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Abstract This paper presents a number of new solutions obtained for solving the nonlinear
electrical transmission lines by using the improved Bernoulli sub-ODE method and the
extended trial equation method. The proposed solutions are kink soliton solution, hyper-
bolic solution, trigonometric solution and bellshaped soliton solutions. Then our new
results are compared with the well-known results. The methods used here are very simple
and concise and can be also applied to other nonlinear partial differential equations. The
balance number of these methods is not constant contrary to other methods. The proposed
methods also allow us to construct many new types of exact solutions. By utilizing the
Maple software package, we show that all obtained solutions satisfy the conditions of the
studied model. More importantly, the solutions found in this work can have significant
applications in telecommunication systems where solitons are used for codify data.

Keywords Improved Bernoulli sub-ODE method - Extended trial equation
method - Nonlinear electrical transmission lines

1 Introduction

In recent years, to model and describe phenomena in various fields of science such as
plasma physics, nonlinear optics, nonlinear transmission lines, solid state physics, chemical
kinematics, and biology, to mention a few, we have generally used nonlinear equations.
The popularity of these equations is because of their capacity to model many real systems.
In fact, it has been discovered that many models in mathematics and physics are described
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by nonlinear partial differential equations. Accordingly, nonlinear equations have gained a
very significant place in the current research. In this way, a challenging task is to look for
solutions for these nonlinear equations. There has been an overwhelming progress in this
line of research (Wang and Winful 1988; Matula 1979; Pelap and Faye 2005; Wazwaz
2006). The literature is replete with many methods for building exact solutions including
the Exp-function method (Dehghan et al. 2011; Ekici et al. 2017; Manafian and Lakestani
2015c; Manafian 2015), the generalized Kudryashov method (Zhou et al. 2005), the
extended Jacobi elliptic function expansion method (Ekici et al. 2017; Chen and Wang
2005; Zhou and Liu 2015; Mirzazadeh et al. 2016), the improve tan(¢/2)-expansion
method (Manafian 2016a, b, 2017; Manafian and Lakestani 2015a, 2016a, b; Manafian
et al. 2016a, b, ¢, d; Aghdaei and Manafian 2016; Zinati and Manafian 2017), the G'/G-
expansion method (Manafian and Lakestani 2015b, 2017; Manafian et al. 2016¢; Sindi and
Manafian 2016; Sonmezoglu et al. 2017), the Bernoulli sub-equation function method
(Baskonus and Bulut 2016a; Baskonus et al. 2016a; Bulut and Baskonus 2016), the sine-
Gordon expansion method (Baskonus et al. 2016b; Baskonus and Bulut 2016b), the ansatz
scheme (Zhou et al. 2016), the Ricatti equation expansion (Zhou 2016), the formal lin-
earization method (Mirzazadeh and Eslami 2015), the extend exp(—Y¥(t))-expansion
method (Taghizadeh et al. 2017; Mirzazadeh et al. 2017a), the Riccati method (Inc et al.
2016), and the Lie symmetry (Tchier et al. 2017). However, these methods can not satisfy
all the existing nonlinear equations. For this reason, several new methods have to be
explored. In this paper, building upon the improved Bernoulli sub-ODE method (Bulut and
Baskonus 2016; Foroutan et al. 2017) and the extended trial equation method (Foroutan
et al. 2017; Mohyud-Din and Irshad 2017; Mirzazadeha et al. 2017b), we derive many
solutions which can help to understand the mechanism underlying different phenomena
observed through a nonlinear transmission line described through the modified Zakharov—
Kuznetsov (mZK) equation.

The model studied here is given by Fig. 1. Nonlinear electrical transmission lines
(NETLs) (Tala-Tebue et al. 2014) are good examples to provide a useful way to check how
the nonlinear excitations behave inside the nonlinear medium. They are constructed by
periodically loading a normal transmission line with varactors or, alternatively, by
arranging inductors and varactors in a 1-D lattice. The model used in this work consists of
a nonlinear network with many coupled nonlinear LC dispersive transmission lines. We
imagine that there are many identical dispersive lines which are coupled by means of
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Fig. 1 Schematic representation of the nonlinear electrical transmission line
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capacitance C; at each node, as shown in Fig. 1. Each section of line consists of a constant
inductor L in the series branch and a nonlinear capacitor of capacitance C(V,,,) in the
shunt branch. The nodes in the system are labeled with two discrete coordinates n and m,
where n specifies the nodes in the direction of propagation of the wave, and m labels the
lines in the transverse direction. The same model has been studied in Duan (2004). In his
work, Duan derive a coupled Zakharov—Kuznetsov equation for a nonlinear transmission
line and study the instability of this equation.

Applying the Kirchhoff law on the model, one can easily obtain the following discrete
differential equation:

2 . 1 2
0 Q — = (Vn+1m - Vn,m + anl,m> +C g (Vn.m+l - me + Vn,mfl)a (ll)

orr L *or?
where V,,,, = V,,,»(T) is the voltage in the transmission lines. The nonlinear charge in the
shunt branch are voltage dependent and are given by
Qmm = Cp <Vn m+ l;l Vz’m + ﬁ; Vsm> (12)

where f, and f, are constants. Inserting (1.2) into Eq. (1.1), we obtain

62
Col (me b By V2 ﬂ2 V3 )

or? 2 3 i
1 . (1.3)
= Z (Vn+l‘,m Vn ,m + Vn 1 m) + C aTz (Vn,m+l - Vn,m + V117m71)~

Setting V,,,,(T) = V(n,m,T), which means that n and m are treated as the continuous
variables, we get the following equation

2 2 2 2 2
Coa—(v+ﬁ1 vy b2y ) :la—( +ia—) +C,§67(v+ia—v).

or? 2 3 Lon? 12 on? oT?0m? 12 om?
(1.4)
Via the independent variable transformations

where y is the formal parameter, vy = 1/(LCy), and with the help of the reductive per-
turbation technique, then Eq. (1.4) can be reduced to the following modified mZK equation
(Duan 2004; Sardar et al. 2015) as

u; + Auity, + Bulu, + Mu, + Nuyyy =0, (1.6)

where

1 B

= - s B=-— 59 = ’ N = L.
Prv. Py 244, Lv, 288120,C2 (1.7)

Therefore, u(x, y, t) represents the first-order perturbation voltage in the coupled nonlinear
electrical transmission lines, and the subscripts x, y and ¢ denote the partial derivatives. The
modified ZK equation (Yu et al. 2007) has received a great among of attention. Zhen et al.
(2014) have given different expressions of the parameters of the mZK equation and by
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means of the Hirota method, bilinear forms and soliton solutions of the this equation were
obtained. In the same way, Sardar et al. (2015) applied the (G'/G)-expansion method,
extended tanh method and sine-cosine method to obtain different kinds of solutions which
are solitary, shock, singular, periodic, rational and kink-shaped solitons. For further
information in about the mZK equation see Krishnan and Biswas (2010), Naranmandula
and Wang (2005), Nozaki and Bekki (1983) and Panthee and Scialom (2010). The rest of
the paper is organized as follows: In Sect. 2, we offer the improved Bernoulli sub-ODE
method and its application to mZK equation. Also, in Sect. 3, we present the extended trial
equation method along and discuss its use for the mZK equation. Finally conclusion is
given in Sect. 4.

2 The improved Bernoulli sub-ODE method

The IBSOM is well-known analytical method which was improved and developed by
Baskonus and Bulut (2016a). We consider the following stages

Step 1 We suppose that given nonlinear partial differential equation for u(x, f) to be in the
form

N(uaux7uy7utauxxvutt7'") :Oy (21)
which can be converted to an ODE
QU nU  nU , —rU,U" riU",...) =0, (2.2)

by the transformation & = rix + rpy — rat is the wave variable. Also, ry,r, and ry are
constants to be determined later.
Step 2 Considering trial equation of solution in Eq. (2.2), it can be written as follows:

_ 2o @FN(E) _ ap +arF(E) + aF (&) + -+ anF" (&)

U = = 2.3
A FPTC R TR T R R G M

and according to the Bernoulli theory,
F'(&) =bF(¢) +dF’(&), b#0, d#0, 0eR—{0,1,2}, (24)

where F(&) is Bernoulli differential polynomial. Substituting the above relations in
Eq. (2.2), we have an equation of polynomial W (F(&)) of F(¢):

W(F(&)) = p (&) + - p1 F(E) + po =0. (2.5)

According to the homogenous balance method, we can obtain the relationship between
n, m, and 0.

Step 3 Let the coefficients of W(F(£)) all be zero. Then it yields an equation system as
follows:

P =0, k=0,1,....s. (2.6)

Solving this system, we will determine the values of ag,a, and by, b,,.
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Step 4 By solving nonlinear Bernoulli differential equation (2.4), we obtain two cases
according to b and d situations as follows:

1

—d E (=)
F(&) = {TJFM} . b+#d, (2.7)
E—-1+(E+ l)tanh(w) o
F(¢) = b=d, EE€R, (2.8)

b(1-0)¢ ’
1 — tanh (T;)

where E is both the constant of integration and non-zero. Using a complete discrimination
system for polynomial of F(&), we solve Eq. (2.6) with the help of Maple 13 and classify
the exact solutions for Eq. (2.2). For a better interpretations of solutions obtained in this
way, we can plot two- and three-dimensional surfaces of the solutions by taking
suitable parameters.

2.1 Implementations of IBSOM

This illustrates the performance of the analytical algorithm proposed. To this end, we use
the transformation u(x,y,t) = u(¢) and ¢ = rix + rpy — r3t to reduce Eq. (1.1) to the
following nonlinear ODE:

2 3

—r3u + Ar % + Bry % + (Mr; + Nry3)u" = 0. (29)

Considering the Egs. (2.3) and (2.4) for the homogenous balance method between > and
u”, we obtain the following relationship for m, n, and 0:

0+m=n+1. (2.10)

For different values of 0,m, and n, we have the following cases:
Casel0=n=3m=1.
If we take 0 = n =3 and m = 1 for Eq. (2.9), then we obtain

:a() +a1F(<f) +(,12F2(6) + a3F3(f) _ @1(6)

ue) bo+ b1F(2) 01(0)° (2.11)
oo 9D () — O (&P (&)
U'g) =— e o (2.12)
U(e) = O (D1 (&) — O (P} (E)  [01 ()P} (' PF(E) — 201 (&) [P (O P1 ()
' D} (¢) o1 (¢) ’
(2.13)

where F' = bF +dF3, b #0,d#0, as # 0 and b; # 0. When we use Eqs. (2.11) and
(2.13) in Eq. (2.9), we get a system of algebraic equations. Therefore, we attain a system of
equations from the coefficients of polynomial of F. This system of equations is solved for
the above parameters with the following cases of solutions:
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Subcase 1
basB
b=b, d::—;’ bp=ay=a =a, =0, a3 = as,
\/—6BM(24Nr3b2B + A?)
b =b -+ 2.14
L=onn 12BMb ’ (2.14)
- - A2r1
rp=rnr, rn= 6B -
Subcase 11
po A —6(Mr} +Nr§)37 g a3\/—6(M§12 +NZ§)87 o= =0,
2 12by (Mri + Nr3) (2.15)
a2b1 A2F1 .
a=a, a3=az, b= ——, by =b;, ri=r, n=nr,n=——.
as 6B
Subcase 111
Adb1 Aa2b1 Ab]
b=——,d=d = — = _-— = =
Bas y , do 3B y ai B’ ap = ap, dz = das,
arb, \/—6BM(24Nr3d?b} + Ba3) A%ry
byp=——, by =b =+ = =——.
0 P y D1 1, I 12Mb,d y 2 =12, 13 6B
(2.16)
For Subcase I, we have the following solution
as
U(¢) =~F(Q). (2.17)

=5
For Subcase II, we have the following solution

_ P () +aF(&) _a,
U@%—g%+hn© —MF@) (2.18)

For Subcase III, we have the following solution

Ui = —Ash A B (E) + aF?(8) + asF (&)
bo Jr%F(f)

(2.19)

Result 1 If we take (2.7) and (2.8), then we have the following solutions based on (2.14)
and (2.17) as:

a azB E
n(x,y, 1) =7 | =2+ . (220
b, Ab; \/-6BMEANZ2B1A) 42, /“eBmM@aN2I2B1A)
2b| + 3B X+ryF ETYIY i
e
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up ()C, Yy, [)
1
\/—6BM(24Nr2b2B+A? A2, /—6BM(24Nr2b?>B+A? 2
A E—l—(E+1)tanh<ﬂ:+x+br2y2F 72(BZM2 't
- E A/ —6BM (24Nr2b2B+A2 A2,/ —6BM (24Nr2b2B+A?
o tanh (:t <123‘M2 Mt bryy ¥ 72<BZM2 )t>

(2.21)

Result 2 1f we take (2.7) and (2.8), then we have the following solutions based on (2.15)
and (2.18) as:

as as E
H== 2.22
uslxy0) = LzAbl(Mr%JrNrg) +62b(hx+r2y%)}’ (2:22)

E—l—(EJrl)tanh(rlirrzy—%)

(2.23)

us(x,y,1) = — 6(Mr% —l—Nr%)

1+ tanh(rlx + ry — "‘6’;2 t)

Result 3 If we take (2.7) and (2.8), then we have the following solutions based on (2.16)
and (2.19) as:

o (D) + Q) + @ ()

azB
us(&) = : - , (2.24)
bo +“2F(¢)
where
%
Ba E
F(x’ Y t) | A_bj + \/ —6BM(24Nr2d2b2 +Ba?) A2 /—6BM(24Nr2d2 b2 + Ba2) ’
2b <i 12Mh?d — X+ryT 723Mh12(1 — ') (225)
e
e (&) = —ay — a3F (&) + axF? (&) + a3 F? (&)
bo +“4EF (&) ’
where
F(x,y,1)
1
— ¥ a 2./— a 2
= Ty TR
- — P l2b2 1B _ P LD 1B
1 + tanh (i OMBANATIIIE) x4 bryy VP Er B) ’>
Case Il 0 =3,n=2,and m = 0.
If we take 0 = 3,n = 2, and m = 0 for Eq. (2.9), then we obtain
ag + a1 F(&) + a,F? (C]
U(f) _% 1 (é) 2 (é) _ Z(é) (2.26)

bo D,(&)°
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_O4()P2(8) — () P5(8)

U'(¢) e , (2.27)
() = ©5(&)P(&) — O2(E)P5()  [O2(E)PL(E))' D3 (&) — 202(8) (@4 (&) s (¢)
) D3(¢) @3(¢) ’
(2.28)

where F' = bF +dF3, b #0, d # 0, a, # 0 and by # 0. When we use Egs. (2.26) and
(2.28) in Eq. (2.9), we get a system of algebraic equations. Therefore, we attain a system of
equations from the coefficients of polynomial of F. This system of equations is solved for
the above parameters with the following cases of solutions as:

Subcase 1
A 24bod(Mr? 4 Nr3
b= 2 zad:d700:al=0702:* 0( ”1: rzzvbozbm
v/ —24B(Mr{ + Nr3) \/—24B(Mr{ + Nr3)
Azrl
r =ry, rn= r3=— .
1 1, 2 r, 3 GB
(2.29)
Subcase 11
Adb A
b=-""" d=d, ay=-=by, a =0, a=ay, by=bhy,
Baz B (2.30)
e 24b3r3d°N + Ba3 A '
" hed 24M 2T B e
For Subcase I, we have the following solution
a
U =2 F (9. (2.31)
0
For Subcase II, we have the following solution
F2
U(e) = ot af) (2.32)

by

Result 1 If we take (2.7) and (2.8), then we have the following solutions based on (2.29)
and (2.31) as:

wy (x,y,1) = —

24d(Mr? + Ni2) [_ dy/~24B(Mr +Nr3) | E }
A

—24B(Mr? + Nr3) el (r1x+rzy—Az—Rr't) .
(2.33)

Result 2 If we take (2.7) and (2.8), then we have the following solutions based on (2.30)
and (2.32) as:

2 ,
S X+1ry

uz(X,y,t):__+_ —+ ) (234)
.

2,22 2 2,22 2
24170r211 N+Ba; A2 241)0r211 N+Buz,
6Bbod !
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us (X, Y, [)
1 1/ 28pr3d®N+Baj oA _ 24br3d®N+Baj
A E-1—-(E+ 1)tanh<b0d T R Ak~ =
= —— |1
B * |+ tanh [ 2 2402 2d*N+Ba? A2 2402 24> N+Bd
ttanh| o == XY GV T !

(2.35)

3 Extended trial equation method

The second method described here is the extended trial equation method used to find
traveling wave solutions of nonlinear models which can be understood through the fol-
lowing steps:

Step 1 We assume that the given nonlinear PDE

N (1, ty, Uy g, Uy Uy, . .) = 0. (3.1)

Utilizing the wave transformation

N
u(xy,x2, ...y xn, 1) = u(n), n—i(ijct), (3.2)
=

where 4 # 0 and ¢ # 0. Substituting (3.2) into Eq. (3.1) yields a nonlinear ordinary dif-
ferential equation,

Qu, 2l 2 ol —caud 32", . .) = 0. (3.3)

Step 2 Take the transformation and trial equation as follows:

d
u(n) = I, (3.4)
i=0
where
" I &I+ + ET+ &
O =0 =g =ty 1arit (3.5)
Using the Egs. (3.4) and (3.5), we can find
o) (¢ ’
N2 _ - 11
y_ VOO - oMY (= it ) D) (=,
u = 2\P2(F) <; l‘L'ir ) + W (; l(l — l)r,-l" N (37)

where ®(I") and W(I') are polynomials. Substituting these terms into Eq. (3.1) yields an
equation of polynomial A(T") of I":

AT) =o, "+ + 0T+ 95 =0, (3.8)
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According to the balance principle on (3.8), we can arrive at a relation of 0, ¢ and 5. We
can take some values of 0, ¢ and 0.

Step 3 Setting each coefficient of polynomial A(T) to zero to derive a system of algebraic
equations:

0,=0, i=12..,s. (3.9)

By solving the system (3.9), we will obtain the values of &y, &y, ..., &y, (o, (1, ..., {, and

TOyTlyeveyTHe
Step 4In the following step, we obtain the elementary form of the integral by reduction of

Eq. (3.5), as follows
o) ‘P(F (3.10)

where 7, is an arbitrary constant. We can classify the roots of ®(I") with the help of
complete discrimination system for polynomials. Furthermore, we can write the exact
traveling wave solutions to Eq. (3.1) respectively.

+(n —no)

3.1 Implementations of ETEM

By processing manipulations on Eq. (1.1) and reducing to ODE by help the transforma-
tions u(x,y,7) = u(n) and n = rix 4+ r,y — r3t get to the following nonlinear ODE:

2 3

—r3u + Ar| — 5 —i—Brlu3 + (Mr; + Nryr3)u" = 0. (3.11)

Multiplying «’ in (3.11) and integrating it we get the following equation

1 1 1 1
— 3 +—Aru’ + —=Briu* + - (Mr} + Nrii3)u* = 0. (3.12)

2 6 12 2(

Substituting Eq. (3.7) in Eq. (3.12) and using the balance principle technique, between u*

and u”, we obtain the following relationship for 0, 0, and e:
26=0—¢—2. (3.13)

For different values of 0, 0 and ¢, we have the following cases:
Case I 6=1,0=4,¢=0.
If we take 6 = 1,0 = 4, ¢ = 0 for Eq. (2.9), then we obtain

u(n) =t + T, (3.14)

(u/("))Z :T%(64r4 + é3r3 —2521—‘2 + élr + 50) ,

where &, # 0 and (y # 0. Solving the system of (3.9) yields

(3.15)
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64‘[%(—61’3 + 2Ar 79 + B}’IT(Z))

rn=ry, hnh=rn n=r3y, T =T, =71, (=

r1tiB ’
2&470(—6r3 + 2Br‘1‘L'(% + 3Ari10) 6E4(—r3 + Aryto + Brlr%)
& = 3 y G = B )
B T1Br|
- 2¢4(A + 210B) fo— el = _6&4(Mr} + Nr3)
>3 — B’L'] ) >4 — G4, 0 — T%B .
(3.16)
Substituting these results into Egs. (3.5) and (3.10), we get
+ (n—n)
6¢_,(Mr +Nr)
/ A/ = 7@123 dl’
2¢4(A+210 6&4(— r;+Ar|rU+Br1‘fO) 2f4ro(76r3+23r113+3Ar|ro) 541(2)(76r3+2Ar1tu+Br113) '
\/r4 ) <4§f| 2 += &4tiBry 4= &ntiB [+ &ntiB
(3.17)
Integrating Eq. (3.17), we obtain the solutions for Eq. (1.1) as follows:
I1
+(n — =— 3.18
(17 ’70) r— o 9 ( )
211 I—o
+(n — = _ > 3.19
(n = no) - VT —a’ o > ay, (3.19)
I1 | o]
+(n — = 3.20
R e (3.:20)
:|:(11 " )_ H ln \/(O(l—OC3)(F—O€2)—\/(O(1—062)(F—O(3)
—Ho) — )
\/(OC[ — (Zz)(&(] — 063) \/(OC] — O(g)(r — 062) =+ \/((Z] — O(z)(F — 063)
(3.21)
2I1
(1 —no) = Fp,0), o >0 > 03 > o, (3.22)
\/(Otl - 013)(052 - 064)
where
x 2
m— _6§4(M”12+N’”2 / (3.23)
&TiB VAR 12 sin’
and
o = arcsin |2 =T =) (= w)ln — o) (3.24)
(O(l — OC4)(F — O(z) ((Zl — 063)(062 — 064)
Also oy, 05,03 and o4 are the roots of the polynomial equation
riopiep Sl (3.25)

Sa Sa G &
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Substituting the solutions (3.18)—(3.23) into (3.4), we obtain the following traveling wave
solutions for Eq. (1.1):

I1
ui(x,y,1) =10 + T100 — ; (3.26)
X+ ry—rit—1,
4(oy — o)1 IT?
uy(x,y,1) =70 + 11001 + — ( 2 o - (3.27)
4117 — (a1 — o) " (rix + ray — rat — 1)
us(x,y,t) =10 + 1100 £ — (22 = o), , (3.28)
exp[Xg2 (r1x + ry — rst —ng)] — 1

u4(x,y, t)
2(0p — o) (0 —o3)7
=10+ 10 — (o 2) (o 3)T1 ’
200 — oy — o3 + (o3 — o) cosh [w (rix 4+ rpy — r3t — 110)}
(3.29)
MS('xayv [)
— 1 + 100 + 2(0{1 — (12)((14 — OCz)Tl 7
o — _ o (o —o3) (o2 —0t4) . _ (o —0t3) (011 —01q)
4 — o + (0 — og)sn? | F Y=g (rx + ry — 13t — 1), (on—05) (22 —4)
(3.30)
If we take 79 = —1101 and 1y = 0, then the solutions (3.26)—(3.30) can reduce to rational
function solutions
I1
H=———"—— 3.31
uﬁ(x,y, ) rx—+nry— r3t’ ( )
4oy — I’
us (x7y7 t) = ) (az 2“1)‘[1 7 (332)
4117 — (op — o) " (r1x + ray — r3t)
traveling wave solutions
ug(x,y,1) = e — ) {l F coth [0‘1 — (rx+ry— r3t)} }v (3.33)
2 21T
soliton solution
2(0p —oap) (o — o3)7
uo(x,y,1) = — = oa){on o) ’ (3.34)
200 — oy — a3 + (003 — 02) cosh {w (rnx+ry— rﬂ)} ’

where TT; = 2(o; — op)(oty — o3)7; is the amplitude of the soliton, while v = r3 is the

velocity and I1, = W is the inverse width of the soliton. On the other hand, if

we take 190 = —1102 and 1, = 0, the Jacobi elliptic function solution (3.30) can be written
in the form
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2(0!1 — O(z)(O(4 — 0(2)’[1

ol 1) = i

Og — O + (OC] — 064)5712 |::FT (r]x + Yy — r3t) w]

7 (o1 —03) (02— )
(3.35)

If the modulus / — 1, then the solution (3.35) can be reduced to the solitary wave solution

2(0(1 — 062)(0(4 — O(2)‘L'1

[l - ’ 3.36
) tanh? [¢ Vb ;ﬁm “ (r1x + 1y — rsf)} (336)

ll]()l (X,y, t) =
O(4—0(2+(O(1 — 04

where o3 = oy. If the modulus / — 0, then the solution (3.35) can be reduced to the solitary

wave solution

2(0p — o3) (04 — o3) 7Ty

/(o —03 ) (03 —0lg ’ 337
RVAGT G )] 2-1‘>[< ), (rix + ry — rﬁ)} (3.37)

ujo, (X7y, t) =
oy — 03 + (o — o) sin? {:F

where o, = 3.
Case Il 6 =1,0=5,e=1.
If we take 6 = 1,0 = 5, and € = 1 for Eq. (2.9), then we obtain

u(n) =t +ul, (3.38)

pova THET + G + S+ ET + §T + &)
(W' () = L+ I ’

where &5 £ 0 and {; # 0. Solving the system of (3.9) yields

(3.39)

r=r, n=r, rn=r, =1, T=1, =& &=2:_,
‘= T(z)(Bzrl (41865 — 1654‘51) + 4A%r 195 + 2ABr) (51(2)55 —10&471) — 12r3AEs + 6r3B(E41) — 479E5))
)= —

B2 ’
g _ ‘E()(6ABV] (5‘5655 — 1064‘51) +Bzr1 (15‘5855 — 41%54‘5[) + 12A2r1‘170Ct§ + 6’331‘3(2641’1 - 71055) — 24r3AL“:5)
1= rtiB? '
B 2(B*r1 (1053 &5 — 3t3E471) + 6A2r1T0Es + 3ABr (5t3Es — 10é4T1) + 3r3B(E4t1 — 210Es) — 613AEs)
Q== 173 B2 ’
. 2(5&ArToB + 5EsB2rTh + 2rA%Es — 2r1 1B Eyty — 1 AEyT B + 3E5r3B)
= r]‘C%BZ ’
. 6(PM + Nr3)(2A&s — E411B + 410¢5B) 6&5(r2M + Nr)
o = 2B ) ilZ*T«,
1 1

(3.40)

Substituting these results into Egs. (3.5) and (3.10), we get

Vo ardr
s . (3.41)

Drértespdpeaer2yiaryé

To integrate Eq. (3.41), we must discuss the following families:
Family 1 If T’ + E—:F4 + g—;l"3 —5—%1“2 + g—;l" + ;—2 can be written in the following form:
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M54 S 2 Sip S pl s (3.42)
s s Es Es Ss

where o is an arbitrary constant. Then, we have

3
o 4 o 4 2
Jeipbrar 5 (T+Tr>
Zl:(n _ 7]0) _ / Cs Cs cs [$] (343)

(C =)’ VT =2 3(%+%oc1)(l"—ou)%,

or
: : :
gt [—%(i—‘ﬁﬁm)(n—no)}

3
. S
[*%(%’Jr%;m)(’?*’?o)} *Z*;

Substituting (3.44) into (3.14), we get the exact solution of Eq. (1.1) in the form of:

I =

(3.44)

¢ s
_ st
up(x,y, 1) = 1o + 1100 + 3 - (3.45)

j B 2
_%(z_2+§_;al)(r1x+r2y—”3t_’70)] _gf_;

Family 2 If T° +§—:1"4 + %W +§—§F2 + %;1" + i—‘; can be written in the following form:

r5+§—:r4+§—zr3+§—zr2+g—;r+§—z=(r—a1)4(r—a2), (3.46)

where o and o, are arbitrary constants. Then, we have

V2+ETdr 1 (0= 00)(T = o) /2 + 2T 24T, + T In(Y)]

:l:( - ) = = —= )
! o /(F_al)zV F—OCQ 2 (OC] —062)1_[11_[2 (F—a1)4(r—o¢2)
(3.47)

_ (S S b (LG _ b
H1—\/(061 “2)(554-550(1), Hz—\/ésr +<55 C,Socz)r 550!27 48)

& &
o G G > o o & Iy + 211,11,
=T ——wn+2— + 2oy =22, - , Y=
! (55 55a2 fsm fsal 55a2 550(1“2 I —o
(3.49)

Family 31t T + E—:F4 + g—;l"3 + E—il“z + g—;l" + ;—‘; can be written in the following form:

ér‘*+§r3+ér2+ér+@:(r—ocl)3(r—o<2)2, (3.50)

1—*5
Tt T Ty T
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where o and o, are arbitrary constants. Then, we have

V2 +;;r dl’ L4 2T [2(0 — 00)TTy + (T — o) T In(Y)]
"= o) /\/ F—o) az)zi_ (o1 — 02)* Tl /T — 011 ’
(3.51)
where

N PN e, (0 0 \r G, s
1'[1—\/ (o “2)(55+55 >, I, = \/551" +(§5 65061>1" 55“1, (3.52)

o G ¢ {o Co { I3 + 214D,

IT; = (f_s_é_s +2§—5d)+é—5d2— 5—5%1—5—50619(2, Y_—F—ocz .
(3.53)

Family 4 If T° + T + 5,—3 I+ 202 45T 4+ £ can be written in the following form:
Yy cs Cs cs Cs

S s +3 = r3 ey +— = (I —oy)*(T — ap)*(I — a13), (3.54)
fs 55 65

where o, o, and o3 are arbitrary constants. Then, we have

- / Je+arar
\/ I'—a) (F—a2)2

o422

(3.55)
\/F — 0034 /272 + %l" [(062 — 063)1_[1 ln(Yl) — (OC] — 063)1_[2 1H(Y2)]
- 10, :
where
II, = (O(] - 063) (CO + é 1) II, = (062 — 053) (CO + C—l 2) (356)
Ss &6
(o (Co ¢ > o
I1; = I“+(=—= I-——
: \/55 ¢ & . és oc3, (3.57)
o & G o Co &
IT - = 2— =0y —2—03 —— 3.58
= (55 e 2)*:5 TR T (3:58)
I + 211,11 I15 + 211,11
=(o —o)(on —o3)(02 — 03), Y1 = 41“%“]137 Y= % (3.59)

Remark 1 The other Families are ignored for simplicity.
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Remark 2 'We also observe that some solutions found in this paper are the same as those
obtained in Sardar et al. (2015) when / — 1 or when [ — 0. The other results are new
solutions not yet reported in the literature. We then suppose that these exact solutions may
have significant applications in telecommunication systems where solitons are used to
codify or for the transmission of data.

Note that All the obtained results have been checked with Maple 13 by putting them
back into the original equation and found correct.

4 Conclusion

In this paper, we have used the improved Bernoulli sub-ODE method and the extended trial
equation method for building exact soliton solutions of nonlinear electrical transmission
lines described by a mZK equation. A comparison of our results and with those obtained in
(Sardar et al. 2015; Zhen et al. 2014) by using the (G’/G)-expansion method, the extended
tanh method, the sine—cosine method and the Hirota method shows, that there are many
new solutions in the present work. It is worth noting that the new solutions obtained by
means of aforementioned methods confirm the correctness of those obtained by other
methods. Not only, the newly obtained solutions are identical to already published results,
but also further solutions have obtained. The solutions obtained in this paper can help to
explain many phenomena observed in nonlinear electrical transmission lines. Therefore,
these methods can be applied to study many other nonlinear partial differential equations
which frequently arise in engineering, mathematical physics.
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