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Abstract This research presents new soliton structures to some time-fractional nonlinear
differential equations (TFNDEs) with conformable derivative. The powerful Ricatti—Ber-
noulli (RB) sub-ODE method is used to carry out the soliton solutions. Some of the
obtained solutions include trigonometric, periodic wave and hyperbolic solutions. The
constraint conditions for the existence of solitons are also presented. The RB sub-ODE
method proves to be efficient and effective for the extraction of soliton structures for
different types of TFNDEs. Some interesting figures for the numerical simulation of the
obtained results are presented.
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1 Introduction

Fractional partial differential equations (FPDEs) appear in different field of science and
engineering such as physics, biology, rheology, viscoelasticity, control theory, signal
processing, systems identification and electrochemistry (Oldham and Spanier 1974; Miller
and Ross 1993; Samko et al. 1993; Kiryakova 1994; Baleanu et al. 2017, 2018a, b; Inc
et al. 2018). In order to describe nonlinear physical phenomena, obtaining exact solutions
for nonlinear FPDEs is one of the most important aspect. This physical phenomenon may
depend on both the time instant and the time history, which can be successfully modelled
using the theory of derivatives and integrals of fractional order (Oldham and Spanier 1974;
Miller and Ross 1993; Samko et al. 1993; Kiryakova 1994; Baleanu et al. 2017, 2018a, b;
Inc et al. 2018). Recently, several methods have been applied to reach exact solutions of
FPDEs in the literature. Among the techniques applied are the exp-function, fractional sub-
equation, first integral, the G’/ G-expansion, Lie symmetry and many more (Eslami et al.
2016; Zhou et al. 2016; Mirzazadeh et al. 2014; Sonomezoglu et al. 2016; Islam et al.
2017; Ali et al. 2016; Cheema and Younis 2016a, b; Arnous et al. 2017; Sardar et al. 2015;
Hosseini et al. 2017a, b, ¢, d; Korkmaz and Hosseini 2017; Younis 2017; Younis et al.
2017; Younis and Rizvi 2016; Sahar et al. 2017; Kalim and Younis 2017; Rizvi et al.
2017).

2 Conformable derivative

Recently, newly established definition of fractional derivative was introduced in (Abu
Hammad and Khalil 2014; Khalil et al. 2014) and it is called conformable derivative. This
definition gets rid of the deficiencies of the existing definitions.

Definition 1 Letf : (0,00) — R, the conformable derivative of f of order o is defined as

T, (1) = i =1 0) "

e—0 &
for t > 0,0 € (0,1). Conformable derivative has the following properties (Abu Hammad
and Khalil 2014; Khalil et al. 2014; Abdeljawad 2015):
Ta(af+ bg) = aT,(f) +bTu(g), a,b € R
T,(t) = j- %, u e R
Tu(fg) = gTu(f) + T.(2),
T, (é) — gT.(f)ng T.(e)

If f is differentiable, then T,(f)(t) = ( dg)

A

Theorem 1 Let f: (0,00) — R be a function such that f is differentiable and also o
differentiable. Let g be differentiable defined in the range of f and also differentiable, the
we have then rule (Abdeljawad 2015) T, (fog)(t) = t'=%g'(¢)f'(g(1)).
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3 Description of the method

Here, we present the procedure of the RB sub-ODE method (Yang et al. 2015) and the
main steps

3.1 RB sub-ODE method

Consider a NLPDETFNDEs as follows,
P(p,D!p,D’p,D?p,DDip,...) =0, (2)

where P is in general a polynomial function of its arguments, the subscripts denote the
partial derivatives. The RB sub-ODE method consists of three steps.

e Step 1 Convert x and t to one variable as follows

plx,1) = p(&), (3)

i)

where the localized wave solution p(¢) travels with speed I, by using Egs. (3) and (4),
one can transform Eq. (2) to an ODE

P(p,p'.p".p",...)=0. (5)

and

e Step 2 Assume that Eq. (5) is the solution of the RB equation

/

p = ap2—m+bp+cpm. (6)

In Eq. (6), a, b, ¢, and m are constants and will be found later. Taking the second and
third derivatives of Eq. (6) yields

P =ab(3 —m)p* ™™ + (2 — m)p> " + mc*p* ! ™)

+ be(m + 1)p™ + (2ac + b*)p,

=(ab(2 —m)(3 —m)p" ™" +a*(2 — m)(3 — 2m)p* "
+m(2m — 1)c*p* 2 + bem(m + 1)p™ ! (8)
+ (2ac + bz))p

One can obtain the solutions for Eq. (6) in the following forms:
Case 1 When m = 1, the solution of Eq. (6) is

p(f) _ Ce(a+b+c)cf. (9)
Case 2 When m # 1, b = 0, and ¢ = 0, the solution of Eq. (6) is
p(&) = (a(m —1)(¢ + C))™. (10)

Case 3 When m # 1, b # 0, and ¢ = 0, the solution of Eq. (6) is
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p(&) = (—g+ceb<mfl)s)ﬁ o

Case 4 When m # 1, a # 0, and b*> — 4ac <0, the solution of Eq. (6) is

. b Vaac—b _ ((1—m)Vaac —b? =

p(&) = (2 + tan <( ) (E+ C))) ’ (12)
a 2a 2
and

_ (b VAac—p? (1 —m)Vdac b7 . =

p(é) = (_Z_ 2a c0t< 3 (£40C) ) (13)
Case 5 When m # 1, a # 0, and b* — 4ac > 0, the solution of Eq. (6) is

. b Vb —4ac 1 — mWb? — dac =

P = (‘%‘ % °°th(( X (£+C)>> . (8

and

1

p(é)—<_£_ bz—““ctanh<(1‘m)”b2‘4ac<é+c>>)'m. (15)

2a 2a 2

Case 6 When m # 1, a # 0, and b?* — 4ac = 0, the solution of Eq. (6) is

1

1 b\
10~ (o) 1ol

where C represents an arbitrary constant.

e Step 3 Putting the derivatives of g in Eq. (5) gives an algebraic equation of g. Setting
the highest power exponents of ¢ to their equivalence in Eq. (5), m is obtained.
Comparing the coefficients of g; gives a set of algebraic equations that includes a, b, c,
and V. Finding the solutions of the obtained sets of algebraic equations and putting m,
a,b,c,l,and & = k(x4 {(£)) into Egs. (9)-(16), a soliton solutions can be obtained for
Egs. (2).

3.2 Bécklund transformation of the RB equation

When p,_1(&) and p,(&) = pu(pn—1(&)) represent the solutions of Eq. (6)

dpn(é) _ dpn(é) dpnfl(i)
dé dpnflé df
dpa (&)

2—m m
=———=(ap,V +bpu1 +cp, ),
dpnflg ( ! " 1)

namely
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dpn(é) — dpn—l(é)
ap2™™ +bp, +cp  ap2=" + bp,_y +cpl

(18)

Taking the integral of the above equation one time with respect to ¢ and solving it, we
have

o —CA; + ahs(pp_i ()" o
pn(8) = (bAl + aA, +aA1(pn1(§))lm) ’ (19)

where A; and A, are arbitrary constants. Equation (19) is the Bécklund transformation of
Eq. (6). If we obtain a solution of Eq. (6), we can find new infinite sequence of solutions of
Eq. (6) by using Eq. (19).

4 Applications

In this section, the soliton structures for some TFNDEs are analyzed and investigated.

4.1 Time-fractional coupled Boussinesq equations with conformable
derivative
The time-fractional coupled Boussinesq equations (Hosseini et al. 2017; Hosseini and
Ansari 2017; Kheir et al. 2013) is given by
u+v, =0,
S (20)
Vi 4+ yuy — Py =0,

where (0<o <1) is a parameter describing the order of the fractional time derivative.
Using the transformation

) t = b
) = (0 o
v(x, t) = Q(C),
where & =x — I(Z), Eq. (20) is reduces to the following systems of ODE
— I 4q =0,
P T4 (22)

_ l(]/ + VP/Z _ ﬁp/// =0.

Substituting Eqgs. (6) and (7) into Eq. (22), we have
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bap (&) — bilp(&) + arp(&)* " — arlp(€)* ™ + cap(E)" — e1lp(€)™ = 0,
Bbip (&) + 8Parbicip(&) + balp(&) — 4Parbicymp(E)
+2Barbreym®p(E) — ybip(€)? — 2aryeip(€)* + 6Baip(¢)* "

— TBaymp(&)* " + 2paym’p(&)* " + 12Baibip(¢) "

— 12aibimp (&)’ 7" + 3aibim?p(E) " — atyp(&) "

+ TBarbip(&)* " +8Baicip(&)* " + aalp(&) " — Sparbimp(E)*" (23)
Tpareimp(&)* " + Pabim’p(£)* " + 2Batcim’p(£)* "

— 2a17bip(E) " + Bbeip(€)” 4 2Barcp()" + calp(&)"

+ Bbicimp(&)" — arcimp(&)" + Bbicim’p(&)" + 2Barc]

m*p(&)" = yeip(&)" = 2ybicap(&) + 3Bbycimp(&) "

— Beimp(&) "+ 2pcim’p(6) " = 0.

Setting m = 0 in Eq. (23), we obtain

¢2 — cil + bap(&) — bilp(&) + axp(E)’ — arlp(é)* = 0,

Bbici + 2Paici — yet + cal + Bbiulr] + 8betaaybicip(¢) — 2ybicip(E)

+ balp(&) + Tpaibip(&)* — 1bip(&)* + 8Bajeip(&)’ — 2aryeip(&)’ + arlp(é)®
+ 12Balbip(¢)’ — 2a19bip(€)’ + 6Baip(8)* — alyp(¢)* = 0.

(24)

Setting each of the coefficients of p’(i = 0,1,2,3,4), we get the following algebraic
systems:

c; —cil=0, (25)

(by — by1) = 0, (26)

(aa —a1l) =0, (27)

—yci + Bei (bF + 2a1¢1) + 2l =0, (28)
(=29bic1 + B(b] + 8arbicr) + bal) =0, (29)
(=y(b} + 2a1c1) + Par (76} + 8aic1) + axl) =0, (30)
2a1(6Ba; — y)b1 =0, (31)

a}(6Bay —y) = 0. (32)

Solving Egs. (25)—(32), we obtain the following sets of results

Result 1 ¢, =0, c; =0, o #0, b2:a2[;l,b1 #0, ﬂ:*%a7:6ﬁala =%

a aj

This result produces the following soliton solutions
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, (33)

w
2

va(x, 1) = (—%—}—zb—allcot _—%(x—zzli C>

uz(x, 1) = (— % - Zb—allcoth % (x - Zi C) , (37)
Va(x, 1) = (— 2b_a11 - zb—allcoth % <x - ‘Z; c) (38)
w(x, 1) = (— zb—a‘l - zb—alltanh % <x - ‘:}’a c) : (39)
va(r, 1) = (—%—%tanh % <x—‘z;+c>) (40)

2
L)

Result 2 #0, ap =42 g 7&07 b, :M7 _b% +4a;cy #O,ﬁzi,
€l a a%(fb%+4alcl)

7 = 6fay, I = 2. This result produces the following solution

b daycy — b% 1 at*
— R T S — — /4 — b? ———|— 41
us(x,1) ( 5 1+ a tan 2\/ ayjc; — by x C (41)

vs(x,1) = (azblcl N c1 |4aict — ddeib? an {1 4aict — die b? ( azt“JrC)

Za%cz ac; a%cl 2 a%cl

4a C azr]b

provided that 4a;c; — b? > 0, and L > 0, respectively.

b adaicy — b% 1 art*
= -y - —+/4 b2 x === 4
ug(x, 1) ( 2 2, cot 2\/ ajc; —bi| x a +C (43)

ve(x, ) = 7612[716‘1 _Qa 4a?c% — a%clb% cot 1L 1 (4a3 cl — a2c1b2 e art* ‘C
’ 2d3c;  aicr aic 2 alc ao ’
(44)

provided that 4a;c; — b > (, and w > (0, respectively.
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b Vb?—4 1 at*
(1) = [ — b = VI |24 /62 — dage (x — 2 —+C (45)
2a, 2a, 2 a;

), (46)

coth

3.2 2. 12

va(, 1) = arbicy c1 4ajcy — asc1by

. I I e bl W h et §
’ 261%6‘2 agcy a%cl

1 4a?c%—a%clb% at* c
N da Taw
€1 1%

provided that b} — 4a;c; > 0, and

4 v
w > 0, respectively.

by /B —dajc 1 at
us(x, 1) = [ — 0 — YL anh | =4 /b? — daye [ x — 2 —+C (47)
2a1 2a, 2 a;

),

(48)

2 2 ao

(x,1) abicr ¢ [4aic? — a%clbft h 1 [4aic? — dde b? art* ‘C
vg(x, 1) = | — ———|——————tanh| | —————(x —
’ 26!%62 aycy aicy 2 ajc

4a3 ‘1 azclb

provided that b2 4ayc; > 0, L > 0, respectively.

ale

4.2 Time-fractional Cahn-Allen equation with conformable derivative

The time-fractional Cahn—Allen equation (Hosseini et al. 2017; Esen et al. 2013; Raw-
ashdeh 2017) is given by

U — e + 1> —u=0, (49)

where (0<a<1) is a parameter describing the order of the fractional time derivative.
Using the transformation

u(x, 1) = p(¢), ézkx—l@), (50)

o
we can reduce Eq. (49) to the following ODE
—lp' —ip" —p+p’ =0 (51)
Substituting Eqgs. (6) and (7) into (51), we obtain
(&) + BPKp(&) + 2ack’p(&) + bIp(&) — p(&)* +2a°K°p(&)* "
— PIPmp(E T 4 3abk?p(E) " + alp(E) ™ — abk*mp(8)* ™" + bek?p(E)™ (52)
+ clp(&)" + bek*mp (&)™ + czkzmp(é)_Hzm =0
Setting m = 0 in Eq (52), we get

bek? + cl + p(&) + B*p(&) + 2ack®p(&) + blp(&) + 3abk*p(&)* + alp(£)* — p(&)* + 2a%K2p(&)* = 0.

@ Springer



Soliton structures to some time-fractional nonlinear...

Page 9 of 17 20

Fig. 1 Three and two dimensional plots for solution (33) witha; =1, a, =19,b) =¢; =12, 2 =0.5

Setting each of the coefficients of p'(i = 0,1,2,3,4), we get the following algebraic

systems:
c(bk* +1) =0,
(1 + (b* +2ac)k* + bl) = 0,
a(3bk* +1) =0,
(-=1+424°k*) = 0.
Solving Eq. (54)~(57), we have the following

o b=+a, ¢=0,a#0, 1=—32 k=+Y2 which produces

it = (34 v v )] ).
i~ (- (e 25,00))

11 1 3bvV2  3bt*
Mll(x,t): (E—ECOth{Eﬁ(W 20 )+C)>,

3§;§_x73bt +C>D

=
IT

N
/_\

provided that a > 0.

(54)
(55)
(56)

(57)
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Fig. 2 Three and two dimentional plots for solution (34) with a; =5, a; =3.9, by =¢; =2, a=0.95

4.3 Time-fractional biological reaction—convection—diffusion model equations
with conformable derivative

Consider the following time-fractional reaction—convection—diffusion equation as follows:

uf = (A + Zou)uyy + Ajuuy + Aru — Jau?, (62)

where /, Ao, A1, 22, and 13 are real constants (Javadi et al. 2013). Setting A = 1 and 4y = 0,
the equation turns to the form of the time-fractional Murray (Yildirim and Pinar 2010)
equation

U =ty + Auty + Jou — Jau?, (63)

which is also a generalization of fishers equation when 4; =0, where (0<a<1) is a
parameter describing the order of the fractional time derivative. When
A = A3 = 0and o = 1, the equation turns to the classical Burgers equation. By using the
transformation in Eq. (50), one can reduces Eq. (63) to

Ip' — kp" — dakpp' — Jap + Jap®. (64)
Substituting Egs. (6) and (7) into (64), we obtain

3abk2p(f)2 - abk2mp(é)2 - alp(é)2 + ak)hlp(§)3 + 2a2k2p(6)3_m

_ a2k2mp(£)37m + bckZp(é)Zm + bckZmp(ﬁ)Zm o pr(é)Zm + bzkzp(f)'“”
+ 2ack’p(&) " = bip(&) " + dap(&) " + bkiap(E)* = Zap()T

— /13u(§)2+m + ck)vlu(f)lﬂm + czkzmu(§)71+3m =0

(65)

Setting m = 0 in Eq (65), we get
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Fig. 3 Three and two dimentional plots for solution (39) with a; =10, a, =1, b =c¢; =2, 2 =0.8

bek? — cl +2b2k2p(f) —12- 2ack®p(&) 5 blp(¢) +2ck/11p(§) + ig{)(é) X (66)
+3abk’p(&)” — alp(&)” + bkp(&)” — 2ap(€)” + 2a°Kp(E)” + aklip(é)” =0

Setting each of the coefficients of p'(i = 0,1,2,3), we get the following algebraic
systems:

c(bk* - 1) =0, (67)

(b°K* — bl + ck(2ak + 11) + 22) = 0, (68)
(3abk* — al + bkiy — 23) =0, (69)
ak(2ak + 21) = 0. (70)

Solving Eq. (67) to (70), we have the following

o Bl +4240 k= Aé{jﬁ%, a=—%, 1 #0,b=-2" =, which
produces
/1%1 2(al+/‘.3)(kx71(ﬁ)) -1
HH=|—-—=——<+Ce ™ - . 71
i3 (%) ( 20kis — ) T > 71
4(2]6/13 — },11) (2](].3 — /111) (2k;u3 — i]l) t*
1) =— t kx — 1 — C
I,l14()C7 ) }% + /L% an kﬂ,l o + ;
(72)
and
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¢ -10" -10

Fig. 5 Three and two dimensional plots for (45) with a; =5, ay =12, by =¢; =4, 2=0.8

ws(et) = 42kl — hl) (2k/13ﬂ— ) Cot((zkz3 — M) (kx - l(z“) N C))

p i k. o
(73)
A(2kds — Il)  (2kiz — Al 2kis — Il I
um(x,t):—( 12 4l AZZ 1)coth<( ’“]3{)1 1)<kx—l<;)+C))a
1 1 i
(74)

and
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|
i
i

0.054 -

Fig. 7 Three and two dimentional plots for solution (47) with a; =4,a, =1,b; =¢; =4, 2 =0.5

4(2k23 — Ml 2kA3 — 24l 2kA3 — 24l *
up7(x, 1) = — ( 12 l)—l—( 3/12 1)tanh<( ]3{)1 1)<kx—l<g)+C))7
1 1 -

(75)

B 2% 4(2k2s — Jl)
wg(x, 1) = (fh (kx — l(%) n C) + )L% ) (76)
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Fig. 9 Three and two dimentional plots for solution (60) with a = 1,b = 0.5, = 0.5

5 Numerical simulation

Herein, we present some three dimensional and two dimensional plots of some of the
obtained results (see Figs. 1, 2, 3,4, 5, 6, 7, 8, 9, 10). The construction of the Figures is
carried out by taking suitable values of the parameters in order to see the mechanism of the
original equations. From the Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 below, one can see that, the
obtained solutions possess solutions such as periodic wave, bell-shaped, kink-type and
singular soliton solutions.
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iy
iy
Wi
- e /
”{{ﬁ{{{{”gfllgll[llffjgg;ll{{[ll””l i [;:
i i /1/]/” /ll/”/ it
i 1”/{/”]””/111 m
i ;
el
gl
i g

il
il
gy U
i ,U/{//”/”/I//

i 20 _20

Fig. 10 Three and two dimensional plots for solution (61) with a = b =10, « = 0.5

6 Concluding remarks

This research presented soliton structures to some TFNDEs with conformable derivative.
The powerful RB sub-ODE method was used to carry out the soliton solutions. Some of the
obtained solutions include trigonometric, periodic wave and hyperpolic solutions. The
constraint conditions were also presented. The RB sub-ODE method proved to be efficient
and effective for the extraction of soliton structures for different types of TENDEs. The
obtained soliton solutions can be used for the interpretation of some physical phynomena
in mathematical physics. Some interesting figures for the obtained solutions were presented
in Figs. 1, 2, 3,4,5,6,7,8,9, 10.
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