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Abstract In this paper, the first integral method and the functional variable method are
used to establish exact traveling wave solutions of the space—time fractional Schrodinger—
Hirota equation and the space-time fractional modified KDV-Zakharov—Kuznetsov
equation in the sense of conformable fractional derivative. The results obtained confirm
that proposed methods are efficient techniques for analytic treatment of a wide variety of
the space—time fractional partial differential equations.
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1 Introduction

During recent years, fractional differential equations have gained much attention attracted
due to their numerous applications in areas of control theory, biology, engineering and
other areas. There are several definitions of fractional integrals and derivatives in the
literature, but the most popular definitions are the Riemann—Liouville and Caputo senses
(Podlubny 1999; Ross 1975). Recently, Khalil et al. (2014) introduced a new simple well-
behaved definition of the fractional derivative called conformable fractional derivative.
This new fractional derivative definition has governed much attention in recent months.
For instance Abdeljawad (2015) provide fractional versions of the chain rule, exponential
functions, Gronwall’s inequality, integration by parts, Chung (2015) used the conformable
fractional derivative and integral to discuss fractional Newtonian mechanics and Reza-
zadeh et al. (2016) investigated stability of linear conformable fractional systems from the
point of view of control.

Eslami and Rezazadeh (2016) firstly studied exact solution of conformable fractional
partial differential equations. They applied the conformable fractional derivative with
properties and first integral method to obtain exact solutions of the conformable fractional
Wu-Zhang system. Other researchers used this idea, and many powerful and efficient
methods have been proposed to obtain exact solutions of conformable fractional differ-
ential equations so far. For example, these methods include the Riccati sub equation
method (Eslami 2016; Aminikhah et al. 2016; Rezazadeh and Ziabarya 2016), the Mod-
ified Kudryashov method (Rezazadeh et al. 2017; Hosseini et al. 2016, 2017), the G'/G-
expansion method (Eslami et al. 2012; Neamaty et al. 2016), and so on (Kurt et al. 2015;
Cenesiz et al. 2017; Hosseini et al. 2017).

The aim of this paper is to find exact solutions of the space—time fractional Schro-
dinger-Hirota equation and the space-time fractional modified KDV—Zakharov—Kuznet-
sov (KDV-ZK) equation by using the first integral method and the functional variable
method.

2 Conformable fractional derivative

Conformable fractional derivative of order o is defined by the following definition.

Definition 1 Suppose f : (0,00) — R, be a function. Then, the conformable fractional
derivative of f of order o is defined as

T,(f) :lﬂw’ (1)

for all +> 0,0 € (0,1). The geometric and physical interpretation of the fractional
derivatives was given in Zhao (2017).

Definition 2  (Fractional Integral) Let a >0 and ¢ > a. Also, let f be a function defined on
(a,f] and o € R. Then, the o-fractional integral of f is defined by,

i) = [ @)

if the Riemann improper integral exists.

The new definition satisfies the properties which given in the following theorem.
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Theorem 3 Let o € (0, 1], and f and g be o-differentiable at a point t, then (Khalil et al.
2014)

()  Tulaf +bg) =aT,(f) +bT,(g), Va,beR.
Gi) T,(") = ",V p e R.
(i) Tu(f8) = fT(8) + 8 Tu(f).

(iv) T, ({é) _8 Ta(f)g;f Tx(g).

Furthermore, if f is differentiable, then T,(f)(t) = t'~* %.

Abdeljawad (2015) established the chain rule for conformable fractional derivatives as
following theorem.

Theorem 4 Suppose f : (0,00) — R be a function such that f is differentiable and also
a-differentiable. Let g be a function defined in the range of f and also differentiable; then,
one has the following rule

T, (fog)(r) = 1'g'(1)f'(g(1)). (3)

Now, we list here the fractional derivatives of certain functions (Khalil et al. 2014)

i Tu(e) =
(i)  T,(sinlr*) =cosis
cee 1 o _ . 1 o
(i) Ty(cosir*) = —sinls
(iv) T,(t)=1.
On letting o = 1 in these derivatives, we get the corresponding ordinary derivatives.

Remark 5 We write g—; (f) for T,(f), to denote the conformable fractional derivatives of f
with respect to the variable ¢ of order o.

3 Methods

In this section we describe the first step of the first integral method and the functional
variable method for finding exact solutions of conformable fractional partial differential
equations.

Suppose that a space—time conformable fractional partial differential equations, say, in
three independent variables x, y, and ¢ is given by

*u Ou du 3%u u

Fl — ——y=——,=—,.--] =0, t>0, 0 <1 4
<6l“’6x’ay’6t2“’6x2’ ) s Z Y <as |, ()

where u(x,y,7) is an unknown function, F is a polynomial in u and its various partial
derivatives, in which the highest order derivatives and nonlinear terms are involved.
Using a wave transformation

”(X7}’7Z):”(f)a f:X“‘y—lg? (5)

where [ is constant to be determined later. This enables us to use the following changes:
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o d ) d ) d o™ 5 &
@(-)=—l&(~), a(-)=%(~), @(-)=d—5, atz“(-)=ld—éz,.,..

Using Eq. (5) to transfer the nonlinear conformable fractional partial differential
equation Eq. (4) to nonlinear ordinary differential equation

GU, U, U U",..) =0, (6)

where the prime denotes the derivation with respect to &.
In two next subsection, we express the main step for finding the exact solutions of
Eq. (6) by using the first integral method and the functional variable method.

Remark 6  Where generalized hyperbolic and triangular functions are defined as (Ren and
Zhang 2006; Liu and Jiang 2002)
The generalized hyperbolic sine function is

¢ =<
. e* — ge
sinhy (&) = [%,
generalized hyperbolic cosine function is
peé + qe“f
coshy, (&) = 3
generalized hyperbolic tangent function is
pe —gqe*
t h — =,
anhy, (&) pet + ge <

generalized hyperbolic cotangent function is

o _Petge”
cothyy (&) =———,
per —qe
generalized hyperbolic secant function is
2
sech,,(§) = ———,
g (€) pet + gt

generalized hyperbolic cosecant function is

2

cschy, (&) = W ,

where ¢ is an independent variable, p and g are arbitrary constants greater than zero and
called deformation parameters. The above six kinds of functions are said generalized
hyperbolic functions.

The generalized triangular sine function is

. pe's — ge™'
sinpg(&) = B TR

generalized triangular cosine function is
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pe’c + ge™i¢
cospg($) = 5
generalized triangular tangent function is
pec — qe
tan,,q(é) =l =,
pe's +ge~'c

generalized triangular cotangent function is

cothy, (&) = i%’
generalized triangular secant function is
secpq (&) = [ﬁqe*@ )
generalized triangular cosecant function is
cscpq(§) = pe’ffz—iqe"f’

where ¢ is an independent variable, p and ¢ are arbitrary constants greater than zero and
called deformation parameters. The above six kinds of functions are said generalized
triangular functions.

3.1 The first integral method

The first integral method was first proposed by Feng (2002) in solving Burgers—KdV
equation which is based on the ring theory of commutative algebra. Recently, this useful
method is widely used by many such as in (Aminikhah et al. 2015; Eslami et al. 2014;
Hosseini et al. 2012; Hosseini and Gholamin 2015) and by the reference therein.

Now, we introduced a new independent variables

X(©) = U@, (&) = Us(o), ™)
Equation (6) can be reduced to a two-dimensional autonomous system of the form
{Xé(é) = (&), ®)
Ye(§) = 8(X(8), ¥(¢)

By the qualitative theory of ordinary differential equations (Ding and Li 1996), if we
can find the integrals to Eq. (8) under the same conditions, then the general solutions to
Eq. (8) can be solved directly. However, in general, it is really difficult for us to realize this
even for one first integral, because for a given plane autonomous system, there is no
systematic theory that can tell us how to find its first integrals, nor is there a logical way for
telling us what these first integrals are. We will apply the Division Theorem to obtain one
first integral to Eq. (8) which reduces Eq. (6) to a first order integrable ordinary differential
equation. An exact solution to Eq. (4) is then obtained by solving this equation. Now, let us
recall the Division Theorem:

Theorem 7 (Division theorem) Suppose that P(x,y) and Q(x,y) be polynomials of two
variables x and y in Clx,y], and let P(x,y) be irreducible in Clx,y]. If Q(x,y) vanishes at
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all zero points of P(x,y), then there exists a polynomial G(x,y) in Clx,y] such that
O(x,y) = P(x,y)G(x,y).

Remark 8 The first integral method definitely can be applied to equations which can be
converted to a first order ordinary differential equation through the Division Theorem.

Remark 9 Following Riccati equation
U =ay+a U +aU*E), ac€R, a#0, 9)

admits following exact solutions:
Type I When A = a? — 4apa, > 0, the solutions of Eq. (9) are

VA VA

Ui (&) = 7S tanh,,, [T(erfO) *Za—alz: (10)
U2(¢) = _%thpq [\/Tx(i"‘fo) _;_alz’ (11)

Type Il When A = a% — 4apa, <0, the solutions of Eq. (9) are
Us(&) :%tanpq {@(f"'éo)] _;_11127 (12)
Us(8) = _%Cmpq [\/;_A@Jréo) _2%127 (13)

Type IIl When A = a? — 4apay = 0, the solution of Eq. (9) is
Us(e) = - (14)

Cw(E+ &) 2ar

3.2 The functional variable method

Zerarka and Ouamane (2010) introduced the so-called functional variable method to find the
exact solutions for a wide class of linear and nonlinear wave equations. This method was
further developed by many authors (Aminikhah et al. 2014, 2015; Nazarzadeh et al. 2013;
Ayati et al. 2017). The advantage of this method is that one treats nonlinear problems by
essentially linear methods, based on which it is easy to construct in full the exact solutions
such as soliton-like waves, compacton solutions and non-compacton solutions, trigonometric
function solutions, pattern soliton solutions, black solitons or kink solutions, and so on.

If all terms contain derivatives, then Eq. (6) is integrated where integration constants
are considered zeros. Then we make a transformation in which the unknown function U is
considered as a functional variable in the form

U: = F(U), (15)

and some successive derivatives of U are
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1
2
Ueer = E(FZ)HV

Use == (F?),

Uster = 5 LY E 4 (P (),

/o

where “/” stands for &
The ordinary differential Eq. (6) can be reduced in terms of U, F and its derivative
upon using the expressions of Eq. (16) into Eq. (6) gives

Q(U,F,F ,F' F" ..)=0. (17)
The key idea of this particular form Eq. (17) is of special interest because it admits
analytical solutions for a large class of nonlinear wave type equations. After integration,

Eq. (17) provides the expression of F' and this, together with Eq. (15), give appropriate
solutions to the original problem.

Remark 10 The functional variable method definitely can be applied to nonlinear partial
differential equations which can be converted to a second-order ordinary differential
equation through the travelling wave transformation.

Remark 11 Consider the following second-order ordinary differential equation
Us: = kU — kU™ n#0, (18)

where k; and k, are constants and U is a functional variable in the form (15). Then using
(16) transformation, the exact solutions of the Eq. (18) are obtained as
Type I When k; > 0, the solutions of Eq. (18) are

Ul,z(«f):i{—(;z Chz( \/_5)} (19)

2k,
(n+2)k n C
U3_’4(€) = i{Tl sechlzlq (5 \/k_lé) } ) (20)

Type Il When k; <0, the solutions of Eq. (18) are

Uso(&) = {52 st 5 \/im)} 1)

2k

Urs(&) = {(njthzz ( \/——klé)} (22)
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4 Applications

4.1 Exact solutions to the conformable fractional Schrodinger—Hirota
equation

Let us consider the nonlinear conformable fractional Schrodinger—Hirota equation which
governs the propagation of optical solitons in a dispersive optical fiber (for « = 1, see
(Biswas 2003))

u 19 N
ia” 2aI:+|u|u+Ma—’;*O, 1>0, 0<a<l. (23)

Since u = u(x, ) in Eq. (23) is a complex function we suppose that

u(x’ t) _ U(é)ei(mﬁrg)’ f _ ()C _ 2&);“)7 (24)

where f and @ are constants.
On substituting these into Eq. (23) yields

ad . 1+
6_1‘;[ = (20U + iﬂU)el(w’”ﬂT)7 (25)
azu 1 t(wx-%—ﬂ)
e = (U" +2i0U" — 0*U)e e (26)
6314 " " 27 .3 i(wx-%—M)
P = (U" 4+ 3i0U" = 30°U’ — i’ U)e ). (27)

Substituting Egs. (25)-(27) into Eq. (23), we obtain that » = — 3> and U(¢) satisfy the
ordinary differential equation:

5 3
(54;L2+ﬁ)U+2U”+U3—0 (28)

where the prime denotes the derivation with respect to ¢. Rewrite the Eq. (28) into fol-
lowing form

U+ kU — kU =0, (29)
or

U" = kU — ki U, (30)

where k; = % ko :%(537+ﬁ).

4.1.1 The first integral method

Now, using (7), (8) and Eq. (30) is equivalent to the two-dimensional autonomous system

@ Springer



Exact solutions to the space—time fractional... Page 9 of 15 279

X (&) =Y(Q),
{ 0 . (31)

According to the first integral method, we suppose that X(£) = X and Y (&) =Y are
nontrivial solutions of (31) and ¢(X,Y) = >_1*; a;(X)Y" is an irreducible polynomial in the
complex domain C[X, Y] such that

q(X,Y) =Y ai(X)Y =0, (32)
i=0
where a;(X), (i =0, 1,...,m) are polynomials of X and a,,(X) # 0. Equation (32) is called
the first integral to (31), due to the Division Theorem, there exists a polynomial g(X) +
h(X)Y in the complex domain C[X, Y] such that

dg 0qdX 0qdY T
2: = axaz Tayae B RV Y a(X)Y" (33)

i=0

For this equation, we assume that m = 1 in (32).
Supposing m = 1, by comparing the coefficients of Y'(i = 0,1,2) on both sides of
Eq. (33), we have

ay(X) = h(X)a(X), (34)
ao(X) = g(X)a(X) + h(X)ao(X), (35)
g(X)ag(X) = a1 (X)Y' = a\(X) [koX — k1 X°]. (36)

Since a;(X)(i = 0, 1) are polynomials, then from (34) we deduce that a;(X) is constant
and h(X) = 0. For simplicity, take a; (X) = 1. Balancing the degrees of g(X) and ay(X), we
conclude that °(g(X)) = 1 only. Suppose that g(X) = A;X + By and A; # 0, then we find
ao(X)

A
ao(X) =5 X* + BoX + Ao,
where Ay is arbitrary integration constant.

Substituting ag(X), a;(X) and g(X), h(X) in Eq. (36) and setting all the coefficients of
powers X to be zero, then we obtain a system of nonlinear algebraic equations and by
solving it, we obtain

ka
Ay =+ -2k, By=0, Ag= , 37
1 1 0 0 \/Tk] ( )
and
ko
Ay =—+/—2k, By=0, Ay=-— . 38
1 1 0 0 =2k (38)

Using the conditions (37) and (38) in Eq. (32), we obtain
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Y:i(m+2\/?2k‘xz) (39)

Combining (39) with (31) and Remark 8, we obtain the exact solution to Eq. (30) and
then the exact solution to conformable fractional Schrédinger—Hirota equation can be
written as:

Type 1 When k, > 0, the solutions of Eq. (23) are

ky i v =2k 2wt*
ui2(x, 1) = Fy /k—2 (o) tanhpq( 5 2 (x — (Z + §0>)7 (40)
1

k . [ RV4 —2k 2 o
s o, 1) = 7y 22 () cothy, (Tz (x - %t + @)) : (41)
1

where ¢ is an arbitrary constant.
Type 2 When k; <0, the solutions of Eq. (23) are

MS‘()(X, [) = :l:’ / 7% ei((wH»g) tal’lpq (% (X zwt 60)) (42)
. 1+ EV4 2 2 x
ur8(x,1) = F4q/ _]]i_z e’(‘“erﬂT) Cotyy (—2k2 (x ot ﬁo>> (43)
1

where & is an arbitrary constant.
Notice that the solutions found under m = 2 are the same solutions to m = 1.

and

and

4.1.2 The functional variable method

Using (15), (30) and Remark 10 we have the following traveling wave solutions of the
conformable fractional Schrodinger—Hirota equation which contain traveling wave solu-
tions as follows.

So we can obtain following solution for k, > 0 as

2ky i 2mt*
ugro(x, 1) = £4/— k—ze’(w”ﬁT)cschpq (x/kz <x _ + fo) > ) (44)
1 o
2 . 1 2wt*
upn2(x, 1) = £4 /% el(‘“”ﬁT)sechpq (\/kz (x — a;t + f())) ) (45)
1

and for k, <0,
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where &, is an arbitrary constant.

Remark 12 Comparing our results with earlier results (Akbari 2014; Jawad et al. 2014),
when we put o = 1 in (40)—(47), it can be seen that the current results are new.

4.2 Exact solutions to the conformable fractional modified KDV-ZK equation

We consider the nonlinear conformable fractional modified KDV-ZK equation (for o = 1,
see (Khan and Akbar 2013))

0*u ou u du u

I 7 e R R B > <I. 4
T T e Ve Tapa 0 120 O<es (48)
where d is a nonzero constant. Let
l
wxy,50) =UQ), E=xtytz—_r, (49)

where [ is constants and U(&) is real function.
Substituting (49) into (48), we obtain ordinary differential equation

—IU' +dU*U' 4+ 30" =0, (50)

where the prime denotes the derivation with respect to &.
Integrating Eq. (50) once respect to &, then we have

d
flU+§U3+3U”:O, (51)
or

U/l —

W —

(luf%lu ) (52)

4.2.1 The first integral method

And using (7) and (8), Eq. (52) is equivalent to the two-dimensional autonomous system

{Xé(é) =Y(9),

vi(@) = 1 (x(0) - D0(e) 59

According to the first integral method, we suppose that X(£) = X and Y (&) =Y are
nontrivial solutions of (53) and ¢(X,Y) = >/, a;(X)Y" is an irreducible polynomial in the
complex domain C[X, Y] such that

a;(X)Y' =0, (54)

-

Il
o

q(XvY) =

4

where a;(X), (i =0, 1,...,m) are polynomials of X and a,,(X) # 0. Equation (54) is called
the first integral to (53), due to the Division Theorem, there exists a polynomial g(X) +
h(X)Y in the complex domain C[X, Y] such that
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d 0g0X 0qoY m
1 T g(X) + h(XO)Y] Y a(x)

dé dX0¢ Yo (55)

i=0

For this equation, For this equation, we assume that m = 1 in (54).
Supposing m = 1, by comparing the coefficients of Y’(i = 0,1,2) on both sides of
Eq. (55), we have

& (X) = h(X)a (), (56)
dh(X) = g(X)ar(X) + h(X)ao (), (57)
eX)aoX) = ()Y = a (¥) [zx—g’xﬂ. (58)

Since a;(X)(i = 0, 1) are polynomials, then from (56) we deduce that a;(X) is constant
and h(X) = 0. For simplicity, take a;(X) = 1. Balancing the degrees of g(X) and ao(X),
we conclude that °(g(X)) = 1 only. Suppose that g(X) = A X + By and A # 0, then we
find ao(X)

A
ao(X) = X7 + BoX + Ay,

where Ay is arbitrary integration constant.

Substituting ap(X), a1 (X) and g(X), h(X), in Eq. (58) and setting all the coefficients of
powers X to be zero, then we obtain a system of nonlinear algebraic equations and by
solving it, we obtain

1 l
=-vV-2d, By=0, Ag=——x, 59
3 ‘ *T V2 %)
and
= 1\/ 2d, By=0, Ag= ! (60)
1= 3 9 0 — b 0 — —Zd

Using the conditions (59) and (60) in Eq. (54), we obtain

V=2d [ 3l
Y= iT( +X2).

: (61)

Combining (61) with (53) and Remark 8, we obtain the exact solution to Eq. (52) and
then the exact solution to conformable fractional modified KDV-ZK equation can be
written as:

Type 1 When [ > 0, the solutions of Eq. (48) are

3/ 1 l
uip(x,y,2,t) = F/ _Etanpq (\/%()H-y +z- &f“ + £0>>7 (62)

and
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[ 3 l [
u3A4(x7y7Zat)::F _ECOtﬁq(\/%<x+y+Z_&tx+£0)>7 (63)

where &, is an arbitrary constant.
Type 2 When [ <0, the solutions of Eq. (48) are

31 [ 1 l

u5ﬁ6(x7y7zat) = :F\/;tanhhq( _6<x+y+z_atb{+60>)7 (64)
3l I I,

urg(x,y,z,1) = £ Ecothpq ~g x—i—y—i—z—&t +& ), (65)

where &, is an arbitrary constant.
Notice that the solutions found under m = 2 are the same solutions to m = 1.

and

4.2.2 The functional variable method

Using (15), (52) and Remark 10 we have the following traveling wave solutions of the
conformable fractional modified KDV-ZK equation which contain traveling wave solu-
tions as follows.

So we can obtain following hyperbolic solution for / > 0 as

6l l
ug‘lo(x,y,z,z)—i\/—gcschpq<\/;(x+y+z——t + & ), (66)
6l I
urpa(x,y,z,6) =+ Esechpq 3 x+y+z——t +£0 (67)

6l l

uz14(x,y,2,1) = j:\/;cscpq <\/ 3(x+y+z——t +éo
6l I I,

uis,6(x,y,2,1) =+ PR 3 X+y+2*;f +% ) | (69)

where ¢, is an arbitrary constant.

and for /<0,

Remark 13 Comparing our results with earlier results (Khan and Akbar 2013; Islam et al.
2014), when we put o = 1 in (62)—(69), it can be seen that the current results are new.
5 Conclusion

This paper studied the space—time fractional Schrédinger—Hirota equation and the space—

time fractional modified KDV-ZK equation with conformable fractional derivative. Two
integration techniques applied for finding the exact solutions to the equations, namely, the
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first integral method and the functional variable method. The performance of these
methods is reliable and effective and gives more solutions. These methods have more
advantages: they are direct and concise. Thus, we deduce that the proposed methods can be
extended to solve many nonlinear conformable fractional partial differential equations
which are arising in the theory of solitons and other areas. All exact solutions were put
back into the corresponding systems, by means of Maple software, and their satisfactions
confirm the validity of the solutions obtained in this paper.
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