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Abstract In this work, exact analytical solutions for the time fractional variant bussinesq
equations are constructed in the sense of the newly devised fractional derivative called
conformable fractional derivative. Using wave transformation, we converted the problem
under consideration to an ordinary differential equation and then employed the modified
extended tanh expansion method for hyperbolic function solutions. The Mathematica
software is used throughout for the solution of the system of algebraic equations obtained
along the way and also for the graphical illustrations, respectively.
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1 Introduction

Differential equations featuring fractional orders are of great importance in many sciences
and engineering fields since they best describe physical situations. This importance is what
makes numerous researchers to devise many definitions among which the newly proposed
definition by Khalil et al. (2014). Further, many researchers utilized this fractional
derivative and other well-known fractional derivatives alongside some analytical methods
to solve many solitary wave problems such as the variant bussinesq equations (Inan et al.
2017)
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Up + UV + Vil + Ve = 07
(1)
Ve + ue +vv, =0.

Other analytical methods used in constructing traveling wave solutions include the
Kudryashov method (Kudryashov 2012), the G’/G-expansion method (Bekir and Guner
2013), the collocation based methods (Raslan et al. 2016a, b, 2017c; Talaat 2016), the
modified extended tanh method (Khalid et al. 2016), tan(¢ (&) /2)-expansion method (Raslan
et al. 2017b), the Sine-Gordon method (Manafian and Lakestani 2016a; Bulut et al. 2017),
the exp(—¢(&)) (Baskonus et al. 2017) and other analytical methods among others (Islam
et al. 2014; Guner et al. 2015a, b; Manafian et al. 2015; Shukri and Al-Khaled 2010;
Nuruddeen et al. 2018; Nuruddeen 2017a; Nuruddeen et al. 2017; Alquran et al. 2017; Inc
et al. 2017a, b; Hosseini et al. 2017; Younis et al. 2016; Islam et al. 2015; Wazwaz 2017;
Bakodah et al. 2017a, b; Banaja et al. 2016; Khalid et al. 2017, 2018; Nuruddeen 2017b;
Lakestani and Manafian 2017; Manafian 2017; Manafian and Lakestani 2016b; Manafian
et al. 2017a, b; Sindi and Manafian 2017; Manafian et al. 2017¢). However, in this article, the
time fractional variant bussinesq equations would be considered in the sense of the newly
devised conformable fractional derivative definition. The considered problem would then be
solved by employing the modified extended tanh expansion method after recasting the
problem to an ordinary differentiation equation via wave transformation. The Mathematica
software would be used in the solution of the system of algebraic equations obtained and also
in the graphical illustrations of the solution.

2 Preliminaries

Definition 1 Letu : [0,00) — R be a function. The «’s order conformable derivative of u
is defined by
; (4 et ™) —u(t
D*(u(s)) = tim ) — ) 2)

e—0 €

for all £ >0 and « € (0, 1). Further, the following theorems gives some properties of
conformable derivative:

Theorem 1 Let o € (0, 1) and suppose u(t) and v(¢) are a-differentiable at t > 0. Then

(i) DX(t) =ct, forall c € R.
(i) D¥(a) = 0,a for all constant function u(t) = a.
(i) D*(au(t)) = aD*(u(t)), for all a constant.
(iv)  D¥(au(t) + bv(t)) = aD?u(t) + bD*v(t), for all a,b € R.
v) f(V(I)M(f)) ()D“( (0) + ulD)D((1)).
(vi) D;(‘V‘ ;)) ODI) DI gy £ ),

(vii)  If, in addition to u(t) differentiable, then D*u(t) = t'~ “Zl’;

Definition 2 Let « € (0, 1) such u(?) is differentiable and also a-differentiable. Let v(r) be
a function defined in the range of u(f) also differentiable, then

D (u(r) o v(r)) = 1"~V (1)l (v(r)).
See also [1].
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3 Analysis of the method

We present the modified extended tanh expansion method by considering the following
nonlinear fractional differential equation of the form:

G(u, D*u, D*u, D>*u, D**u, D*D*u,...) =0, O0<a<l, (3)

where o is order of the derivative of the function u = u(x,t). Also, we use the wave
transformation

u(x, 1) =U(&), ézax+bg, (4)

where a and b are nonzero constants. Substitution of wave transformation (4) into (3), we
obtain an ordinary differential equation of the form

P(U, U U",...) =0, (5)

where, ’ is a derivative w.r.t . Further, the solution is assumed to be of the finite series of
the form:

n=N
0(E) = a0+ 3_(0076) + g ). ©

where ay, a,,b,,n = 1,2, ...N are nonzero constants to be computed; where N is a positive
integer determined by balancing the highest order derivative with the highest nonlinear
terms in the equation, and ®(¢) satisfies the Riccati differential equation:

V' (§) =d+ (), (7)

where d is a constant. Further, the Riccati differential equation in (7) has solutions of the
form:

(i) Ifd<0, then

(&) = — V—dtanh(v/—d¢),
®(&) = — V—d coth(v/—d¢).

(i) Ifd =0, then

(i) Ifd >0, then
(&) =Vd tan(Vdé),

D(&) = — Vd cot(Vde).

Therefore, substituting equation (6) and its necessary derivatives into (5) gives a poly-
nomial in ®(&). Collecting coefficients of the obtained polynomials and subsequently
setting each one to zero, we will get a set of over-determined algebraic equations for
ag,dan,by(n=1,2,...), and b with the aid of symbolic computation using Mathematica.
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Finally, solving the algebraic equations and the above possible solutions of Raccati
equation into (5), we obtain the solution of Eq. (3).

4 Application
We consider the conformable time fractional variant bussinesq equations version of (1) the
form

Dfu+ uy 4 vist + v = 0, (8)
DX+ u, +vv, = 0.

Employing the wave transformation, Eq. (8) becomes an ordinary differential equation:

{bU’+aU/V+aV/U+a3V”/ =0, ©)

bV' +alU +aVV' = 0.

Now, balancing Eq. (9) using the homogeneous balancing method, we get Ny = 2; and
N, =1, Thus, Eq. (8) has a solution of the form:

_ 2o b b
U(f)—a0+a1(l)(f)+a;(1) (g)+®(f)+®2(g)’ w0
V(&) = co+c1®(&) +Wl€).
where from (7)
D'(&) = d + @*(&), and O"(&) = 20(&)(d + P*(8)). (11)

Then, putting the values of Eq. (10) and their necessary derivatives alongside Eq. (11) into
(9); collecting the coefficients of same degree of ®(¢) and thereafter setting them to zero,
we get the following algebraic equations:

— 2bb, — 2abycy — 2abyd; = 0,

2bday + 2ada,cy + 2ada;cy = 0,

— 2bdby — 2adbscy — 2adb,d; = 0,

2bay + 2aaycy + 2aa;cy = 0, 6a3cl + 3aayc; =0,

ba, + aa cy + 8a3dc1 + aapcy + 3adaycy + aard, = 0,

— bdby — adbyco — adbyci — 8a’d*d; — adayd, — 3abyd; = 0,

ada, — aby + bdcy + adcycy — bdy — acod, = 0,2ada, + adc% =0,

aa, + bcy + acoc; = 0, 2aa, + ac% =0, —6a3d3d1 — 3adb,d, =0,

— 2adb, — add? = 0, —adb, — bdd, — adcod;, = 0, —2ab, — ad? = 0,

bda, — bb, + ada,cy — abico + 2a3dzcl + adaygcy — abycy — 2a3dd1 — aapd, + adard, = 0.
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Solving the above system via Mathematica software, we get the following:

Case 1
ap=—2a*d, a; =0, ay=-2a*, b =0, by=0,
b
co = ——, c1::|:2a, d1:0, d=d.
a
Hence, we get the following solutions:

uy2(x,1) = —2a*d + 2a*d tanh*(v/—d¢).
via(x, 1) = —g T 2av/—d tanh(v/—d¢).

s 4(x, 1) = —2a*d + 2a*d coth? (v/—d¢).
v3a(x, 1) = —22F2a\/—_dc0th(\/—_d5). (13)

Case 2
ap =0, a; =0, a,=-2da>, b =0, b,=—-2a*d
b
co=—-, ¢ ==2a, dy=22ad, d=d.
a

Thus, we get the following solutions:

2a*d
M5,6(X, [) = 2a2dtanh2(\/—_d§) +mhz(ai\/__dé) (14)
V5.6()C, [) = — Z + Za\/lgtanh(\/——df) + % .

2a%d
uz3(x, 1) = 2a*d coth?(v/—d¢&) + m, 0
V7,8()C, [) = — Z F 2a\/:Ecoth(\/——df) F \/:JC+(\/__¢{£) .

Case 3
a=—4d’d, a1 =0, a=-2d b =0, b=-2dd,
b
co=—-—, C1 :ZFZLI7 d] =:|:2(1d7 d=d.
a

Therefore, we get the following solutions:

2
uo 10(x,1) = —4a*d + 2a*d tanh® (v/—d¢) + tanhzz(a\/d—dé)’
- 16)
b 2ad (
vo10(x,7) = — a + 2av/~dtanh(vV=d¢) ¥ m.
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(x,1) = —4a’d + 2a*d coth?(v/—d¢) + 2a°d
U2, 1) = —4aa a - T, 0
' b (:Oth2 (2\/ ;dg) (17)
a
v x,t) = ——F2aV—dcoth(V—-di) £t ———F+——.
el = -2 F V) = U eon(v=a®)
Case 4
ap=-2d*d, a;=0, aa=0, b =0, b,=-2dd,
b
co=——, Cl—O, dl—:and, d=d
a
Also, we get the following solutions:
2a%d
w3 14(x, 1) = —2a*d + ———————,
) 5 tanh;(\d/ —df) (18)
a
v X)) =——F————.
B T anh(V-a8)
2a%d
u15716(x, t) = —2a2d -+ s
COthz(\/ —df) (19)
(x,1) b " 2ad
v X)) =——F————.
e a  \/=dcoth(v/—d¢)

b
ap=a; =0, ay=-2d>, by=b,=0, co=——, ¢;==2a, di=0, d=0.
a

Finally, we get the following solutions:

24>
ur7,18(x, 1) = —?7

b 2a (20)
V17’1g(x, Z) = _E + ?

It is also important to note that in the cases 1 — 4 above, we made use of d <0 to get
those solutions from Eq. (7). However, when d is taken > 0; these solutions containing
hyperbolic functions are expected to change to trigonometric function solutions as
explained in Sect. 3. Also, ¢ in Cases 1-5 is given by:

o

t
fzax—}—b;. (21)
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5 Graphical illustrations of the solutions

In this section, we give the graphical illustrations of the conformable time-fractional
variant bussinesq equations at different time levels with different values of a: u(x, #) is
given in Fig. 1 while their corresponding solutions of v(x, f) are given in Fig. 2,
respectively.
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Fig. 1 Profiles of u(x, ¢) at different time levels
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Fig. 2 Profiles of v(x, 1) at different time levels

6 Conclusion

In conclusion, various exact hyperbolic function solutions for the time fractional variant
bussinesq equations are constructed using the modified extended tanh expansion method in
the sense of the newly devised fractional derivative called the conformable fractional
derivative. We made use of the wave transformation to convert the problem to an ordinary
differentiation equation. The Mathematica software is used for the solution of the system of
algebraic equations and also for the graphical illustrations, respectively.
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