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Abstract This paper proposes an optical secure communication scheme based on chaos

synchronization. Nonlinear Schrödinger equation is an important model for optical com-

munication. Our theoretical analysis and numerical simulation show that when the non-

linear Schrödinger equation is perturbed by multiple frequencies, the optical solitons

becomes chaotic despite that optical soliton is usual preferred for long-distance trans-

mission. By taking the generated chaotic signals as communication carrier, a master slave

system for optical secure communication is designed. A feedback controller is applied to

the slave system. Sufficient conditions for chaos synchronization are then proved. It is

discovered that the synchronization speed is closely linked with parameters of the non-

linear Schrödinger equation.

Keywords Secure communication � Nonlinear Schrödinger equation � Chaos

synchronization � Feedback control

1 Introduction

The nonlinear Schrödinger (NLS) equation has many important applications in various

fields, such as plasma physics (Mathieu and Masahito 2014), optical fiber communication

(Wang and Yang 2015), fluid and solid mechanics (Nottale 2009). Hederi et al. (2016)

studied the efficiency of exponential time differencing schemes for nonlinear Schrödinger

equations. Solitonic dynamics and excitations of the NLS equation with third-order dis-

persion in non-Hamiltonian PT-symmetric potentials were determined (Chen and Yan

2016).

For the cases of communication models, the NLS equation is an excellent option. The

NLS equation admits optical solitons which can achieve ultra-long-distance and large-
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capacity communications. In addition,the security communication is highly required by the

practical application of optical solitons in many aspects from state secrets to personal

privacy. Secure communication modeled by the NLS equation is an important research

field, hence it is the main interest of this paper.

Chaos synchronization technology is an important method for secure communications.

This technology has been applied to many models such as the Duffing equation (Wu et al.

2007; Ahn 2009) and the Lorenz system (Wang et al. 2015). The key point of chaos

synchronization is that chaos will be obtained as a signal carrier and then synchronization

is devised for the decryption stage.

Secure communication has been studied using chaotic maps and continuous dynamical

models. In Mahmoud et al. (2009), the case of two complex nonlinear oscillators was

studied using active control and global synchronization techniques. Their results showed

that the error is globally stable. By the Lyapunov stability theory, secure communication of

a general complex dynamical network with coupling delays was investigated and the

delay-dependent criteria were derived via adopting the free weighting matrix approach

(Wang and Guan 2010). Secure communication of two identical stochastic Duffing

oscillators with bounded random parameters was considered, and a feedback control

strategy was adopted to synchronize chaotic responses of two identical equivalent deter-

ministic systems (Wu et al. 2007; Wembe and Yamapi 2009; Sun 2012).

It is important to study optical secure communication modeled by the perturbed NLS

equation. On one hand, we find that chaos is difficult to be excited in other systems. The

chaotic signal can only be produced under special conditions. A slight change in the

parameters or environment may eliminate the original chaos. These facts have negative

effects on the design of stable and effective chaotic secure communication mechanisms.

On the other hand, fiber optical secure communication has rarely been studied because the

model uses the partial differential equation, while the classical secure communication is

based on ordinary differential equations.

This paper focuses on designing an efficient mechanism for the optical signal secure

communication by chaos synchronization. There are two objectives of this paper. The first

is to find an effective method to generate chaos. It is noted that many models can induce

chaos under periodic perturbation by the Melnikov method, and chaos appears when the

homoclinic orbit breaks. By the dynamical theory, optical soliton corresponds to a

homoclinic orbit. So we want to know whether the optical soliton turns into chaos or not,

under periodic perturbation. The second is to use chaos synchronization technology to

achieve optical secure communication modeled by the NLS equation. Chaos synchro-

nization of the NLS equation has rarely been mentioned in the literature. In our previous

studies (Yin and Zhao 2014; Wu et al. 2008), we found that the reduced nonlinear

Schrodinger equation is similar to the Duffing equation. Owing to the similarity between

the NLS equation and the Duffing equation, it is possible to achieve the chaos synchro-

nization by the NLS equation.

The rest of this paper is organized as follows. In Sect. 2, we study an effective way to

generate chaos by the Melnikov method, which is verified by numerical results. In Sect. 3,

we study chaos synchronization by feedback control. Results show that using chaos syn-

chronization technology can achieve optical secure communication modeled by the non-

linear Schrödinger equation. We arrive a conclusion in Sect. 4.
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2 Chaos generated by perturbing the NLS equation

2.1 The perturbed NLS equation and unperturbed NLS equation

We consider the following perturbed NLS equation

iqt þ
1

2
qxx þ qj j2q ¼ eq; ð1Þ

in which, e ¼ eðxÞ is a general expression given by

eðxÞ ¼ d
ffiffiffiffi

N
p

X

N

i¼1

cosðxixÞ; ð2Þ

where d
ffiffiffi

N
p and xi denote the amplitude and the frequency, respectively. The reason for

using Eq. (2) is that the power of eðxÞ equals to d2

2
, which allows us to focus on the richness

of the frequency, while the perturbed power is kept as constant and independent of N.

Assume that Eq. (1) has traveling wave solutions in the form

qðx; tÞ ¼ aðxÞ expð�iXtÞ:

The chaotic behavior is given by the following equation:

a00 þ 2a3 þ 2Xa ¼ ea
X

N

i¼1

cosðwixÞ; ð3Þ

where ‘‘0’’ denotes the derivative with respect to x. By using the transformation b ¼ a0,
Eq. (3) is transformed into a set of two autonomous differential equations as below

a0 ¼ b;

b0 ¼ �2Xa� 2a3 þ ea
P

N

i¼1

cosðwixÞ:

8

<

:

ð4Þ

When e ¼ 0, Eq. (4) becomes an unperturbed system

a0 ¼ b;

b0 ¼ �2Xa� 2a3:

�

ð5Þ

System (5) has the following Hamiltonian function

Hða; bÞ ¼ 1

2
b2 þ Xa2 þ 1

2
a4 ¼ h: ð6Þ

2.2 Existence of solitary waves in the unperturbed system

Lemma 1 For any negative X; system (5) admits two homoclinic orbits associated with

two solitary waves.

Proof The equilibrium points of system (5) are considered as follows by using dynamic

method. System (5) has three equilibrium points E1ð
ffiffiffiffiffiffiffiffi

�X
p

; 0Þ, E2ð�
ffiffiffiffiffiffiffiffi

�X
p

; 0Þ and E3ð0; 0Þ.
Let Ji be the Jacobian matrix at the corresponding Ei; i ¼ 1; 2; 3 and we obtain
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Ji ¼
0 1

�2X� 6a2 0

� �

It is easy to find that eigenvalues of Ji are k J1ð Þ ¼ k J2ð Þ ¼ �
ffiffiffiffiffiffi

4X
p

and k J3ð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffi

�2X
p

.

So E1 and E2 are centers and E3 is a saddle for any negative X. Hence there are two

homoclinic orbits T�
hom ¼ ½/�

h1ðtÞ;/�
h2ðtÞ� passing through the saddle point E3.

According to the bifurcation theory, system (5) has two solitary waves followed by two

homoclinic orbits: the positive solitary wave achieves its crest at a ¼
ffiffiffiffiffiffiffiffiffiffi

�4X
p

and the

negative solitary wave has the valley at a ¼ �
ffiffiffiffiffiffiffiffiffiffi

�4X
p

.

2.3 Existence of chaos in the perturbed system

Next, we will consider the existence of chaos in the perturbed Eq. (3) by using the Mel-

nikov method.

Consider that e is a small perturbed parameter, and the unperturbed homoclinic orbits

are written as ða; bÞ ¼ ða0ðxÞ; b0ðxÞÞ. According to the Melnikov method, a Melnikov

function for Eq. (3) is defined as

Mðx0Þ ¼
Z þ1

�1

d
ffiffiffiffi

N
p b0ðxÞa0ðxÞ

X

N

i¼1

cosðwiðx þ x0ÞÞdx

¼ dwi
ffiffiffiffi

N
p

X

N

i¼1

sinðwix0ÞIi;

ð7Þ

where Ii ¼
R þ1

0
a2

0ðxÞ cosðwixÞdx is a function of wi:

According to the Melnikov method, chaos occurs if Mðx0Þ ¼ 0 and M0ðx0Þ 6¼ 0 for some

x0. We observe that Mð0Þ ¼ 0 and M0ð0Þ ¼ dw2
i
ffiffiffi

N
p
PN

i¼1 Ii is a function of wi: The proof of the

existence of chaos will be completed if Ii [ 0: By Lemma 1, we can obtain the expression

of the homoclinic orbit as: a0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi

�2X
p

� sec hð
ffiffiffiffiffiffiffiffiffiffi

�2X
p

� xÞ: So we have

Ii ¼
Z þ1

0

ð
ffiffiffiffiffiffiffiffiffiffi

�2X
p

Þ2
sec h2ð

ffiffiffiffiffiffiffiffiffiffi

�2X
p

� xÞ cosðwixÞdx

¼ wi � p
2 sinh wi

2
ffiffiffiffiffiffiffi

�2X
p � p

� � [ 0:

From the facts above, we find that x0 ¼ 0 satisfies Eq. (7) for any positive integer N. The

proof of the existence of chaos is completed. h

2.4 Numerical simulations

To illustrate the existence of chaos, we will investigate the phase portraits and the Lya-

punov exponents of Eq. (3) numerically. Parameters are taken as X ¼ �0:9, d ¼ 0:2 with

the initial condition ðx0; y0Þ ¼ ð0:2; 3:9Þ:
The phase portraits are shown in Fig. 1. For the chosen N ¼ 1; 3; 5; 9, the broken

homoclinic orbits imply that Eq. (3) is chaotic.
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Remark 1 The sign of the parameter X has important value for the generation of chaos.

According to Lemma 1, we find that for negative X; the system has homoclinic orbits, and

the homoclinic orbits produce chaos in any periodic disturbance.

The Lyapunov exponents are shown in Fig. 2. All Lyapunov exponents are positive so

that the motion of system (3) is chaotic. The corresponding time series are shown in Fig. 3.

It also shows the existence of chaos.

Remark 2 Chaos is also influenced by different values of the parameter d. From Fig. 2b,

the Lyapunov exponent increases as d increase. Therefore the larger perturbation ampli-

tude, the higher degree of chaos.

Remark 3 The number of the interference items N has little effect on the chaos. From

Fig. 2, Lyapunov exponents do not change obviously for different values of N. The reason

may be that the number of perturbations increases while the perturbation energy remains

constant d2

2
:

Remark 4 The magnitude of the absolute value of the parameter X has an important effect

on the degree of chaos. There is a threshold X0 such that the degree of chaos is enlarged

when X\X0; that is, X is close to zero. X has little effect on the degree of chaos when its

value reaches and exceeds X0:

Fig. 1 Phase portraits of Eq. (4) for different values of N

Fig. 2 Lyapunov exponents for different values of X and d. a Lyapunov exponents versus X. b Lyapunov
exponents versus d
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3 Criteria for the chaos synchronization

We find that nonlinear Schrödinger equation can produce chaos in the conventional

periodic interference environment. It’s a quite good secure communication model. So it is

easy to choose the useful signal from chaotic signal. The more complex the chaotic signals,

the securer the communication is. Chaos synchronization by feedback control is applied to

increase the complexity of chaotic signal so that secure communication is achieved.

3.1 Construction of synchronization system

We rewrite Eq. (3) to an equivalent for matrix equation

_a ¼ AðxÞaþ f ðaÞ ð8Þ

with a ¼ ða1; a2ÞT 2 R2;

AðxÞ ¼
0 1

dðxÞ 0

� 	

; f ðaÞ ¼
0

�2a3
1

� 	

; ð9Þ

where dðxÞ ¼ �2Xþ e
P

N

i¼1

cosðwixÞ:

Now we construct a synchronization scheme for two equations with a linear state error

feedback controller u(x) as follows:

_a ¼ AðxÞaþ f ðaÞ;
_c ¼ AðxÞcþ f ðcÞ þ uðxÞ;

�

ð10Þ

where uðxÞ ¼ Kða� cÞ; which is the extreme case of drive/response mismatch. c ¼
ðc1; c2ÞT 2 R2 is the state variable and K 2 R2�2 denotes a constant control matrix.

Define the error variable e ¼ a� c. Since

Fig. 3 Time series of Eq. (4) for different values of N
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f ðaÞ � f ðcÞ ¼
0 0

�FðxÞ 0

� 	

e ¼ MðxÞe ð11Þ

with FðxÞ ¼ 2ða2
1 þ a1c1 þ c2

1Þ, we obtain a time-varying error system

_e ¼ _a� _c ¼ AðxÞ � K½ �e þ f ðaÞ � f ðcÞ ¼ AðxÞ þ MðxÞ � K½ �e: ð12Þ

Our aim is to select the control matrix K such that the trajectory aðxÞ trends to cðxÞ
regardless of the choice of the initial condition að0Þ and cð0Þ; that is,

lim
t!1

ek k ¼ lim
t!1

aðxÞ � cðxÞk k ¼ 0; ð13Þ

where �k k denotes Euclidean norm of a vector.

3.2 Sufficient conditions of chaos synchronization

For convenience, we denote that a matrix P[ 0 if each element of P is positive.

Theorem 1 The master–slave scheme Eq. (10) achieves global chaos synchronization if

there exist a symmetric matrix 0\P ¼ p11 p12

p21 p22

� 	

2 R2�2 and a control matrix K ¼

k11 k12

k21 k22

� 	

2 R2�2 such that the following inequalities are satisfied

h1 ¼� k11p11 � k21p12 þ p12j jð 2Xj j þ d
ffiffiffiffi

N
p
















þ 6m2Þ\0; ð14Þ

h2 ¼p12ð1 � k12Þ � p22k22\0; ð15Þ

4h1 � h2 [ ð1 � k12Þp11 � ðk11 þ k22Þp12 � k21p22j j þ ð 2Xj j þ d
ffiffiffiffi

N
p
















þ 6m2Þp22

h i2

:

ð16Þ

Proof Considering a quadratic Lyapunov function

VðeÞ ¼ eT Pe with P ¼
p11 p12

p21 p22

� 	

[ 0:

The derivative of V(e) with respect to time along the trajectory of the error Eq. (12) equals

_VðeÞ ¼ _eT Pe þ eTP _e ¼ ðAðxÞ þ MðxÞ � KÞe½ �T Pe þ eTP ðAðxÞ þ MðxÞ � KÞe½ �

¼ eT ðAðxÞ þ MðxÞ � KÞT
P þ PðAðxÞ þ MðxÞ � KÞ

� �

e:

It is noted that _VðeÞ\0 if

Y ¼ ðAðxÞ þ MðxÞ � KÞT
P þ PðAðxÞ þ MðxÞ � KÞ\0; 8t� 0: ð17Þ

According to the Lyapunov stability theory, the inequality (17) represents a sufficient

condition for global asymptotic stability of the linear time-varying error Eq. (12) at the

origin.

From Eqs. (9) and (11), we have
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Y ¼
�2k11p11 þ 2p12ðd� F � k21Þ ð1 � k12Þp11 � ðk11 þ k22Þp12 þ ðd� F � k22Þp22

ð1 � k12Þp11 � ðk11 þ k22Þp12 þ ðd� F � k22Þp22 2ð1 � k12Þp12 � 2k22p22

� 	

:

Since Y is symmetric, Y\0 if and only if

� 2k11p11 þ 2p12ðd� F � k21Þ\0; ð18Þ

2ð1 � k12Þp12 � 2p22k22\0; ð19Þ

4 ðd� F � k21Þp12 � k11p11½ � ð1 � k12Þp12 � k22p22½ �

� ð1 � k12Þp11 � ðk11 þ k22Þp12 þ ðd� F � k21Þp22½ �2 [ 0:
ð20Þ

From Fig. 1, we know that the trajectory of chaotic system (3) is bounded, which implies

that there exists a constant m[ 0 satisfying a1ðxÞj j\m for any x� 0. Hence, we have

dðxÞj j ¼ �2Xþ e
X

N

i¼1

cosðwixÞ






























� 2Xj j þ d
ffiffiffiffi

N
p
















e ¼ d

ffiffiffiffi

N
p

� 	

;

FðxÞj j ¼ 2 a2
1
þ a1c1 þ c2

1

� �

















� 6m2;

where m is positive integer. Again pii [ 0ði ¼ 1; 2Þ on the condition that P[ 0. Hence

�2k11p11 þ 2p12ðd� F � k21Þp22 � � 2k11p11 � 2p12k21 þ 2p12ðd� FÞj j � 2h1;

ð1 � k12Þp11 � ðk11 þ k22Þp12 þ ðd� F � k21Þp22j j

� p11ð1 � k12Þ � p12ðk11 þ k22Þ � k21p22j j þ p22ð 2Xj j þ d
ffiffiffiffi

N
p
















þ 6m2Þ:

Therefore the inequalities (18)–(20) hold if the inequalities (14)–(16) are satisfied. This

completes the proof. h

Corollary 1 The master slave scheme Eq. (10) achieves global chaos synchronization if

a control matrix K ¼ diag k1; k2f g and a symmetric positive definite matrix are selected

such that

k1 [
p12j jð 2Xj j þ d

ffiffiffiffi

N
p









þ 6m2Þ
p11

;

k2 [
p12

p22

;

ð21Þ

4 ð 2Xj j þ d
ffiffiffiffi

N
p
















þ 6m2Þp12 � k1p11

h i

p12 � k2p22½ �

� p11 � ðk1 þ k2Þp12 þ ð 2Xj j þ d
ffiffiffiffi

N
p
















þ 6m2Þp22

h i2

[ 0:

ð22Þ

Proof The inequalities (21)–(23) can be obtained according to the inequalities (14)–(16)

with k11 ¼ k1; k22 ¼ k2; and k12 ¼ k21 ¼ 0: The proof is completed. h

317 Page 8 of 11 J. Yin et al.

123



Corollary 2 The master slave scheme Eq. (10) achieves global chaos synchronization if a

control matrix K ¼ diag k; kf g and a symmetric positive definite matrix P ¼ p11 p12

p21 p22

� 	

are selected such that

k [ max k1; k2f g ¼ max
p12j jð 2Xj j þ d

ffiffiffiffi

N
p

þ 6m2










Þ
p11

;
p12

p22

( )

� 0; ð23Þ

4k2ðp11p22 � p2
12Þ þ 4 ð 2Xj j þ d

ffiffiffiffi

N
p
















þ 6m2Þp2

12

h i

� p2
11

� ð 2Xj j þ d
ffiffiffiffi

N
p
















þ 6m2Þp22

h i2

�2p11p22 2Xj j þ d
ffiffiffiffi

N
p
















þ 6m2

� �

[ 0

ð24Þ

Proof Letting k1 ¼ k2 ¼ k in the partial synchronization conditions Eqs (21) and (21), we

can obtain the inequality (24).

For k [ 0, given by inequality (24), we have

p11 � 2kp12j j þ ð 2Xj j þ d
ffiffiffiffi

N
p
















þ 6m2Þp22

h i2

� p11j j þ 2k p12j j þ ð 2Xj j þ d
ffiffiffiffi

N
p
















þ 6m2Þp22

h i2

:

ð25Þ

Hence the inequalities (24) can be obtained by the partial synchronization condition

Eq. (22) with k1 ¼ k2 ¼ k:

Since p11p22 � p2
12 [ 0, the solution k to inequality (24) exists. The proof is completed. h

Fig. 4 Chaos synchronization of system (12) for parameters X ¼ �0:5; d ¼ 0:2;N ¼ 1 with different
parameter k. a Error e1. b Error e2

Fig. 5 Chaos synchronization of system (12) for parameters k ¼ 13:2; d ¼ 0:2;N ¼ 1 with different
parameter X. a Error e1. b Error e2
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We select p12 ¼ 0 and p11 ¼ p22ð 2Xj j þ d
ffiffiffiffi

N
p









þ 6m2Þ[ 0 to construct a symmetric

positive definite matrix

P ¼ p22

2Xj j þ d
ffiffiffiffi

N
p









þ 6m2 0

0 1

 !

[ 0:

Using this matrix we can obtain the following algebraic synchronization criterion by

Eqs. (23) and (24)

K ¼ diag k; kf g where k [
2Xj j þ d

ffiffiffiffi

N
p









þ 6m2

2
[ 0:

3.3 Numerical simulations of chaos synchronization

Now we illustrate the performance of chaotic secure communication system by using

MATLAB.

Remark 5 We find that synchronization is closely linked with system parameters. The

larger the control parameter k is, or the closer the parameter X is to zero, or the smaller the

amplitude of the disturbance is, and the faster the system is synchronized. However, the

number of cosine waves of the interference term does not affect the synchronization speed

(Figs. 4, 5, 6).

4 Conclusions

In this paper, we have proposed and investigated a new chaotic secure communication

scheme based on the nonlinear Schrödinger equation. The sufficient criteria for chaos

synchronization of the master–slave system have been obtained. Numerical simulations

demonstrate the accuracy of those sufficient criteria. For the design of fiber-optic secure

communication, we can select a close-to-zero negative X and in order to obtain the greater

complexity of chaotic signal. Meanwhile, chaos synchronization can be achieved at a faster

rate under this condition. So the optimal choice is to take a small negative of the parameter

X (Fig. 7).

Fig. 6 Chaos synchronization of system (12) for parameters X ¼ �0:5; k ¼ 13:2;N ¼ 1 with different
parameter d. a Error e1. b Error e2
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