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Abstract The current work presents analytical solutions of a nonlinear conformable time-

fractional equation by using two different techniques. These are the modified simple

equation method and the exponential rational function method. Based on the conformable

fractional derivative and traveling wave transformation, the fractional partial differential

equation is turned into the nonlinear non-fractional ordinary differential equation. There-

fore, we implement the algorithms to this nonlinear non-fractional ordinary differential

equation. To the best of our knowledge, the exact solutions obtained in this paper might be

very useful in various areas of applied mathematics in interpreting some physical

phenomena.

Keywords Conformable derivative � Exact solutions � Modified simple

equation method � Exponential rational function method

1 Introduction

Fractional calculus was born from a letter written by L’Hospital to Leibniz (1695) asking

him if nth order of derivative is 1
2
, what would the result be (Diethelm 2010; Oldham and

Spanier 1974; Podlubny 1999).

The nonlinear fractional equations plays a crucial role in a wide variety of physical

problems arising in such as fluid mechanics (especially in the research work of viscoelastic

flow), control systems, signal processing, biology systems, material diffusion including

normal diffusion and anomalous diffusion. The availability of symbolic computation

packages can be facilitate many powerful direct approaches to establish exact solutions to

these equations (Metzler et al. 1999; Lohmann et al. 1996). Include exp-function method

(Bekir et al. 2013), Kudryashov method (Eslami 2016; Hosseini et al. 2017; Pandir et al.

& Melike Kaplan
mkaplan@kastamonu.edu.tr

1 Department of Mathematics, Art-Science Faculty, Kastamonu University, Kastamonu, Turkey

123

Opt Quant Electron (2017) 49:312
DOI 10.1007/s11082-017-1151-z

http://orcid.org/0000-0001-5700-9127
http://crossmark.crossref.org/dialog/?doi=10.1007/s11082-017-1151-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11082-017-1151-z&amp;domain=pdf


2016), first integral method (Eslami et al. 2014), trial equation method (Pandir et al. 2013;

Demiray et al. 2015), the ðG0=G)-expansion method (Zheng 2012; Zayed and Gepreel

2009), simplest equation method (Taghizadeh et al. 2013; Akter and Akbar 2016) and so

on (Iyiola et al. 2017).

The current work is arranged as follows: In Sect. 3, some basic properties of con-

formable fractional calculus are given. In Sect. 4, the main steps of the MSE method and

exponential rational function method are provided. We construct the exact solutions of the

nonlinear conformable time-fractional Boussinesq equation in Sect. 4.1. Also the graphical

representation of the obtained solutions have given by taking parameters as special values.

Some conclusions are shown in Sect. 4.2.

2 Conformable fractional calculus

There are several fractional derivatives including Grunwald–Letnikov, Caputo and Rie-

mann–Liouville definition. All definitions satisfy the property that the fractional derivative

is linear whereas they don’t satisfy the known formula of the derivative of the product of

two functions (Khalil et al. 2014).

Recently, the authors Khalil et al. have given a new simple well-behaved definition of

the fractional derivative called conformable fractional derivative. Unlike other definitions,

this satisfies formulas of derivative of product and quotient of two functions and has a

simpler the chain rule. In addition to conformable fractional derivative definition, the

conformable fractional integral definition, Rolle theorem and Mean value theorem for

conformable fractional differentiable functions was given (Abdeljawad 2015; Atangana

et al. 2015; Cenesiz et al. 2017; Eslami and Rezazadeh 2016; Unal and Gokdogan 2017;

Ekici et al. 2016).

Definition 1 Suppose f : 0;1½ Þ ! R be a function. Then, the conformable fractional

derivative of f of order a is defined as

ðTaf ÞðtÞ ¼ lim
e!0

f ðt þ et1�aÞ � f ðtÞ
e

ð1Þ

for all t[ 0, a 2 0; 1ð �: Some useful properties can be listed as follows

Taðaf þ bgÞ ¼ aðTaf Þ þ bðTagÞ, for all a; b 2 R

TaðtpÞ ¼ ptp�a; for all p 2 R

TaðkÞ ¼ 0, for all constant functions f ðtÞ ¼ k
TaðfgÞ ¼ fTaðgÞ þ gTaðf Þ
Taðf =gÞ ¼ gðTaf Þ�f ðTagÞ

g2

Additively, if f is differentiable, then Taðf ÞðtÞ ¼ t1�a df
dt
ðtÞ:

Theorem Let f : ð0;1Þ ! R be a differentiable and a-differentiable function, g be a

differentiable function defined in the range of f.

Taðf � gÞðtÞ ¼ t1�ag0ðtÞf 0ðgðtÞÞ: ð2Þ
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3 Methods of finding solutions

In the current section we present two algorithms. The main steps are as follows:

1. Assume that a nonlinear partial differential equation with conformable time-fractional

derivative is given as follows

F u;
oau

ota
;
ou

ox
;
o2au

ot2a
;
o2u

ox2
; . . .

� �
¼ 0; ð3Þ

2. To solve this equation, we take the traveling wave transformation:

uðx; tÞ ¼ uðnÞ; n ¼ x� c
ta

a
; ð4Þ

where c is the wave speed. By using this transformation Eq. (3) can be rewritten as an

ordinary differential equation (ODE)

Q u; u0; u00; u000; . . .ð Þ ¼ 0: ð5Þ

We should integrate Eq. (5) term by term as soon as possible.

The MSE method is an useful method to find analytical solutions to fractional differ-

ential equations. It has been applied to conformable fractional differential equations

(Kaplan et al. 2017).

Concerning the MSE method, we seek the solutions of Eq. (5) in terms of
U

0
nð Þ

U nð Þ as

follows (Kaplan et al. 2015; Younis 2014; Jawad et al. 2010)

u nð Þ ¼
Xm
n¼0

an
U

0
nð Þ

U nð Þ

" #n
; an ¼ const:; am 6¼ 0: ð6Þ

Here U nð Þ is a function to be determined ðU0
nð Þ 6¼ 0Þ.

Find the positive integer m in the formula Eq. (6) by equating the highest power of the

nonlinear term(s) and the highest power of the highest order derivative of Eq. (5).

By substituting Eq. (6) into Eq. (5) , collecting all the coefficients U j nð Þ ðj ¼
0;�1;�2; . . .Þ and set them to zero, to get a system of algebraic equations. Then we solve

this system by using symbolic computation and substitute them into Eq. (6) to find the

exact solutions of Eq. (3).

Concerning the exponential rational function method (Aksoy et al. 2016), the solutions

can be expressed by

u nð Þ ¼
Xm
n¼0

an

ð1þ enÞn ; ð7Þ

where an am 6¼ 0ð Þ are constants to be determined later. The balancing number is deter-

mined previously.

Substituting Eq. (7) into Eq. (5) and collecting all terms with the same order of ein

ði ¼ 0; 1; 2; . . .Þ together, the left-hand side of Eq. (5) is transformed into another poly-

nomial in ein. Equating each coefficient of this polynomial to zero yields a set of algebraic

equations for an unknown parameters. Solving the equation system with the aid of Maple

packet program, we can obtain the exact solutions of Eq. (3).
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4 Application of the methods

We apply two different methods to the nonlinear conformable time-fractional Boussinesq

equation. Recently Hosseini and Ansari have solved this equation analytically by using

modified Kudryashov method [30].

4.1 Modified simple equation method

Firstly, we use the MSE method for solving the nonlinear conformable time-fractional

Boussinesq equation (Demiray et al. 2014).

o2auðx; tÞ
ot2a

� o2uðx; tÞ
ox2

� o2u2ðx; tÞ
ox2a

þ o4uðx; tÞ
ox4

¼ 0; 0\a� 1; ð8Þ

which describes the surface water waves whose horizontal scale is much larger than the

depth of the water. Equation (8) can be educed the following ODE by using the travelling

wave transformation Eq. (4):

ðc2 � 1Þu� ðu2Þ00 þ uð4Þ ¼ 0: ð9Þ

Integrating this equation twice with respect to n and setting the integration constants as

zero we find:

u00 þ ðc� 1Þu� u2 ¼ 0: ð10Þ

We get the balancing number as m ¼ 2: According to the MSE method, we seek the exact

solution of Eq. (10) as:

uðnÞ ¼ a0 þ a1
U

0
nð Þ

U nð Þ

 !
þ a2

U
0
nð Þ

U nð Þ

 !2

: ð11Þ

Substitution of Eq. (11) the into Eq. (8) provides to obtain following algebraic equation

system:

U0 nð Þ : ca0 � a20 � a0 ¼ 0;

U�1 nð Þ : �a1U
0 þ a1U

000 � 2a0a1U
0 þ ca1U

0 ¼ 0;

U�2 nð Þ : 2a2ðU00Þ2 � a2ðU
0 Þ2 � 2a0a2ðU

0 Þ2 � a21ðU
0 Þ2

� 3a1U
00U

0 þ 2a2U
0
U000 þ ca2ðU

0 Þ2 ¼ 0;

U�3 nð Þ : �10a2ðU
0 Þ2U00 � 2a1ðU

0 Þ3a2 þ 2a1ðU
0 Þ3 ¼ 0;

U�4 nð Þ : �a22ðU
0 Þ4 þ 6a2ðU

0 Þ4 ¼ 0:

ð12Þ

We find

a0 ¼ 0; c� 1: ð13Þ

from the first equation of Eq. (12) and
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a2 ¼ 6: ð14Þ

from the last equation of Eq. (12). Thereafter, we substitute these values into the remainder

of the system. Let us deal with two cases arising out of different values of a0:

Case 1 When a0 ¼ 0; Eq. (12) turns into:

U1 nð Þ : �a1U
0 þ a1U

000 þ ca1U
0 ¼ 0;

U2 nð Þ : 12ðU00Þ2 � 6ðU0 Þ2 � a21ðU
0 Þ2

� 3a1U
00U

0 þ 12U0U000 þ 6cðU0 Þ2 ¼ 0;

U3 nð Þ : �60ðU0 Þ2U00 � 10a1ðU
0 Þ3 ¼ 0:

ð15Þ

From Eq. (15), we find

a1 ¼ �6
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
ð16Þ

and

U nð Þ ¼ � c1e
�
ffiffiffiffiffiffi
1�c

p
nffiffiffiffiffiffiffiffiffiffiffi

1� c
p þ c2; ð17Þ

where c 6¼ 1: Therefore, we obtain

uðnÞ ¼
6
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
c1 coshð

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
nÞ � sinhð

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
nÞ

� �
� c1 coshð

ffiffiffiffiffiffi
1�c

p
nÞ�sinhð

ffiffiffiffiffiffi
1�c

p
nÞð Þffiffiffiffiffiffi

1�c
p þ c2

ð18Þ

þ
6c21 coshð

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
nÞ � sinhð

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
nÞ

� �2
� c1 coshð

ffiffiffiffiffiffi
1�c

p
nÞ�sinhð

ffiffiffiffiffiffi
1�c

p
nÞð Þffiffiffiffiffiffi

1�c
p þ c2

� �2
; ð19Þ

where n ¼ x� c ta

a (Fig. 1).

Case 2 When a0 ¼ c� 1; Eq. (12) turns into:

Fig. 1 The traveling solution for u(x, t) obtained in Eq. (18) c1 ¼ 1; c2 ¼ 1; c ¼ 2 when a ¼ 0:1 and 1
respectively
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U1 nð Þ : �a1U
0 þ a1U

000 þ ca1U
0 þ 2ð1� cÞa1U

0 ¼ 0;

U2 nð Þ : 12ðU00Þ2 � 6ðU0 Þ2 � a21ðU
0 Þ2 � 3a1U

00U
0

þ 12U0U000 þ 6cðU0 Þ2 � 12ð1� cÞðU0 Þ2 ¼ 0;

U3 nð Þ : �60ðU0 Þ2U00 � 10a1ðU
0 Þ3 ¼ 0:

ð20Þ

By solving the system above, we verify:

a1 ¼� 6
ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
ð21Þ

U nð Þ ¼ � c1e
�
ffiffiffiffiffiffi
c�1

p
nffiffiffiffiffiffiffiffiffiffiffi

c� 1
p þ c2; ð22Þ

where c 6¼ 1: Finally, substitution of the values into Eq. (11) completes the determination

of the solution of nonlinear conformable time-fractional Boussinesq equation as

uðnÞ ¼ c� 1þ 6
ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
c1ðcoshð

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
nÞ � sinhð

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
nÞÞ

� c1ðcoshð
ffiffiffiffiffiffi
c�1

p
nÞ�sinhð

ffiffiffiffiffiffi
c�1

p
nÞÞffiffiffiffiffiffi

1�c
p þ c2

ð23Þ

þ 6c21ðcoshð
ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
nÞ � sinhð

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
nÞÞ2

� c1ðcoshð
ffiffiffiffiffiffi
c�1

p
nÞ�sinhð

ffiffiffiffiffiffi
c�1

p
nÞÞffiffiffiffiffiffi

c�1
p þ c2

� �2 ; ð24Þ

where n ¼ x� c ta

a (Fig. 2).

4.2 Exponential rational function method

According to the exponential rational function method, we seek the exact solution of

Eq. (10) as:

uðnÞ ¼ a0 þ
a1

1þ en
þ a2

ð1þ enÞ2
: ð25Þ

Substituting Eq. (25) into Eq. (10) and collecting the coefficients of en nð Þ; ðn ¼ 0; 1; 2; 3; 4Þ
and by equating each coefficient to zero, we find:

Fig. 2 The traveling solution for u(x, t) obtained in Eq. (23) c1 ¼ 1; c2 ¼ 1; c ¼ 2 when a ¼ 0:1 and 1
respectively
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e0 nð Þ : ca0 � a20 � 2a0a1 � 2a0a2 � 2a1a2 � a0

� a1 � a2 þ ca1 þ ca2 � a22 � a21 ¼ 0;

e1 nð Þ : 4ca0 � 2a1a2 � 4a0 þ 3ca1 � 6a0a1

� 4a1 � 2a21 � 4a2 � 4a0a2 � 4a20 þ 2ca2 ¼ 0;

e2 nð Þ : 6ca0 þ 3a2 þ 3ca1 � 3a1 � 6a0a1

0� 2a0a2 � a21 � 6a20 þ ca2 ¼ 0;

e3 nð Þ : 4ca0 þ ca1 � 4a0 � 2a0a1 � 4a20 ¼ 0;

e4 nð Þ : �a0 þ ca0 � a20 ¼ 0:

ð26Þ

From the solutions of the system above , we obtain

a0 ¼ 1; a1 ¼ �6; a2 ¼ 6; c ¼ 2: ð27Þ

Finally, we substitute Eq. (27) into Eq. (25) to get:

uðnÞ ¼ 1� 6

1þ cosh nþ sinh n
þ 6

ð1þ cosh nþ sinh nÞ2
: ð28Þ

Here n ¼ x� 2 ta

a (Fig. 3).

5 Conclusions

In this article, we have constructed some exact travelling wave solutions for the nonlinear

conformable time-fractional Boussinesq equation by using MSE and exponential rational

function methods. The present methodologies are shown to provide a useful approaches to

solve the nonlinear partial differential equations with conformable fractional derivative in

mathematical physics. On comparing the results obtained in this paper, we conclude that

the MSE method gives more solutions, but it is more complicated than exponential rational

function method. Also by comparing the solutions with the existing solutions, it can be

stated that these solutions are new [30]. Furthermore, the exact solutions obtained in this

paper might be very useful in various areas of applied mathematics in interpreting some

physical phenomena. Finally, mathematical software Maple is used to show that all

solutions obtained in this paper satisfy the original equations.

Fig. 3 The travelling wave solution for u(x, t) obtained in Eq. (27) when a ¼ 0:1 and 1 respectively

Applications of two reliable methods for solving a nonlinear... Page 7 of 8 312

123



References

Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)
Aksoy, E., Kaplan, M., Bekir, A.: Exponential rational function method for space–time fractional differ-

ential equations. Waves Random Complex Media 26(2), 142–151 (2016)
Akter, J., Akbar, M.A.: Solitary wave solutions to the ZKBBM equation and the KPBBM equation via the

modified simple equation method. J. Partial Differ. Equ. 29(2), 143–160 (2016)
Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. OpenMath. 13, 889–898 (2015)
Bekir, A., Guner, O., Cevikel, A.C.: Fractional complex transform and exp-function methods for fractional

differential equations. Abstr. Appl. Anal. 2013, 426462 (2013)
Cenesiz, Y., Baleanu, D., Kurt, A., Tasbozan, O.: New exact solutions of Burgers’ type equations with

conformable derivative. Waves Random Complex Media 27(1), 103–116 (2017)
Demiray, S., Unsal, O., Bekir, A.: New exact solutions for Boussinesq type equations by using (G0=G; 1=G)

and (1=G0 )-expansion methods. Acta Phys. Pol. A 125(5), 1093–1098 (2014)
Demiray, S.T., Pandir, Y., Bulut, H.: New solitary wave solutions of Maccari system. Ocean Eng. 103,

153–159 (2015)
Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)
Ekici, M., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Optical soliton

perturbation with fractional-temporal evolution by first integral method with conformable fractional
derivatives. Optik 127(22), 10659–10669 (2016)

Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations. Appl.
Math. Comput. 285, 141–148 (2016)

Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-frac-
tional derivative. Calcolo 53, 475–485 (2016)

Eslami, M., Fathi Vajargah, B., Mirzazadeh, M., Biswas, A.: Application of first integral method to frac-
tional partial differential equations. Indian J. Phys. 88(2), 177–184 (2014)

Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional Boussinesq equations
using the modified Kudryashov method. Waves. Random. Complex Media. 27(4), 628–636 (2017)

Hosseini, K., Mayeli, P., Ansar, R.: Modified Kudryashov method for solving the conformable time-
fractional Klein–Gordon equations with quadratic and cubic nonlinearities. Optik 130, 737–742 (2017)
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