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Abstract The improved tan(¢/2)-expansion method (ITEM) and He’s semi-inverse
variational method (HSIVM) are the efficient methods for obtaining exact solutions of
nonlinear differential equations. In this paper, the ITEM and HSIVM are applied to con-
struct exact solutions of the resonant nonlinear Schrodinger equation (RNLSE) with time-
dependent coefficients for parabolic law nonlinearity. The resonant nonlinear Schrédinger
equation plays a very important role in mathematical physics and nonlinear optics. We
compare analytical findings with the results of the other analytical schemes describing the
ansatz method approach and expansion method are used to carry out the integration.
Description of the ITEM is given and the obtained results reveal that the ITEM is a new
significant method for exploring nonlinear partial differential models. Moreover, by help of
the HSIVM we obtained the bright and dark soliton wave solutions. Finally, by using
Matlab, some graphical simulations were drawn to see the behavior of these solutions.
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1 Introduction

The study of optical solitons has been going on for the recent years. There has been an
overwhelming progress in this direction of research. There are lots of new results that have
been produced in this field (Hasegawa and Kodama 1995). There have been many advances
made in the area of Nonlinear Optics (Biswas et al. 2012a). In fact, optical solitons are
nowadays a reality. Of important equations for optical soliton theory is nonlinear Schro-
dinger equation. The tanh method and the sine-cosine method are effectively used for
reliable analysis for the nonlinear Schrédinger equations with cubic and power law non-
linearities by Wazwaz (2006). Manafian (2016) studied the Schrodinger type nonlinear
evolution equations by the improved tan(¢/2)-expansion method. The resonant nonlinear
Schrédinger equation has been exhibited the usual cubic nonlinearity present in the classical
nonlinear Schrédinger equation together with an additional nonlinear term involving the
modulus of the wave envelope by Tang et al. (2009). A resonant Davey—Stewartson cap-
illary model system has been worked by Rogers et al. (2009). Mirzazadeh et al. (2014) have
applied the G'/G-expansion method for the resonant nonlinear Schrodinger equation with
dual-power law nonlinearity. Moreover, Ekici et al. (2017) studied the resonant nonlinear
Schrodinger equation with the Kerr-law and parabolic-law nonlinearities by the extended
Jacobi elliptic function expansion method. There are many analytical and numerical
methods for solving nonlinear partial differential equations (PDEs), some of these methods
which solve PDEs are: the homotopy analysis method (Dehghan et al. 2010), the Exp-
function method (Dehghan et al. 2011; Manafian and Lakestani 2015a; Manafian 2015), the
exp(—¢(&))-expansion method (Hafez et al. 2015), the generalized Kudryashov method
(Zhou et al. 2016), the G'/G-expansion method (Aghdaei and Manafianheris 2011;
Mirzazadeh et al. 2015; Younis 2017; Rizva et al. 2017), the formal linearization method
(Mirzazadeh and Eslami 2015), the Jacobi elliptic function method (Chen and Wang 2005),
the homogeneous balance method (Zhao et al. 2006), the fractional extended Fan sub-
equation method (Younis et al. 2017a), trial solution method (Arnous et al. 2017), the
complex ansatz method (Younis et al. 2017b; Islam et al. 2017), the Jacobi elliptic function
method (Cheemaa et al. 2017), the improved tan(¢/2)-expansion method (Manafian and
Lakestani 2015b, 20164, b, c, d; Manafian 2016; Manafian et al. 2016a, b; Aghdaei and
Manafian 2016) and so on. Also, of applied methods for solving nonlinear partial differ-
ential equation is He’s semi-inverse variational principle, which introduced by He (20006).
For further information see references therein (Kohl et al. 2009; Zhang 2007; Biswas et al.
2012c¢, d; Sassaman et al. 2010). Consider the dimensionless form of the resonant nonlinear
Schrodinger equation which is given in Eslami et al. (2014)

i+ e+ R+ () = 0w, (1)
where = (x, ) is a complex valued function, while x and ¢ are the independent spatial
and temporal variables, respectively. The coefficients a, (), r(¢),d;(¢) and A(¢) are all
functions of r. The coefficients a,(f),r(t) and d;(f) respectively represent the group
velocity dispersion, the nonlinear term and the resonant term. On the right-hand side, the
coefficient of A(z) is the linear attenuation. Thus, there are two nonlinear terms in Eq. (1.1)
which are the coefficients of 7(¢) and d; (7). The coefficient of y(¢) is sometimes referred to
as the quantum potential or Bohm potential (Biswas and Milovic 2010, 2011; Biswas et al.
2011; Nishino et al. 1998). This term commonly appears in the study of chiral solitons in
quantum Hall effect. The RNLSE appears in quantum mechanics and in the study of
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Madelung fluid (Pashaev and Lee 2002). The function F is a real-valued algebraic function
and in order to satisfy the necessary condition of having smoothness of the complex
function F(|g|*)g, the function F(|g|*)q is considered to be k times continuously differ-
entiable (Triki et al. 2012), so that

FllgP)a € ) C((-mm) x (—m,m);R2). (12)

m,n=1

Equation (1.1) is a nonlinear, non-integrable partial differential equation where non-inte-
grability is not necessarily associated with the nonlinear term present in the equation. In
this paper we search for the stationary solution to (1.1). We use the following transfor-
mations as

Vix, 1) =u(é)exp(ig), E=x—v(nt, ¢=—ke+w(o)t, (1.3)

where v(7) is the soliton velocity, k is the wave number of the soliton, while w(¢) is the
frequency of the soliton velocity, and by using of derivations of V/(x,¢) we will have

Yo = (U — ik — KPu] e RHO0, (1.5)
(%) l// — I/l//ei(—kxﬂv(t)t)7 (1.6)

where the primes denote derivatives with respect to . Inserting (1.3)—(1.6) into (1.1), and
separating into real and imaginary parts and by supposing A(¢) = 0, the results are

dv(r)

t o +v(t) + 2ka; (1) = 0, (1.7)
" dw(t) 2 2
(ou(t) +p(2))u" — (1‘7 +w(t) + k“a (t))u + r(t)F(u”)u =0. (1.8)
By integrating (1.7) with respect to ¢ yields
v(t) = —2—tk ay(o)do. (1.9)
0

Also, we remark from (1.9) that the pulse velocity is only affected by the varying dis-
persion coefficient a;(¢). The outline of this paper is organized as follows:

In Sect. 2, we describe the ITEM and solve with it the RNLSE with time-dependent
coefficients. In Sect. 3, we apply He’s semi-inverse variational principle to solve Eq. (2.8).
In Sect. 4, the physical explanation of the obtained solutions is given. Also conclusion is
given in Sect. 5.

2 Description of the ITEM

The ITEM is well-known analytical method which was improved and developed by
Manafian.
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Step 1 We suppose that given nonlinear partial differential equation for u(x, ) to be in
the form

N(M,MX,M[,MXX,M[;7.--) :Ov (21)
which can be converted to an ODE
Q(ua Mlv 7#”/7 M”a 'u2u//’ = ) =0, (22)

by the transformation & = x — ut is the wave variable. Also, p is constant to be determined
later.

Step 2 Suppose the traveling wave solution of Eq. (2.2) can be expressed as follows:

W@ =5d) = > Adp+tan(d/2)]", (23)

k=—m
where Ay (0 <k <m) and A_; = By(1 <k <m) are constants to be determined, such that
A, #0,B, # 0 and ¢ = ¢(&) satisfies the following ordinary differential equation:

¢'(&) = asin(¢(&)) + beos(d(&)) +c. (2.4)

We will consider the following special solutions of equation (2.4):

Family 1: When A = a?> +b*> — <0 and b — ¢ # 0, then
$(&) =2tan"! {ﬁ - ‘Z%—ftan(gf)}.

Family 2: When A =a?> + 0> — ¢ > 0and b — ¢ # 0, then
(&) =2tan™! [ﬁqL%tanh(@E)}

Family 3: When A =a?> +b*> —c®> >0, b # 0 and ¢ = 0, then
(&) =2tan™! [%—l—@tanh(@g)}

Family 4: When A = a?> +b*> —c?><0, c# 0 and b = 0, then
(&) =2tan™! {—%—i— @tan(@f)]

Family 5: When A =a?> +b> — > >0,b—c#0and a = 0, then
¢(&) = 2tan™! [ %tanh(@fﬂ.

Family 6: When a = 0 and ¢ = 0, then ¢(&) = tan™! [62/)3*1 2% } )

eWiq1 eiq]

Family 7: when p = 0 and ¢ = 0, then $(¢) = tan™'! [ 262 82“?1].
e2aé 4] e2aé 4]

Family 8: When a? + b* = ¢, then ¢(&) = 2tan™! [%} .

Family 9: When a = b = ¢ = ka, then ¢(&) =2tan"! [e’“‘z - 1}.

Family 10 wwhen 4 = ¢ = ka and b = —ka, then ¢(¢) = —2tan™"! { v }

1 4ekat
Family 11: e
amey When ¢ = a, then ¢(¢) = —2tan™! {%}
a—b)e’—
Family 12:

When a = c, then ¢(¢) = 2tan™! [EZT;%}

Family 13: yypep ¢ = —a, then ¢(¢&) = 2tan™! [@} .

ePi—b—a
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Family 14:  ywpen p — ¢, then ¢(¢) = 2 tan™"! L—]

Family 151 yyhen p = 0 and a =, then ¢(&) = —2tan"! {‘%’2}
Family 16:  When a = 0 and b = c, then ¢(¢) = 2tan~' [¢{] .
Family 17 when ¢ = 0 and b = —c, then (&) = —2tan"" H
Family 18: When a =0 and b = 0, then ¢(¢) = c¢ + C.

Family 190 ywpen p — ¢ then ¢(&) = 2tan™! [e“g*“], where & = ¢ +

a

C,p, Ao, Ax, Br(k =1,2,...,m),a,b and c are constants to be determined
later.

Step 3 Determine m. This, usually, can be accomplished by balancing the linear
term(s) of highest order with the highest-order nonlinear term(s) in Eq. (2.2). But, the
positive integer m can be determined by considering the homogeneous balance between the
highest order derivatives and nonlinear terms appearing in Eq. (2.2). If m = ¢/p (where
m = q/p be a fraction in the lowest terms), we let

u(&) =vir(e), (2:5)

then substitute Eq. (2.5) into Eq. (2.2) and then determine the value of m in new Eq. (2.2).
If m be a negative integer, we let

u(¢) =v"(&), (2.6)

then substitute Eq. (2.6) into Eq. (2.2). Then we determine the new value of m in obtained
equation.

Step 4 Substituting (2.3) into Eq. (2.2) with the value of m obtained in Step 2. Collecting
the coefficients of tan(¢p/2)", cot(¢/2) (k= 0,1,2,...), then setting each coefficient to
zero, we can get a set of over-determined equations for Ay, Ag, By(k =1,2,...,m) a, b,
c and p and solving it with the aid of symbolic computation using Maple.

Step 5 Solving the algebraic equations in Step 3, then substituting Ag,A;,
Bly"'vAl’rHBmv.u'vp in (23)

The parabolic law nonlinearity is the case when F(s) = b (f)s + ¢ (t)s?, where b, (t)
and ¢ (¢) are in general constants. Such a kind of nonlinearity appears also in fiber optics
(Biswas et al. 2012b; Gagnon 1989). For parabolic law nonlinearity, the considered gen-
eralized RNLSE with time-varying coefficients is given by

W]y
v

where is considered r(¢f) = 1. By using (1.4)—(1.6) and supposing A(t) = 0, then (2.7)
transformed to

i+ ar (O + (B (O + e (D[ + 4 <z>< )w =iy,  (2.7)

(ar1(t) +d(2))u" — (tdv?}Ty) + w(t) + Ka (t)) u+ by (O + ¢ (Hu® =0, (2.8)
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v(t) = —— lal(a)da. (2.9)

By balancing the u” and v’ gives m :%. To get a closed form solution, we use the
transformation

u(x, 1) = U(x, 1)}, (2.10)
that will carry Eq. (2.8) into the ODE,

(a1 (1) 4 di (1)) QUU" — (U')?) — 4( dd(t) +w(t) + Ka (z)) U? +4by (1) U? + 4e (1) U* = 0.

(2.11)

By balancing the UU” and U* gives m = 1. By supposing p = 0 in (2.3), the trail solution
will be as

U(E) =Ap+ A tan(p/2) + By cot(¢/2). (2.12)
Substituting (2.12) and (2.4) into Eq. (2.11), we get the following results:

Case I First set is:

b] l) _ o o -
= \/ +dl())b—*C,C—C,k—k,Ao—O,A]
_ <>+d1< ) o
= 2 ) ,B; =0, (2.13)
W(t):ﬂ%z 0 [3b1(6)+1016?61§o)a(o)k]dm U(é):Altan(y). (2.14)

By using of (2.13), (2.14) and Families 1, 2 and 14 can be written, respectively, as

3bi(t) 3bi()i (V=A 2% [ %
Yy (x, 1) = {801(;) — 8c1(tt) tan( 5 {x+ (7/0 a1(6)d0)t+ C])} 215)

—3b%(1)
der()(ar(n)+di (1))

)

where A = <0.

Yo (x,1) = {2284%128 h(\/T_{ +( / (a)dG)HCD}Z (2.16)
i S|

_
where A = g et > 0
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by (1) d
_ 3bi(t)e e_ x)(al( T4 0) [x+ (271‘];,”1(6)615) f+C}

4c)
Y3(x, 1) = ol .
| — ce Y [” (%ﬁ) “1(")‘1") ’*C} (2.17)

3b% (5)+16
o (e [
X e 0 1(

b

where C is constant.

Case II Second set is:

_ b)) [ 3 I )
o2 \/ c1(t)(ar(t) +di (1)) b=c, , k=k, Ay=0,

(2.18)
_ e | 3(ai(r) +di(1))
Ar=0, Bi=-3 7#7
! 2 g a(o)ci\o 2
w(t) :—l%t | [3b‘( Hi?(a)( Jei )k]do, U(é) :Blcot<¥). (2.19)

By using of (2.18), (2.19) and Family 19 can be written as

s Lo (enlmm=rla)]
e_\/?[ +(_ Jratoe)ire] .
(2.20)
where C is constant.
Case III'  Third set is:
g—a b (64A7c + 12dd’cy + 12a,a%c; + 9b7)/—3072¢ (a) + d,)
’ 30724 c3(ar + dy) ’
_ 12a,d%c; — 64A%C% + 9b% + 12d,d%c, (2.21)
1A —3072C1(Cl1 +dy)
k—k A — _ 81(0) tay/~ ?ggifgt()f)(m( )*) 4 _a B —o,
17272 2 2
w(t) = — li6t/0 Fbl (o) + 1]6?;)(‘7)01(0)]( :|dO"A =2+ - = —7461(2119; 4y’
u(é) =Ag+ A tan( (25))
(2.22)

By using of (2.21), (2.22) and Families 1, 2, 6, 11, 15 and 17 can be written, respectively,
as
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Vil ) = { fj:cll((tl)) Y —3072(:1(? (Zaglc (1?1; V-4 (ﬂ {x N <2k A . (a)d0>t . CD }

362 (0)+ 160
[ (a0
X e Jo 1

)

3] ) <0.

where A = —m

1

48Dy (1) \/—3072¢; (D) (a1 (1) + di (1)) VA VA ! :
We(x, 1) :{ 128c1( ) + ! 1280 () tanh <2 {er (7/0 a](a)do>t+ C})}

362 (6)+16a; (o)c| (o)k2
i[*kxf(ﬁfi[ ]m+(u(|ﬁ()n 1 () do )i
X e 0 1 ,

(2.24)
where A = b >0
4cy(a)+d,) .
48b (t 1 e Ta ( ull() —1 e a0t )
Ya(x,1) =< — 1) + A; tan | —arctan )
128¢(¢) XA.\/—wrm 0010 01y e 050,
e @O c 4] ¢ dmowm  © 4]
t [362(0)+16a; (o)c; (0)k2
i[*""*(%f ['#}’U)t}
X e tJo 1 ,
(2.25)

where £ = x + (Zk fo ar ( da)t + C and C is arbitrary constant.

128¢1 (1) A {

o | 362 (0)+16 1 (0)k2
i[—kx— (ﬁf{ 1<a>+(a(1;)«>a1<s) }d{r)t}
X e 0 ‘1

)

48b, (1) + a\/—3072c,(t)(ai(t) + di (1))
Yg(x,1) _{— (a — b)ehE+0) — 1

(a —l—b)eb(‘f*C) _ 1} }%

(2.26)

_ 84,ci()£3b (1) _ 2k
where a—:I:2 Y PYPX DR and ¢ = x—l—( foal da)t—i—C and C is arbitrary

(2.27)

constant.

(x+ (2"j0a1 da) +C) +2
(x+ (zkfoal do)t+C)

Ws(x.1) ={48b'<f> +ay/ T30 D@ + ),

128¢ (l)

362 (6)+16ay (o)c| (0)k2
[ (L))
X e 0 !

)

128A]cl( )
\/ 3072¢ (1) (a1 (1) +d, (1))

Yio(x,1) = \/le{—c <x - (Z—tk/otal(o)do)t + c) }Zle" P‘“( o'kz”““)d“)}’ (2.28)

where a = ¢ =

and C is arbitrary constant.
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—2A1¢(1)

———U12 A, and C are arbitrary constants.
24/ —3c1(t)(a (t)+d: (1))

where ¢ =

Case IV  Fourth set is:

(64B3c? + 12dya*cy + 12aia*cy + 9b3)\/—3072ci(a; + dy)
307231C%(a1 —|—d1) ’

_ 12a1a%¢; — 643%0% + 9b% + 12d;d%c;

a=a, b=

: (2.29)
C]B] *30726|(a] +d1)
o . 48b1(t) + a\/—307201 (t)(al(t) + dy (I)) o o
k—k, A()—* 1286‘](t) aAl _07 B] _Bl7
B 1 ["[3b3(0) + 16a;(c)c) (0)k? a2 a2 3b}
w(t) = fﬁ/o[ (o) }dJ,A—a +b°—c —74761(6“_'_[11),
u(f) =Ay+ B, COt(?) .
(2.30)

By using of (2.29), (2.30) and Families 1, 2, 6, 11, 15 and 18 can be written, respectively,
as

Vo) _ 480 (1) + ay/=3072e1 (D)(ar () + (1)) 128B2¢, (1)
n\,t) = 128¢ (1) \/—307201(1)(a1(t)+a’1(t))

|:a—\/———A'tan<\/§Z[x+<2—[k/0ta1(a)da)t+(f}) l

. 1 [ 362 (6)+16a; (o)} (o)k?
K {71% (ﬁfo {1# do |1

-1

I

(2.31)
where A = —% <0.
. 48b, () + a\/—3072¢; (1) (a1 (1) + di (1)) N 128B%¢; (1)
1215 128¢ (1) \/73072c1 (t)(a1(2) + di (1))
1
A % [ e
a + V/Atanh <\/2— [x + (7/ al(a)da)t+ C})
0
. r 3/;f(a)+|m1(n)(-l(n)k2
Lo (asemeee)
(2.32)
where A = *$ > 0.
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1
b1/ T D@ O+ D), b1 )/ B O+ 1) 2
48b1(t) 3b1(t) 1 e aOla+d 1) . _ 1 Qe 2100+ M) <
X, 1) =< — cot | —arctan
Yi3(x,1) 128¢, (1) +8c1(t) 2 b1/ 3 a0 41 1) D b)Y/ a0 0 1) )
e

1 (0far ()+d; (1) +1 e r1<r>< O+, 1) +
362 (0)+16ay (0)c (6)k2
e (i [ )
X e 0 1

)

(2.33)

where £ = x + (Zk fo ai(o da)t + C and C is arbitrary constant.

48b; (1) + ar/—3072¢: (1) (a1 (t) + di (1)) (a—b)ePs+0) — 1 b
lp14(x7 t) _{_ : 12861(11‘) 1 l +Bi |:(a + b)eb(CerC) — 1:| }

Ao 3/2( +16a; (0)c) (o)k
" ez{ ke (wfo[i(a) do |t

)

(2.34)

where a = i% and ¢=x+ (% [Jai(c)do)t+C and C is arbitrary
- C] 1
constant.

}%

(2.35)

Vs (1) {—48b1(0 t+ay/ *fg;ic(ltgn(al(z) A0 _,

> 2
R Lt [33 @) +160) @)y (042
o CT s

clx+ (Zkf(;m(a )do)t + C)
(x+ (Zkfoal da)t—i—C) +2

’

12841¢1(t) o 9b(1)+64A,c2 (1) . .
\/73072610)1(;]([)“1 A== Be@mra oy and C is arbitrary constant.

() 3cbi(s), ’ e
Vis(x1) = { fzgfcll (tz) - 38621(;) I(H (ztk/o al(a)d(j)H C) } (2.36)
. |:—kx (16xfX [W*W:l da)t] ,

where ¢ = 6b1 ()i , 1 =1+/—1 and C is arbitrary constant.
24/ =3072¢1 (1) (a1 (1) +di (1))

where ¢ = —

Case V Fifth set is:

(1) 3 B B B k() e [ 3a +ai)

afT —W. b=—-c, c=c, k=k A07_4c1(t)’ Alf—i —T,
(2.37)

1 ["[36%(0) + 16 (c)c) (0)k2 (&)
B =0, w(r)= _E/o { (o) do, U(&)=A+A4A tan(T).
(2.38)

By using of (2.37), (2.38) and Families 1, 2 and 14 can be written, respectively, as
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1

W17 (x, 1) —{_ :;lc)i Eg — lell((tt))itan <\/;_A {x 4 (ZTk /Ot a; (O')da) t+ C}) }2 -
e (e fla)]

)
e <O

e o o CX A |
o[ (e [t

—3p? (1)
where A = m

where A =

[T

)

> 0.

1
0] 1 2
3}71(1‘)(‘ IT ,)(x] EZA0) [""’ (%L”I(J)d”) H’C}

3 Fw €

)
ey (1) . cebl;l) e [X+ (%fota](a)do‘)tJrC} (2.41)

362 (o) +16ay ()cy (0)k2
i[kaf (ﬁ [ {_1<")7+ - (‘:) 1) }m) ti|
X e 0 1

where C is constant.

Yio(x, 1) =

b

Case VI Sixth set is:

b 3 S R e 3@+ di)
=\ T an@oramy T €T k=k Ad=—ghy A=0 BT
(2.42)

w(t) = —

I {3;;%(0) + 16a;(0)c; (0)k>

16t J, 1(0) }d@ U = Ao+Bncot< (é)). (2.43)

By using of (2.42), (2.43) and Family 19 can be written as

3ebi (1) . 1302 (0) +16a; (a)cy (o)k2
Yol t) = { -2 | 0 ¢ [wﬂ%fﬂ”] S d”]
401(1) @ 7m {H (%ﬁaﬂa)dc)ﬂr(j}
e —C

(2.44)

where C is constant.

Case VII Seventh set is:

- G e _ _ 3bi) , _3bi() o, 3bi(0)

=0 b= T Sh@oramy <% TR A= AT Team 16¢1(1)

(2.45)
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w(t) = - L ’{3[7%(0) ha t??;ga)cl(a)kz do, U(¢)=Ao+A;tan (@) + B cot (@)

(2.46)
By using of (2.45), (2.46) and Family 6 can be written as

b]_(!) _ 3 3 h s
3b, (I) 3b, (T) 1 2\ a0 0 0)° _ Qe * SWE e

/8 (x ;) ={ — + tan arctan
e 8ci (1) 16¢c1(1) b‘m\/ SR +l’ eblTw

— 3
cr(Dlay (N+d; (1) -+ 1

1
REDI0) 1 o5 e _ B VTN :
Toe () €Ot | 5 arctan ) = -
16¢1(7) & a4 eh'T”\/ “awatTE 4 ]
1362 (0)+16a; (a)c; (o)
§ ei[_kx_% 03b1() oo dﬁ]
(2.47)
where ¢ = x + (% [{ai(0)do)t + C and C is constant.
Case VIII Eighth set is:
_ by (l) 3 - _ _ 3b, (l) _ 3171(1)[ _ 3b1([)l
=0 b= @ ramy O TR AT M T ea BT T e
(2.48)
1 ['[15b6%(0) + 64a; (c)ci (0)k? (&) O(¢)
- =A A B — .
w(t) 61t ), { e }do, U(¢) 0+ ltan( > )+ 1cot( > )
(2.49)

By using of (2.48), (2.49) and Family 6 can be written as

M \/fé b0 \/fig
lﬁ ( ) 3b, (t) 3b; (t) 1 EARVASIOITOR ) R | 2¢ * Vawaorame
n(X, 1) = — + tan farctan > - ; -
' 8ci(t)  16¢(t) St 11 e
2 a0 L1 ¢ 2 a0 4 ]
M 3 £ b () 3 3 3
3by ()i 1 7V abE i am* 2¢ * Vaumu=am:
— cot —arctan PG
16¢, (1) e CITJN/Am——
cp(0)(ay ()+dy (r _|_ 1 e 2 cp(0)(ay (0)+dy (1) + 1

b1U

[ty
(2.50)
where & =x+ (% fo ai(c)do)t + C and C is constant.
Case IX Ninth set is:
256B3c2(1) + 9b2(1) 256B2¢3(1) — 9b2(1) 3by(1)
a=0, b=— c= =k, Ag=— s
Bici(1)/—49152¢, (1) (a) (1) + d\ (1)) Bici(1)/—49152¢, (1) (a1 (1) + di (1)) 8ci (1)
(2.51)
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R LAG) _ 1 ["3b(0) + 16a;(0)ci(0)K?
A= aseman B =B = T, a (o) s
U(¢) =Ap+ A tan (?) + B cot (@)

By using of (2.51), (2.52) and Family 5 can be written as

3 | 3bi() VA 2%k [
Y3 (x, 1) {— 80:(1‘) + 16c11(t) tanh (T [x—i- <7/0 al(O')dO'>l‘+ C})

3by (1) VA 2k [ : (2.53)
th| —— — do |t+ C '
x 1661(000 5 X+ ; /0 a|(o)da |t +
. 1362 (6)+16a; ()cy (o)k2

—3b2(1)

where A = m > 0.

Case X Tenth set is:
256B3C3 (1) — 9b}(1) 256B3c3 (1) + 9b3(1) ‘e _ 3bi(r)

“=0 b:_B,c,(z)\/—49152c1<r)<a,(z>+d1<t))’ T Brer(0)y/ 1520, (@ () 1 () A= T500)
(2.54)
2 1 t 1 2 4 2
Ar= 25?1)31 (tz)(z) Br=B, W) =gz, e (al)(J)CI(U)k 4
C c1\o
1 0 ! (2.55)

U(¢) =Ap+ A tan(@) + B cot(?).

By using of (2.54), (2.55) and Families 5 and 14 can be written, respectively, as

Woa(x,1) ={ 22 Eg + ]32;1(2) tanh <\/2K {x + <2—tk/0[a1 (a)da)t + C])

. t 3 | et 11562 -
3bl(t)l COth(@ [X+ (?/ al(O')dJ)[-|— C:|>} e |: K 64\](‘) cy(a) —d. :|,
0

16¢; (l’) 2
(2.56)

~

_ 3b3(r)
where A = —1661([)(a11<t)+d1 o > 0.

Case XI Eleventh set is:

_h [ 3 e a0 b [ +di()
4T cl(z)(al(t)wl(z))’b b, » k=k Ao 4cl(t)’A‘ 4 0) ’

(2.57)
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b+c [=3(a(t) +di (1))

4 C](l) ’

- L [0+ 16000 (@ — 407 - e (o)alo) +dile))
= T e 0 ci1(o) ’

U(E) = Ao+ Ay tan< <5>)+B Cot( <é>)

B, =

(2.58)
By using of (2.57), (2.58) and Families 1, 2, 11 and 15 can be written, respectively, as

3by(t) 1 [=3(ai(t) +dy (1)) V=A 2k (!
Wos(x, 1) {—401(1) 2 o {a— \/—_Atan< 3 {x—i— (7/0 a|(6)do>t+C}>

Jrbz;Cz 3(a1(ctl)(;d1(t)){a mtan<‘/2_A {,H <21k/0ta1(0)d0')t+6}>

; [7]“7L ]‘13;{ (0)+16ay (0)c) ()2 —4(b2 —c2)e| (o) (ay (0)+d, («))J ]
16 Jo i (o)
X e

)

1

)

(2.59)
3b3(1)
where A = b* — L@ ¢ <0.
_ 3b1(l‘) 1 —3(01(1‘) +d1( \/—
Yo (x, 1) —{461(1) 2 o) a+\/_tanh<2 7 ai(o)de |t 4+ C

22 [ ' 1)1
e B rd) oo (VAT %/ a(0)do )i+ C
4 c1(7) 2 t Jo
. | (1307 (0) +16aj (o)e (0)k2 —4(b2 ~cP)e (o) a) (0) 4 (o)
(2.60)
_ 2 3b3 (1) 2
WhereA—b 7W7C > 0.
L blx+| T ay (o)do |t
ol =] 3O L[ i) )| (=2~ Tt +)e (pmee)ee]
274 40](1‘) 4 Cl([) Y bI:X+(2A al(a)da) ]
(_T - +d.1)) b)e -1

zk

e el
S T,

1 (2
(fT *c,(t)(a.(r EAG)) )e
) (

x e [ kX_E ('1(0)
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clx+ (% [yai(o)do)t + C| +2
cfx+ (2 fyai(o)do)t + C]

Wag(x,1) _{—ilzjgg +411 _3(01(;])(:; d (1))

B — 2 [=3(ay(r) +di(r))

c[x+ (& [yai(o)do)t + C]

4 ci(t) cfx+ (2 fyai(o)do)t + C] +2
) ei [71“7% g}b%(cr)+]6nl (@)er (a)kz—:((b:)fcz)q (0)(ay (0)+dy “’”d(f}
(2.62)
where ¢ = 71717(:) - m and C is constant.

3 The He’s semi-inverse variational principle method

Step 1 We suppose that given nonlinear partial differential equation for u(x, ) to be in
the form

N (U, vyt Uy gy - . .) = 0, (3.1)
which can be converted to an ODE
Qu, i, —pud " 1P, ..) =0, (3.2)

by the transformation & = x — ur is the wave variable. Also, u is constant to be determined
later.

Step 2 According to He’s semi-inverse method, we construct the following trial-
functional

um:/wg (3.3)

where L is an unknown function of U and its derivatives.

Step 3 By the Ritz method, we can obtain different forms of solitary wave solutions, such

as
U(&) = Asech(BE), U(E) = Acsch(BE), U(&) = Atanh(BE), U(&) = Acoth(BE),
(3.4)
and so on. For example in this paper, we search a solitary wave solution in the form
U(&) = Asech(BE), (3.5)
and
U(¢) = Atanh(B¢), (3.6)

where A and B are constants to be further determined. Substituting Eq. (3.5) or (3.6) into
Eq. (3.3) and making J stationary with respect to A and B results in
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oJ
2= 0 (3.7)
aJ
5= (3.8)

Solving Egs. (3.7) and (3.8), we obtain A and B. Hence the solitary wave solutions (3.5) or
(3.6) are well determined. By He’s semi-inverse principle (He 2006; Kohl et al. 2009;
Zhang 2007), we can obtain the following variational formulation for (2.8)

_ o0 1 N2 71 dW(t) 5 5 1 4 l p
J= /0 [2 (ai(r) +di (1)) > (t—dt +w(t) + k%a(t) |u +4b1(t)u + 6c|(t)u dé.
(3.9)
By a Ritz-like method, we search a solitary wave solution in the form
u(¢) = Asech(BE), (3.10)

where A and B are unknown constants to be further determined. Substituting Eq. (3.10)
into Eq. (3.9), we have

J= /0oo F (a1 (1) + di (1)) A%sech(BE)* tanh(BE)* B2 _% <,dw_(’)+ w(t) + kzoc(t))Azsech(Bﬁf

2 dt
bl(l) Cl(t)

+ TA“sech(Bé)4 + TA%ech(B{)ﬂ dé

_1 2 L[ aw(t) 2 2, bilt) (4 4ai(t) 6
_6(a1(t)+d1(t))AB 25 (t I +w(t) + k“a(t) |A® + B A"+ 158 A®.
(3.11)
Making J stationary with A and B yields
aJ(A,B) _1 1 dw(t) 2 Zbl(l‘) 3 861(1‘) 5
oA _g(al(t)_'_dl(t))AB_E(t dr +W(t)+k O((t) A+3—BA +15—BA
=0,
(3.12)
oJ(A,B) 1 , 1 [ dw(t) 2 s bi(t) 4 Aci(r) ¢
=0.
(3.13)

Solving Egs. (3.12) and (3.13), we obtain

1 /1
A=y \/ o0 [—451;1(:) - 3\/225b$(t) + 1280c1(r)s(z)} ,

1 1 3b, (1)
B==+; \/M (—6S(t) e 4611 0 {—15171@) + \/22517%(;) + 1280c1(t)S(t)] )

(3.14)
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where

S(1) = thjTEt) +w(t) + Kat).

By using the transformations (1.3), we will have

W) = :l:é \/LIW [745171 (1) = 3y/22563(1) + 1280¢, (1)5(1)} expl—ke + w(1)1]

x sech i%\/m <—6S(z) + gfc‘l((’g {—15};I "+ \/MD (x 2k /01 a(a)da)] .
(3.15)

Also, we search a solitary wave solution in the form
u(¢) = Atanh(B¢), (3.16)

where A and B are unknown constants to be further determined. Substituting Eq. (3.16)
into Eq. (3.9), we have

J= ‘[ B (ar () + dy (1))A*(1 — tanh(Bx)*)*B? 7% <z‘l’;§’) +w(t) + k%«.(t))Az tanh(Bx)’

+%h.(t)A4 tanh(Bx)* +éc|(t)A(’ lanh(Bx)(’] = %(ul(t) +di (1)A’B + iAZ <tdwT£[)+ w(t) + kzot(t)) - ébl(t)A4 - %c,(z‘)A(\
(3.17)
Making J stationary with A and B yields
0J(A,B) 2 1 dw(t) ) 4 3
== t)+d()AB+-A|lt——= t)+k7o(t) | —=5b1()A
G =2 @)+ a9+ g (1w ) + ) = L)
23
7157361(1‘)145
=0, (3.18)
0J(A,B) 1 2 L[ dw(t) 5 1 4
==(ai(t) +di(t)A" — A" t——= t) + kot —bi(H)A
2 = (@) + dr()A? = A (12 () + B )+ a0
23
+ 505 1 (A°
=0. (3.19)

Solving Egs. (3.18) and (3.19), we obtain

A= ig Cll(t) {—15191 (f) + \/22519%(;) +920¢ (t)S(t)},

B 1 1 69b1 (t) b
B=s \/m (35(;) ~Stiee [_15191 (1) + \/ 22562(1) + 920c, (z)s(r)} ) ,

(3.20)

where
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dw(t)
dt

S(t) =t +w(t) + Ka(t).

By using the transformations (1.3), we will have

W(x,t) = ig %(z) {715%([) +1/2250% () +920c'](t)S(t)] exp[—kx + w(1)1]

1 1 1 695, (1) - 't
x tanh [i Z\j 5 \/ PROETAD) (ss(t) 3 6'61 0 [7151;1 (1) £ 1/225b3(1) + 920c, (z)S(t)} ) (x + 2k . /0 a(a)da)} .

(3.21)

4 The physical explanation of the obtained solutions

Triki et al. (2012) studied the exact solutions of RNLSE equation with time-dependent
coefficients through ansatz method approach and found bright soliton solutions and dark
soliton solutions for five forms of nonlinearity. On the other hand, by means of the ITEM
we have obtained 28 solutions for parabolic law nonlinearity. Moreover, for particular
values of the free parameters, some of our solutions coincide with solutions of Triki et al.
(2012). It proves that the other solutions are newly derived through the improved tan(¢)-
expansion method. Similarly, it can be shown that Eslami et al. (2014) with first integral
method have obtained 6 solutions for parabolic law nonlinearity. One see some of solutions
by first integral method concur to the solutions of our considered method in this paper.
Also, Mirzazadeh et al. (2014) with help of two methods, namely, G’/ G-expansion method
and improved G’/G-expansion method for dual-power law nonlinearity have found suf-
ficient solutions that some of the solutions similar with the solutions of ITEM.

In this section, the numerical simulations of the RNLSE equation with time-dependent
coefficients with parabolic law nonlinearity will be given. Now, we will discuss all pos-
sible physical significance for each parameter.

Remark 1InFigs. 1,2, 3,4 and 5, we plot three dimensional and two dimensional graphics
of absolute values of parabolic law nonlinearity solutions, which denote the dynamics of
solutions with appropriate parametric selections. We plot three dimensional graphics of in
Figs. 1, 2, 3,4 and 5 for —10<x <10, —10 <7< 10. Moreover, we plot two dimensional
graphics of Figs. 1, 2, 3, 4 and 5 when —30<x<30,¢ = 2. In Fig. 1, we plot graphs for
profiles from a to d with k=2,a; =1t,b; =2t,cy =3t,dy =4¢, and e to h with
k =2,a; =sin(z),b; = cos(z),c; = cos(t),d, = cos(t) — sin(¢). Moreover, in Fig. 2, we
plot graphs for profiles from a to d with k = 2,a; =t,b; = 2t,c; = —3t,d; = 4t, and e to
h with k = 2, a; = sin(¢), by = cos(¢),c; = — cos(t),d, = cos(t) — sin(¢). Also, in Fig. 3,
for profiles a to d with Aj =2,k=2,a; =t,c; =3t,dy =4¢, and e to h with
Ay =2,k =2,a, =sin(t),c; = cos(t),d; = cos(t) — sin(z). In Fig. 4, we plot graphs for
profiles from a to d with Aj =3,k=2,a, =t,¢; =3t,dy =4¢t, and e to h with
Ay =3,k=2,a; = sin(t),c; = cos(t),d; = sin(2t) + cos(2t). Finally, in Fig. 5, we plot
graphs for profiles from a tod with A} =3,k =2,a, =t,by =2t,c; =3t,d; =4t,and e
to h with A; =3,k = 2,a; = sin(t), by = cos(t),c; = cos(t),d; = sin(2t) 4 cos(2t).

For parabolic nonlinearity, /s as periodic solution, /4 as dark soliton solution, ¥/, as
singular periodic solution, Wy as singular solution, V;, as polynomial solution. The
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Fig. 1 Profile of the optical soliton /5 with parabolic law nonlinearity
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Fig. 2 Profile of the optical soliton i with parabolic law nonlinearity
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Fig. 3 Profile of the optical soliton i, with parabolic law nonlinearity
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Fig. 5 Profile of the optical soliton i, with parabolic law nonlinearity

analytical solutions and figures obtained in this paper give us a different physical inter-
pretation for the RNLSE equation with time-dependent coefficients.
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5 Conclusion

The integrable, resonant nonlinear Schrédinger equation has been shown to arise, in par-
ticular, in modeling of many physical, engineering, chemistry, biology, etc. The resonant
nonlinear Schrédinger equation is studied with parabolic law nonlinearity. We compare
analytical findings with the results of the other analytical schemes describing the ansatz
method approach (Eslami et al. 2014; Triki et al. 2012) are used to carry out the inte-
gration. Description of the methods are given and the obtained results reveal that the ITEM
and HSIVM are new significant methods for exploring nonlinear partial differential
models. The obtained results are useful in gaining understanding of behavior of solitons.
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