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Abstract In the present article, an Extended Trial Equation method has been applied to
derive the new exact solutions for generalized form of equations. We consider ZK equation
and ZK-BBM equation to demonstrate the features and credibility of the suggested tech-
nique. As a result, many new exact soliton solutions are obtained, which includes rational
solutions, soliton type solutions, and singular soliton solutions. These types of solutions
might perform significant role in engineering domains.
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1 Introduction

In recent years, Soliton solutions of nonlinear evolution equations plays an important part
in the study of nonlinear complex physical phenomena and one of the most empowering
and extremely active area of research investigation. Which appears in various fields of
physical sciences such as solid state physics, plasma physics, relativity, optical fibers,
biomechanics, and ecology. A search of direct approach for exact solutions of nonlinear
equations has become more and more attractive in recent years because of the availability
of computer symbolic systems like Maple or Mathematica.

Several methods including Auxiliary Equation (Kumar et al. 2008; Liu and Liu 2009),
Variational Iteration (Mohyud-Din et al. 2011), Solitary wave ansatz (Zayed and Al-
Nowehy 2016), Modified Simple Equation (Jawad et al. 2010; Zayed 2011; Zayed and
Hoda Ibrahim 2012, 2013), Trigonometric function series (Zhang 2008), Jacobi elliptic
function (Yan 2003), Sine—Cosine (Wazwaz 2004; Borhanifar et al. 2008, 2009, 2010; Filiz
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Tagcan 2009), first integral (Eslami et al. 2014; Mirzazadeh and Biswas 2014; Darvishi
et al. 2016), exp (—@(&))-expansion method (Khater 2016), Tanh (Wazwaz 2008a),
Extended Tanh (Khater et al. 2017; Zahran and Khater 2016; Lii and Chen 2015; Shukri
and Al-Khaled 2010), F-expansion (Yomba 2004, 2005; Wang and Li 2005a, b; Ren and
Zhang 2006; Zhang et al. 2006; Abdou 2007), Exp-function (Wu and He 2006; Bekir and
Boz 2008; Zhou et al. 2008; Borhanifar et al. 2009; Borhanifar and Kabir 2009; Guner and
Atik 2016), (%) -expansion method (Wang et al. 2008; Zhang et al. 2008; Liu 2005), Trail
Equation (Du 2010; Bulut 2013), Extended Trial Equation (Gurefe et al. 2013; Pandir
2014; Mirzazadeh et al. 2016) have been used to find appropriate solutions of nonlinear
partial differential equations. Inspired and motivated by the ongoing research in this area,
We apply Extended Trial Equation method on generalized ZK equation (gZK) (Wazwaz
2008b) and generalized ZK-BBM equation (Wazwaz 2005):
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where o and f are arbitrary constants. The ZK equation in two-dimension, was first derived
for describing weakly nonlinear ion-acoustic waves in a polarized lossless plasma. While
generalized ZK-BBM equation developed to the ZK Equation, imitative from standard
BBM equation, its normally called generalized form of ZK-BBM equation. Moreover, in
earlier literature the Extended Trial Equation method has not been applied to the above
suggested equations. Wazwaz (2008b) studied generalized ZK equation by utilizing the
Extended Tanh method. Wazwaz (2005) investigated generalized ZK-BBM equation via
the Sine—Cosine method and Tanh method etc. The main merits of Extended Trial
Equation method over the other techniques are that it gives more general solutions with a
few constants and presents a wider applicability for handling nonlinear evolution equations
(NLEEs) in a direct manner without any initial/boundary condition at the outset.

It is to be highlighted that, we use Extended Trial Equation method with complete
discrimination system for polynomials in which balance number is not constant as we have
in other methods. If the balance number is not constant then we get many solutions, but we
suppose some of these solutions. By this approach, we obtain the analytical solutions of ZK
and ZK-BBM equation with generalized evolution in mathematical physics, not use any
specific value for n to obtain solutions. In this article, we not only discussed basic features
of 1-soliton solution and singular soliton solution by analytically but also considered
numerically in the form of graphs, and results are compared by substituting different values
for n, and obtained different new solutions numerically.

The paper is organized as follows: in Sect. 2, we give the numerical Scheme of the
Extended Trial Equation method to obtain abundant exact solitary solutions. To demon-
strate the technique, generalized ZK equation and generalized ZK-BBM equation are
examined in Sect. 3. Furthermore, we finish up the paper in the last section

2 Extended Trial Equation method

The basic strategy of the technique can understand by the following strides:

@ Springer



Solitary wave solutions of some nonlinear PDEs arising in... Page 3 of 12 130

Step I. We assume that the given nonlinear PDE
H(uauhux7uyvuzvuxx7uyyuxt7utl7"') :07 (1)

Utilizing the wave transformation

N
u(xy, ..., xn,t) =u(n), n==» (ij — ct>,
=

where ¢ # 0 and 4 # 0. The wave transformation changes Eq. (1) into a nonlinear
ODE.

Q(u7u,77.uul7u/,::u2uﬁ7‘ . ) = 07 (2)

Step II. The solution of Eq. (1) has the following generalized form.

where
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(M)y’=Q(r) =

By Egs. (3) and (4), we have
o OO ()
i ' OWI) — i) o) [ -
(") = o ( (ZIT,F 1) +—F (Zl (i— Dl 2) (6)

i=0

In above equations, given ¢(I") and (I") are polynomials. Using Egs. (5) and (6) into
Eq. (2) yields a polynomial as:

2w(0)=o" 4+ -+ +¢=0. (7)

We can determine a formula of 0, ¢ and 6 by using the balance principle technique and
can find some estimations of 0, ¢ and 9.
Step II. Setting each coefficient of polynomial y(I') to zero to derive system of

algebraic equations:
0;,=0, i=0,..,s. (8)

Now we will determine the values of &y,..., &y, {o,...,{, and 1o, ..., 15, by simpli-
fication of the above system of equations.
Step IV. In the following step, we obtain elementary form of integral by reduction of

Eq. (4), as follows
) -
d)(F 9)
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where 7 is an arbitrary constant. We can classify the roots of ¢(I"), with the help of
complete discrimination system for polynomials. We solve Eq. (9), by using Maple or
Mathematica and acquire the solutions to Eq. (1).

3 Solution procedure
3.1 Generalized ZK equation

Generalized form of ZK equation (Wazwaz 2008b) read:

Ou L, ou Ou  u
5"‘!‘0(1/! 6_x+ﬁ<6_x3+6y26x) =0, n>1, (10)

Now, we utilize the wave variable u(x, y, r) = u(y), n = x + y — ct, Eq. (10) in three
independent variables is changing into the following ODE:

o

—cu(n) + u(n)""'+2p-—= =0. (11)

n+1

Obtained by integrating the resulting equation and considering each constant of inte-
gration to be zero. Now applying the following transformation

U= w, (12)

The transformation in Eq. (12) will transform Eq. (11) into the ODE
—cn®(n + Dw? +on*w’ —2B(n* — 1) (W) +2Bn(n + ww". (13)
In Eq. (13), when substitute Egs. (5), (6) and use balance principle technique, we get
0=2+0+9, (14)

If we take into consideration ¢ = 0,0 = 3 and 6 = 1, we can get solutions of Eq. (10),
as follows

(&GP + ST+ 4T + &)

(w')’= = : (15)
3 2
W = Tl<§1 + 2622;; +3&T ) 7 (16)

where (; # 0 and &; # 0. Individually, solving the algebraic equation system (8) with the
aid of Maple 2016, yields

3(B(n+2)(n+ 1)& + 2an*Eyt0) Z(B(n +2)(n+1)& + %anzlofo)ro

‘= (n? 4+ 3n+2)p12 L= (n? +3n+2)p7y ’
& =— an* ot o 2B(n+2)(n+ 1)&, + 6an*{yto
3 (n? +3n+2)B n2{y(n? + 3n +2) ’

& =& .00 = {o,70 = 10, T1 = T1,
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Substituting Eq. (17) into Egs. (4) and (9), we have

dar
) = VA [ e (18)
\/F +nrnl+nl+nr
where
Ao B 43nt2) (B4 2)(n+ )& + 20 pto)
an?t n0 tjan?{, ,
_ Zto(ﬂ(n +2)(n+ )&+ %omzcoro) R pn+2)(n+1)&
! t2an2{, b2 oan?{yt; ’
By integrating (18), we acquire the solutions to the (10) as:
+(n — 2\F 19
062
+(n—mny) =2 arctan — 2T (20)
V
A r— Vo —
+(n —no) = \/ \/ 2 VA% % > o (21)
Oﬂl—dz \/ —0(2—&-\/061—062

/A
+(n—1no) =2 F(p,l), o> o> s, (22)
o — a3

where
Blr* +3n+2) [ d
n n )
A=—""7—7—, F((ﬂ,l)/i,
an’ty ) V1 —1sin?w
. T—oa3 5 oa—o3
w = arcsin , 1P = .
Oy — 3 o — o3

Also oy, 0, a3 are solutions of the polynomial equation
P+ nl? 4+l +r=0 (23)

where r, = é ,rl = z‘ and ry = 2
Substituting the solutions given in Egs. (19)—(21) into (3) and (12), as follows

~2B(n+2)(n+ 1)& + 6an{yo
N n?{y(n® +3n+2)

I

Denoting 7 = 19 + 7104, and setting, respectively

S i—

47,A
u(x,y, 1) = r_+T—12 , (24)
(x+y—pt—mn)

@ Springer



130 Page 6 of 12 S. T. Mohyud-Din, A. Irshad

1 o — 0 "

u(x,y,t):{f+r1(o<2—oc1)[l—tanh2(:F§ 1 (x—f—y—pt—no))]}7 (25)

1 _ n
u(x,y,t) = {‘E—i— 7y (0 — ocz)cosech2 <§ ol Yl O(z(x +y —pt)) } , (26)

If we take 79 = —1104, and 1y = 0, for simplicity, then the solutions given in
Egs. (24)—(26) can be written in the following types:

Rational solution

2
2T A "
) = | 200 1)
X+y-—pt
1-Soliton solution
E
u(x,y, t) = 2 1 ) (28)
coshi[FG(x +y — pt
Singular soliton solution
E,
u(x,y, t) =" ) (29)
sinhin[G(x + y — pt]
where
1 1 1 Joyu —
Er=[mle-a), EB=le-u), G=5 . 1 2

Here G is called the inverse width of the solitons, p the velocity. While amplitudes of the
solitons represented by E; and E,. Hence, we can say that the soliton occurs for 7; > 0
(Figs. 1, 2).

3.2 Generalized ZK-BBM equation

Generalized form of ZK-BBM equation (Wazwaz 2005) read:

Ou Ou  O(u") o*u du
+——ua +ﬁ(6x26t+6y26x =0, n>1, (30)

ot ox ox

Fig. 1 Solution of Eq. (28) corresponding to the values n=2,n=3,n =4 from left to right with
Ei=4B=1,c=1
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Fig. 2 Solution of Eq. (29) corresponding to the values n =2,n =3,n=4 from left to right with
E=4B=1,c=1
Right now, we will make use of the travelling wave variable in (30)
“(xayaf):”(’ﬁ n=x+y—ct,

We get the desired equation by integration the transformed ODE and setting each
integration constant to zero.

d*u

(1= cJun) — au(n)"+p(1 —c)

u= wanl, (32)
Equation (31) becomes
(1=c)(n— 1w +aln—1)*w + B(1 —)(2 — n)(W)*+B(1 — c)(n — Dww".  (33)

In Eq. (33), when substitute Egs. (5), (6) and use balance principle technique, we get
0=2+0+9, (34)

If we consider ¢ = 0,0 =3 and 6 = 1, then

2 3 2

(W)= (&0 + 521;0 +&T+ &) 7 (35)
2

W — 2 (51 + 2522;; +3&T ) ’ (36)

where {; # 0, & # 0. Respectively, solving the algebraic equation system (8) using Maple
2016, we get

_l‘co(ro(n — 1)2(:0 - ﬁﬁfl) 6 — To(n — I)ZCO s

60 = 3 B'C% ) 2 ﬁTO )

- 2 (ro(n ~ 1% +%ﬁ‘51§1)T1 e 1279(n — 1)?Batg +n+ 1) + it (n+1) ’
3 bes 2 (n+ 1)(T0(” -1’ +%/3T151)

& Zfl,COZCO;TOZTO,ﬂ =11, (37)
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putting Eq. (37) into Egs. (4) and (9), we have

dr
£ n0) = VA | (38)
0 \/F3+r2F2+r1F+r0
where
A 3 goﬁfg 1 (Co(n* 1) To — ﬁT1§1)To
=3 ) n=—3
221 (Goln = 1’r0 + 1 Briy) 24 (Goln - Dro + 4 pricy)
1 & B2 3 (Co(n* 1)2T0+ﬁﬁf1)To
r == ) n == 3
20 (Goln = 1m0+ pricr) 20 (Goln = 1m0 +1pric )
By integrating (38), we obtain the solutions to the Eq. (30) as follows
1
£(n—1no) = 2\/27 (39)

VT

1
N

+(n—1ny) =24/ arctan F o > o, (40)
Oy — O Oy — o

A VI — o — o —
i(ﬂfﬂo): In ;
op—o |V =+ o — o

/A
i(’? - ’10) =2 F((P7 l)a oy > 0y > a3, (42)
oy — o3

oy > oy, (4])

where
3 Lob F do
T,

A:E 02 0 ; F((p,l)/f,
@ (Goln = 10 + 4 ) J VI P

. F—O(3 2 O — 03

w = arcsin , P= ,

Oy — 03 o — 03

Also oy, 0, a3 are solutions of the polynomial equation
F3+r2F2+r|F+r0:0, (43)
where r, = ? S = ? and ry = c—“
Substituting the solutions (39)—(41) into Eq. (3) and Eq. (32).Denoting T = 7o + 7,0,
and setting

_ 12‘50(n — 1)2(3aro +n+ 1)+ pén(n+1)
2 (”+1)(T0("_1)24’0 +%ﬂT151>

)

We find, respectively
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1

4 A n—1

T4 o . (44)
(x +y—mt —ng)

u(x,y, 1) =

1
o — o T

u(x,y,t)z{f—l—rl(az—cxl){l—tanhz(q:% = (x+y—mt—no))]} . (43)

o — o
A

u(x,y,t) = {f+ 71 (0 — oy )cosech? (% (x+y— mt)> }ﬁ, (46)

If we take 79 = —1104, that is T = O,then the solutions given in Egs. (44)—(46) can be
written in the following types:

Rational solution

2
2vVTA T
) = | 20 @)
xX+y—mt
1-Soliton solution
E;
u(x,y,1) = —— ; (48)
coshi1[FG(x +y — mt]
Singular soliton solution
E;
M(X,)’a t) =Tz ) (49)
sinhi=1|G(x + y — mt]
where
- i 1 Jog — o
Ey = [t1(0a — )], Ey=[ti(e —ou)]T, G :E 1 A 2

Here G is called the inverse width of the solitons, m the velocity. While amplitudes of
the solitons represented by E, and E,. Hence, we can say that the soliton occurs for
71 > 0 (Figs. 3, 4).

Fig. 3 Solution of Eq. (48) corresponding to the values n =2,n =3 and n = 4 from left to right with
Ei=4B=1,c=1
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Fig. 4 Solution of Eq. (49) corresponding to the values n =2,n =3 and n = 4 from left to right with
E;y=4B=1,c=1

4 Conclusions

In this work, we obtained more general wave solutions of generalized ZK equation and
generalized ZK-BBM equation by using the Extended Trial Equation method. Through this
technique some renowned equations were tackled. The overall performance of the
Extended Trial Equation methods reliable and effective. Furthermore, our obtained results
are in more general form. With the support of Maple 2016, we have guaranteed the
correctness of the obtained results by substituting them back into the nonlinear partial
differential equations. The solutions acquired in this article might have significant impact
on future researchers.

Acknowledgement Authors are highly grateful to the unknown referees for their valuable comments.
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