution of an integral equation summarized in Sect. 4.

The focus of the present paper is on the Fermi–Dirac integral of order 1/2 as well as the

Gauss–Fermi integral. Furthermore, in Sect. 5 we present a new algorithm to solve the

integral equation proposed in Koprucki and Gärtner (2013) based on Gauss quadrature and

Newton’s method. Using this numerical flux as reference, we compare the performance of

the two modified Scharfetter–Gummel schemes in Sect. 6.

We point out that even though in this paper we discuss only local flux corrections,

Farrell et al. (2017a) previously also confirmed the beneficial influence of the modified

Scharfetter–Gummel fluxes on the global solution of the fully coupled van Roosbroeck

system via a p-i-n benchmark. However, this simulation was restricted to the Blakemore

distribution function (an approximation of the Fermi–Dirac integral). Here we perform a

thorough comparison for the physically more accurate and computationally more chal-

lenging Fermi–Dirac and Gauss–Fermi integrals. Nevertheless, the local errors behave in

both settings very similarly which leads us to expect that the local improvement has a

similar influence on device simulations using the fully coupled van Roosbroeck system.
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2 Van Roosbroeck system and distribution functions

We consider the stationary van Roosbroeck system of charge transport in semiconductors

using standard notation from Farrell et al. (2017a) (w: electrostatic potential, un;up: quasi-

Fermi potentials, gn; gp: chemical potentials):

�r� e0errwð Þ ¼ q p� nþ Cð Þ; ð1aÞ

r � jn ¼ qR; jn ¼ �qlnnrun; ð1bÞ

r � jp ¼ �qR; jp ¼ �qlpprup ð1cÞ

where ln and lp denote the electron and hole mobilities, C the doping, R the recombi-

nation rate and e0; er the vacuum and relative permittivity. The electron and hole densities

are defined by

n ¼ NcFðgnÞ; gn ¼
qðw� unÞ � Ec

kBT
; ð2aÞ

p ¼ NvFðgpÞ; gp ¼
qðup � wÞ þ Ev

kBT
: ð2bÞ

Here the effective densities of states for electrons in the conduction band Nc and holes in

the valence band Nv as well as the corresponding band-edge energies Ec and Ev are

constant material parameters. The temperature T is also assumed to be constant; in general

it can be space or even time dependent. The Boltzmann constant is denoted with kB.

Distribution functions describe how potentials and charge carriers are related. For

inorganic, 3D bulk semiconductors with parabolic bands this relation is given by the

Fermi–Dirac integral of order 1/2,

FðgÞ ¼ F1=2ðgÞ :¼
2
ffiffiffi

p
p
Z 1

0

n1=2

expðn� gÞ þ 1
dn; ð3Þ

which can be approximated by a Blakemore (FðgÞ ¼ ðexpð�gÞ þ cÞ�1
with c ¼ 0:27) or

Boltzmann (FðgÞ ¼ expðgÞ) distribution in the low density limit. For large arguments,

F1=2ðgÞ can be approximated by the degenerate limit 4
3
ffiffi

p
p g3=2. For organic semiconductors

the Gauss–Fermi integral, a term coined by Paasch and Scheinert (2010),

FðgÞ ¼ Gðg; rÞ :¼ 1
ffiffiffiffiffiffi

2p
p

r

Z 1

�1

expð� n2

2r2Þ
expðn� gÞ þ 1

dn; ð4Þ

describes the relationship between potentials and carrier densities. The variance r mea-

sures the disorder of the energy levels. The Gauss–Fermi integral reduces to a Blakemore

distribution function (with c ¼ 1) for vanishing disorder r, corresponding to a d-shaped

density of states, describing a single transport level. All relevant functions are depicted in

Fig. 1.

In the following we restrict our considerations to the continuity equation for electrons,

partially omitting the index n. The electron current can be rewritten in drift-diffusion form,
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jn ¼ �qlnnrwþ qDnrn: ð5Þ

The diffusion coefficient Dn is linked to the carrier mobilities by a generalized Einstein

relation Dn

ln
¼ kBT

q
gðgnÞ; where the diffusion enhancement is given by

gðgÞ ¼ FðgÞ
F 0ðgÞ ¼

1
�

logFðgÞ
�0 : ð6Þ

For the Boltzmann distribution, we have g � 1. Therefore, g is a measure of the degen-

eracy (i.e. the deviation from the Boltzmann regime), see Fig. 1.

3 Finite volume discretization and thermodynamic consistency

We partion the domain X into control volumes (Voronoı̈ cells) xK such that X ¼
SN

K¼1 xK .

With each control volume we associate a node xK 2 xK . Via the divergence theorem we

obtain after integration over each control volume a discrete version of the continuity

equation (1b). Consistent with the continuous van Roosbroeck system, this finite volume

discretization describes the change of the carrier density within a control volume. The

corresponding numerical flux j describing the flow between neighboring control volumes

can be expressed as a function, depending nonlinearly on the values wK ;wL; gK ; gL such

that

jðwK ;wL; gK ; gLÞ �
1

joxK \ oxLj

Z

oxK\oxL

j � n dS:

Here a function with subindex, e.g. K, denotes evaluation of the function at the node xK .

Farrell et al. (2017b) give more details on the derivation of this scheme.

We require our numerical current approximation to satisfy thermodynamic consistency,

a property which holds at the continuous level: constant quasi Fermi potentials lead to

vanishing currents. Thus, setting any discrete numerical flux between two adjacent dis-

cretization nodes xK and xL to zero

j ¼ jðgL; gK ;wL;wKÞ ¼ 0

Fig. 1 Distribution functions and their corresponding diffusion enhancement (6)
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shall imply

wL � wK

UT

¼: dwKL¼
!
dgKL :¼ gL � gK ð7Þ

where UT ¼ kBT=q denotes the thermal voltage.

4 Generalized Scharfetter–Gummel schemes

If one assumes that the (unknown) flux j between two cells is constant, it fulfills the

integral equation, studied by Eymard et al. (2006), Koprucki and Gärtner (2013),

Z

gL

gK

jn=j0
FðgÞ þ

wL � wK

UT

� ��1

dg ¼ 1; j0 ¼ qlnNc

UT

hKL
ð8Þ

where the integration limits are given by gK ¼ gn wK ;uKð Þ and gL ¼ gn wL;uLð Þ. The

distance between both nodes associated with each cell is denoted with hKL. Gärtner (2015)

showed that for strictly monotonously increasing FðgÞ this equation has always a unique

solution. We will refer to it as the generalized Scharfetter–Gummel flux.

For the Boltzmann approximation we recover from (8) the classical scheme by

Scharfetter and Gummel (1969),

jsg ¼ B dwKLð ÞegL � B �dwKLð ÞegK ; ð9Þ

for the non-dimensionalized edge current jsg ¼ jn=j0 and the Bernoulli function

BðxÞ :¼ x=ðex � 1Þ. Koprucki and Gärtner (2013) showed that the Blakemore approxi-

mation F gð Þ ¼ 1
e�gþc yields for (8) a fixed point equation

jb ¼ B cjb þ dwKLð ÞegL � B � cjb þ dwKL½ �ð ÞegK ð10Þ

for the non-dimensionalized edge current jb ¼ jn=j0. The right-hand side is a Scharfetter–

Gummel expression where the argument of the Bernoulli function is shifted by cjb. Hence,

for c ¼ 0 the generalized flux jb reduces to the classical Scharfetter–Gummel scheme (9)

since the Blakemore function reduces to the Boltzmann function.

5 Solving for the generalized Scharfetter–Gummel flux numerically

For general distribution functions like (3) and (4), we cannot find closed expressions for the

unknown current as a solution to (8). For this reason one may employ physically motivated

approximate flux solutions. These modified Scharfetter–Gummel schemes we discuss in

Sect. 6. To obtain more accurate flux approximations, we solve the generalized Schar-

fetter–Gummel scheme (8) numerically. The implementation is challenging due to two

reasons: First one needs to approximate the integral accurately and then solve a nonlinear

equation. We use Gauss-Legendre quadrature to approximate the integral. Not only is this

highly efficient for smooth integrands but also the quadrature excludes the boundary nodes

thus preventing the integrand from coming to close to a pole. Gärtner (2015) showed that

no pole can appear within the integration limits. However, it might come very close to the
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domain of integration. Denoting the integrand in (8) with Gðg; dwKL; jÞ for j ¼ jn=j0, we

can approximate (8) by

HðjÞ :¼
X

N

i¼1

wiGðgi; dwKL; jÞ � 1 ¼ 0; ð11Þ

where wi are the integration weights and gi the quadrature nodes.

We solve the nonlinear equation for the flux j via Newton’s method, using the diffusion-

enhanced Scharfetter–Gummel flux (13) as a starting guess. This choice is very crucial as

already small perturbations may result in divergence. We treat pure drift and pure diffusive

currents separately. For small drift and small diffusion we use the low-order series

expansion of the unknown current derived by Farrell et al. (2017a) to avoid numerical

difficulties. In Fig. 2, isosurfaces of the generalized Scharfetter–Gummel current using this

method are shown for Fermi–Dirac and Gauss–Fermi statistics.

To verify the accuracy of our method, we tested how fast the current converges. We

observed exponential convergence with respect to the number of quadrature nodes. For this

quality assessment we used the Blakemore distribution function because in this case the

solution to (8) can also be obtained via the fixed point equation (10). This analysis showed

that usually N ¼ 16 quadrature nodes are sufficient to resolve the integral equation (8)

highly accurately.

6 Error analysis for modified Scharfetter–Gummel fluxes

Since solving an integral equation for each pair of neighboring discretization points xK; xL
appears to be too expensive in general, we present two modified schemes as approximate

solutions to (8). They keep the beneficial Scharfetter–Gummel structure and are thermo-

dynamically consistent. Farrell et al. (2017a, b) presents more details and physical

motivations.

6.1 Diffusion enhanced Scharfetter–Gummel scheme

Bessemoulin-Chatard (2012), Koprucki et al. (2015) suggest a logarithmic average of the

diffusion enhancement gðgÞ ¼ 1
ðlnFðgÞÞ0¼FðgÞ=F0ðgÞ� 1

given by

Fig. 2 Isosurfaces of the generalized Scharfetter–Gummel flux (8) computed via (11). The plane dwKL �
dgKL ¼ 0 in the middle of both figures corresponds to the thermodynamic consistency (7), where the current
vanishes thus separating negative and positive currents. a Fermi–Dirac. b Gauss–Fermi (r ¼ 5)
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gKL ¼ gL � gK
logF gLð Þ � logF gKð Þ ; ð12Þ

leading to the current approximation

jd ¼ gKL B
dwKL

gKL

� �

F gLð Þ � B � dwKL

gKL

� �

F gKð Þ
� �

: ð13Þ

6.2 Inverse activity coefficients

In addition to the diffusion enhancement gðgÞ another measure for the degeneracy is given

by the inverse bðgÞ ¼ FðgÞ=eg of the activity coefficient, also known as degeneracy factor.

For the Boltzmann distribution the factor bðgÞ becomes one. For non-exponential distri-

bution functions it is less than one. Fuhrmann (2015) derived the scheme

ja ¼� �bKL

 

B �dwKLð ÞegK � B dwKLð ÞegL
!

; ð14Þ

where �bKL denotes either an arithmetic or a geometric average between bðgKÞ and bðgLÞ.

6.3 Error estimates and comparison

Finally, we compare the performance of both modified Scharfetter–Gummel schemes. For

general distribution functions Farrell et al. (2017a) derived error estimates between the

modified fluxes [(13) and (14)] and the generalized Scharfetter–Gummel flux (8):

errað�gKL; dgKL; dwKLÞ :¼ jja � jj � 1

2
Fð�gKLÞjdwKLdgKLj; ð15Þ

errdð�gKL; dgKL; dwKLÞ :¼ jjd � jj � 1

2

Fð�gKLÞ
gð�gKLÞ

jdwKLdgKLj: ð16Þ

In these estimates �gKL denotes the arithmetic average

�gKL :¼ gL þ gK
2

and higher order terms have been neglected. The bound for the diffusion-enhanced

scheme (unlike for the inverse activity scheme) additionally depends on the inverse of the

diffusion enhancement. Hence, if gð�gKLÞ becomes large (strong degeneracy) the a priori

error is considerably lower. Kantner and Koprucki (2016) showed that high values of g can

appear in devices operating at cryogenic temperatures.

Figure 3 depicts the errors in terms of dgKL and dwKL for fixed averages �gKL (guaran-

teeing a diffusion enhancement significantly larger than one) and different distribution

functions. The errors vanish along the dashed lines indicating gK ¼ gL (pure drift current)

as well as dwKL ¼ dgKL due to the consistency with the thermodynamic equilibrium. As

predicted by the error estimates (15) and (16), the comparison in Fig. 3 reveals that the

error of diffusion-enhanced scheme (13) is considerably smaller than the error of the

inverse activity scheme (14), in particular when the degeneracy becomes strong.
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7 Conclusion

This paper extends previous error analysis for thermodynamically consistent fluxes by

Farrell et al. (2017a). The authors focused on general analytical results illustrating them

using the Blakemore distribution function. The authors showed that the diffusion-enhanced

Fig. 3 Logarithmic absolute errors between the generalized Scharfetter–Gummel and modified schemes
depending on the potential differences dwKL and dgKL for a fixed value of �gKL, cp. (15) and (16). Each row
corresponds to a different distribution function and each column corresponds to a different flux
approximation: diffusion enhanced scheme (left), the arithmetically averaged inverse activity scheme (mid-
dle) and the geometrically averaged one (right). The dashed lines show where generalized and modified
schemes agree exactly. The bold black lines highlight the same contour level in each row. a Fermi–Dirac

integral F1=2, �gKL ¼ 5: diffusion enhancement gð5Þ � 3:58. b Degenerate limit 4
3
ffiffi

p
p g3=2, �gKL ¼ 60: diffusion

enhancement gð60Þ ¼ 40. c Gauss–Fermi Gðg; r ¼ 5Þ, �gKL ¼ �15: diffusion enhancement gð�15Þ � 1:74.
d Gauss–Fermi Gðg;r ¼ 5Þ, �gKL ¼ 0: diffusion enhancement gð0Þ � 6:65
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scheme is superior to the inverse activities scheme when the diffusion enhancement is

large, i.e. degeneracy effects are strong. In the present paper, we confirm that this holds

true for a larger class of distribution functions, in particular the Fermi–Dirac integral of

order 1/2, the Gauss–Fermi integral and the degenerate limit FðgÞ ¼ 4
3
ffiffi

p
p g3=2 which

becomes important at cryogenic temperatures.

The comparison is based on studying the difference between modified fluxes and the

more accurate generalized Scharfetter–Gummel flux. To obtain the generalized flux, we

had to numerically solve an integral equation. For this reason, we devised an algorithm

based on Gauss quadrature and Newton’s method. The exponential convergence with

respect to the number of quadrature nodes makes the numerical implementation of the

generalized flux an interesting alternative to the existing modified Scharfetter–Gummel

schemes.

Farrell et al. (2017a) analyzed the beneficial influence of the diffusion-enhanced flux on

the solution of the fully coupled van Roosbroeck system via a p-i-n benchmark. This

simulation was restricted to the Blakemore distribution function. However, since the error

plots in Fig. 3 for the Fermi–Dirac and Gauss–Fermi distribution function as well as the

degenerate limit are comparable, it is reasonable to expect similar performance gains for

opto-electronic device simulations using the fully coupled van Roosbroeck system.

Important applications include devices operating at cryogenic temperatures such as single-

photon sources, highly-doped semiconductors as well as organic semiconductors.
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