
A simple technique for constructing exact solutions
to nonlinear differential equations with conformable
fractional derivative

Melike Kaplan1 • Ahmet Bekir1 • Mehmet Naci Ozer1

Received: 7 March 2017 /Accepted: 11 July 2017 / Published online: 14 July 2017
� Springer Science+Business Media, LLC 2017

Abstract The modified simple equation method is an interesting technique to find new and

more general exact solutions to the fractional differential equations in nonlinear sciences.

In this paper, the method is applied to construct exact solutions of (2?1)-dimensional

conformable time-fractional Zoomeron equation and the conformable space-time fractional

EW equation.
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1 Introduction

Fractional calculus have been one of the most intensively developing areas of mathe-

matical analysis, including several definitions of fractional operators like Riemann-Liou-

ville, Caputo, and Grünwald-Letnikov. It implies the calculus of the differentiation and

integration whose order is given by a fractional number. The history of the fractional

derivatives goes back to the seventeenth century Diethelm (2010), Oldham and Spanier

(1974), Podlubny (1999).

Nonlinear fractional partial differential equations (NFDE) play an important role due to

its application in various fields of science not only in physics, but also in engineering,

optimal problem, finance, chemistry and biology. So obtaining solutions of these equations
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have become more important. Therefore, many new methods have been introduced. For

example, sub equation method Sahoo and Saha Ray (2015), ðG0=GÞ-expansion method

Bekir et al. (2016), Kudryashov method Demiray et al. (2014), modified Kudryashov

method Hosseini et al. (2017), Korkmaz (2017) trial equation method Gurefe et al. (2011),

homotopy analysis method Pandir et al. (2014), first integral method Cenesiz et al. (2017),

Eslami and Rezazadeh (2016) and so on Unal and Gokdogan (2017), Ekici et al. (2016),

Guner et al. (2017a, b).

The text below is organized in the following way. In Sect. 2, brief of conformable

fractional derivative is given. Then in Sect. 3, the modified simple equation method is

presented. In Sect. 4, applications of the method are given. Finally we give some

conclusions.

2 Brief of conformable fractional derivative

Recently, the authors Khalil et al. (2014) introduced a new simple well-behaved definition

of the fractional derivative called conformable fractional derivative. In this section, we

give the brief of conformable fractional derivative.

Definition 1 Suppose that f ¼ f ðtÞ be a function defined on the positive half space. Then,

the conformable fractional derivative of f of order a is defined as

Da
t f

� �
ðtÞ ¼ lim

e!0

f ðt þ et1�aÞ � f ðtÞ
e

ð1Þ

for all t[ 0, a 2 0; 1ð � and f : 0;1½ Þ ! Some useful properties can be listed as follows:

�Da
t ðaf þ bgÞ ¼ aðDa

t f Þ þ bðDa
t gÞ, for all a; b 2

�Da
t ðtpÞ ¼ ptp�a; for all p 2

�Da
t ðkÞ ¼ 0, for all constant functions f ðtÞ ¼ k

�Da
t ðfgÞ ¼ fDa

t ðgÞ þ gDa
t ðf Þ

�Da
t ðf =gÞ ¼

gðDa
t f Þ�f ðDa

t gÞ
g2

Additively, if f is differentiable, then Da
t ðf ÞðtÞ ¼ t1�a df

dt
ðtÞ.

Theorem Let f : ð0;1Þ ! be a differentiable and a�conformable differerentiable

function and also g be a differentiable function defined in the range of f. Then the following

property holds

Da
t ðf � gÞðtÞ ¼ t1�ag0ðtÞf 0ðgðtÞÞ: ð2Þ

Here 0 denotes the derivative with respect to a.

3 Method of finding solutions

In this section, we illustrate the main idea of the MSE method Kaplan et al. (2015). A

NFDE in the sense of the conformable derivative is given as follows

F u;Da
t u;D

a
xu;D

a
yu; :::

� �
¼ 0: ð3Þ
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By making use of the following transformation

uðx; y; tÞ ¼ uðnÞ; n ¼ k
xa

a
þ h

ya

a
� l

ta

a
; ð4Þ

where k, h and l are nonzero arbitrary constants. Equation (3) can be reduced to an

ordinary differential equation (ODE) as follows:

Qðu; u0; u00; u000; :::Þ ¼ 0: ð5Þ

Determine the positive integer m in the formula Eq. (6) by equating the highest power of

the nonlinear term(s) and the highest power of the highest order derivative of Eq. (5). We

seek the solution in the form

u nð Þ ¼
Xm

n¼0

an
#

0
nð Þ

# nð Þ

� �n
; am 6¼ 0: ð6Þ

Here # nð Þ is an unknown function. Substituting Eq. (6) into Eq. (5) and setting the

coefficients of
#
0
nð Þ

# nð Þ

h in
to be zero, one obtains an over-determined nonlinear algebraic

equation in anðn ¼ 0; 1; . . .;mÞ; # nð Þ and its derivatives, k and l. Finally substitution of

these values into Eq. (6) completes the determination of exact solutions of Eq. (3).

Note: Here # nð Þ is the auxiliary function of the modified simple equation method. It is

not a solution of any pre-defined or known function. Thus, the modified simple equation

method gives more fresh solutions.

4 Applications of the method

4.1 (211)-dimensional conformable time-fractional Zoomeron equation

Let us apply the above methodology to the (2?1)-dimensional conformable time-fractional

Zoomeron equation Zhou et al. (2015)

D2a
tt

uxy

u

� �
� uxy

u

� �

xx
þ2Da

t ðu2Þx ¼ 0; 0\a� 1; ð7Þ

which is a convenient model to display the novel phenomena associated with boomerons

and trappons. We substitute the following transformation into Eq. (7)

uðx; y; tÞ ¼ uðnÞ; n ¼ k
xa

a
þ h

ya

a
� l

ta

a
ð8Þ

and then the following ODE is obtained.

khl2
u00

u

� 	00
�k3h

u00

u

� 	00
�2klðu2Þ00 ¼ 0 ð9Þ

Integrating twice Eq. (9) with respect to n results the following equation

khðl2 � k2Þu00 � 2klu3 � au ¼ 0; ð10Þ

where a is a non-zero integration constant. Here the balancing number is found as m ¼ 1.

Therefore, the solution of Eq. (10) is of the form:
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uðnÞ ¼ a0 þ a1
#

0
nð Þ

# nð Þ

� 	
; ð11Þ

where a0 and a1 are constants to be determined and # nð Þ is an unknown function. Sub-

stituting Eq. (11) into Eq. (10), and vanishing all coefficients of each order of # nð Þ; we
obtain a set of over-determined algebraic equations as follows:

#0 nð Þ : �2kla30 � aa0 ¼ 0;

#1 nð Þ : �k3ha1#
000 � 6kla20a1#

0 þ khl2a1#
000 � aa1#

0 ¼ 0;

#2 nð Þ : 3k3ha1#00#0 � 6kla0a
2
1#

02 � 3khl2a1#
00#0 ¼ 0;

#3 nð Þ : �2k3ha1#
03 þ 2khl2a1#

03 � 2kla31#
03 ¼ 0:

ð12Þ

Solving these algebraic equations with the help of computer algebra, we obtain

a0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
� a

2kl

r
; a1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðl2 � k2Þ

l

r

; ð kj j 6¼ lj jÞ ð13Þ

and then we substitute Eq. (13) into the reminder of the system to find:

#ðnÞ ¼ c1 þ c2e

ffiffiffiffiffiffiffiffiffiffiffi
2a

khðk2�l2Þ

p
n
: ð14Þ

Then by substituting Eqs. (13) and (14), we get

uðnÞ ¼
ffiffiffiffiffiffiffiffiffi
�2a

kl

r
c1 þ c2 sinh

2an
khðk2�l2Þ

� �
� c2 cosh

2an
khðk2�l2Þ

� �

c1 þ c2 cosh
2an

khðk2�l2Þ

� �
� c2 sinh

2an
khðk2�l2Þ

� �

0

@

1

A; ð15Þ

where n ¼ kxþ hy� l t
a

a .

4.2 The conformable space-time fractional EW equation

The space-time fractional EW equation Korkmaz (2017)

Da
t uðx; tÞ þ aDa

xu
2ðx; tÞ � cD3a

xxtuðx; tÞ ¼ 0 ð16Þ

where a and c are positive parameters. This equation is used to model nonlinear dispersive

waves. The fractional EW is defined in the positive half space since conformal derivative is

defined only in positive domains.

Employing the transformation Eq. (17),

uðx; tÞ ¼ uðnÞ; n ¼ k
xa

a
� l

ta

a
; ð17Þ

Equation (16) can be reduced to an ODE. Then integrating this equation once with respect

to n by taking the integration constant to zero gives the following equation

�luþ aku2 þ clk2u00 ¼ 0 ð18Þ

According to MSE method, the exact solution of the reduced equation can be taken as
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uðnÞ ¼ a0 þ a1
#

0
nð Þ

# nð Þ

� 	
þ a2

#
0
nð Þ

# nð Þ

� 	2

: ð19Þ

Substitution of Eq. (19) the into Eq. (18) provides to obtain following algebraic equation

system:

#0 nð Þ : �la0 þ aka20 ¼ 0;

#1 nð Þ : clk2a1#000 þ 2aka0a1#
0 � la1#

0 ¼ 0;

#2 nð Þ : 2clk2a2#0#000 þ 2aka0a2ð#0Þ2 þ aka21ð#0Þ2

þ 2clk2a2ð#00Þ2 � 3clk2a1#
00#0 � la2ð#0Þ2 ¼ 0;

#3 nð Þ : 2aka1ð#0Þ3a2 � 10clk2a2ð#0Þ2#00 þ 2clk2a1ð#0Þ3 ¼ 0;

#4 nð Þ : aka22ð#0Þ4 þ 6clk2a2ð#0Þ4 ¼ 0:

ð20Þ

We find

a0 ¼ 0;
l

ak
ð21Þ

from the first equation of Eq. (20) and

a2 ¼ � 6ckl

a
; ð22Þ

from the last equation of Eq. (20). Thereafter, we substitute these values into the reminder

of the system. Let us deal with two cases arising out of different values of a0.

Case 1 When a0 ¼ 0, equation system (20) is reduced to:

#1 nð Þ : clk2a1#000 � la1#
0 ¼ 0;

#2 nð Þ : � 12c2l2k3

a
#0#000 þ aka21ð#0Þ2 � 12c2l2k3

a
ð#00Þ2

� 3clk2a1#
00#0 þ 6l2ct

a
ð#0Þ2 ¼ 0;

#3 nð Þ : �10clk2a1ð#0Þ3 þ 60c2l2k3

a
ð#0Þ2#00 ¼ 0:

ð23Þ

When we solve this system we obtain

a1 ¼ � 6
ffiffiffi
c

p
l

a
ð24Þ

and

#ðnÞ ¼ �c1
ffiffiffi
c

p
ke

� nffiffi
c

p
k þ c2: ð25Þ

Finally by substituting these values into Eq. (19), we verify the exact solution of the

conformable space-time fractional EW equation
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uðnÞ ¼ �
6

ffiffiffi
c

p
lc1 cosh n

k
ffiffi
c

p
� �

� sinh n
k
ffiffi
c

p
� �� �

a �k
ffiffiffi
c

p
c1 cosh n

k
ffiffi
c

p
� �

� sinh n
k
ffiffi
c

p
� �� �

þ c2

� �

�
6cklc21 cosh n

k
ffiffi
c

p
� �

� sinh n
k
ffiffi
c

p
� �� �2

a �k
ffiffiffi
c

p
c1 cosh n

k
ffiffi
c

p
� �

� sinh n
k
ffiffi
c

p
� �� �

þ c2

� �2
;

where n ¼ k xa

a � l t
a

a .

Case 2 Let us discuss the case a0 ¼ l
ak
. In this case equation system (23) takes the form:

#1 nð Þ : clk2a1#000 þ la1#
0 ¼ 0;

#2 nð Þ : � 12c2l2k3

a
#0#000 � 6l2ct

a
ð#0Þ2 þ aka21ð#0Þ2

� 12c2l2k3

a
ð#00Þ2 � 3clk2a1#

00#0 ¼ 0;

#3 nð Þ : �10clk2a1ð#0Þ3 þ 60c2l2k3

a
ð#0Þ2#00 ¼ 0:

ð26Þ

Then, we solve the system above to find

a1 ¼ � 6
ffiffiffiffiffiffi
�c

p
l

a
ð27Þ

and

#ðnÞ ¼ �c1
ffiffiffiffiffiffi
�c

p
ke

� nffiffiffi
�c

p
k þ c2: ð28Þ

Finally, we substitute the values of a0; a1; a2 and #ðnÞ into Eq. (19) to obtain:

uðnÞ ¼ l

ak
�

6
ffiffiffiffiffiffi
�c

p
lc1 cosh n

k
ffiffiffiffiffi
�c

p
� �

� sinh n
k
ffiffiffiffiffi
�c

p
� �� �

a �k
ffiffiffiffiffiffi
�c

p
c1 cosh n

k
ffiffiffiffiffi
�c

p
� �

� sinh n
k
ffiffiffiffiffi
�c

p
� �� �

þ c2

� �

�
6cklc21 cosh n

k
ffiffiffiffiffi
�c

p
� �

� sinh n
k
ffiffiffiffiffi
�c

p
� �� �2

a �k
ffiffiffiffiffiffi
�c

p
c1 cosh n

k
ffiffiffiffiffi
�c

p
� �

� sinh n
k
ffiffiffiffiffi
�c

p
� �� �

þ c2

� �2
;

where n ¼ k xa

a � l t
a

a .

5 Conclusions

In this work, we have discussed the new definition for traveling wave transformation and

new conformable fractional derivative to converting the NFDEs into the ODEs and its

applications to the (2?1)-dimensional conformable time-fractional Zoomeron equation and

the conformable space-time fractional EW equation. In this paper, different cases of the

balancing number are came up. The MSE method is applied to the model reveals soliton

solutions. Since the technique is direct and powerful it can be used to handle a variety of

FPDE’s which appears in applications in several branch of the nonlinear sciences. In
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additional to algorithms can be applied to obtain such soliton solutions so that a complete

picture can be drawn.
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