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Abstract The complex Ginzburg–Landau equation with cubic nonlinearity is an ubiqui-

tous model for the evolution of slowly varying wave packets in nonlinear dissipative

media. In this article the exact solutions for complex Ginzburg–Landau equation using first

integral method and ðG0

G
Þ-expansion method are obtained. These methods can be applied to

non-integrable equations as well as to integrable ones.

Keywords First integral method � ðG0

G
Þ-Expansion � Nonlinear partial differential

equations � Exact solutions � The complex Ginzburg–Landau equation

1 Introduction

The ð1 þ 1Þ dimensional complex Ginzburg–Landau equation (CGLE) describes the

evolution of a complex-valued field u ¼ uðx; tÞ by

ut þ a0ux ¼ cuþ ða1 þ ia2Þuxx � ðb1 þ ib2Þjuj2u:

It has a long history in physics as a generic amplitude equation near the onset of insta-

bilities that lead to chaotic dynamics in fluid mechanical systems as well as in the theory of

phase transitions and superconductivity. In this role these types of equations had

remarkable success in describing evolution phenomena in a broad range of physical sys-

tems, from fluids to optics. More recently, CGLE has been proposed and studied as a model
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for turbulent, dynamics in nonlinear partial differential equations. It is a particularly

interesting model in this respect because it is a dissipative version of the nonlinear

Schrodinger equation, a Hamiltonian equation which can possess solutions that form

localized singularities in finite time. The fact that the CGLE reduces to a relaxational

equation in one limit and to a Hamiltonian equation in another limit makes the equation

very interesting from a theoretical point of view.

The CGLE is one of the universal models used in describing dissipative systems. Examples

of its application include pulse generation by passively mode-locked soliton lasers (Ippen

1994), signal transmission in all-optical communication lines (Bakonyi et al. 2002), traveling

waves in binary fluid mixtures (Kolodner 1991), as well as pattern formation in many other

physical systems (Cross and Hohenberg 1993). Depending on the system parameters, the

CGLE has different types of solutions, including solitons, fronts (Akhmediev and Ankiewicz

1997), and pulsating solitons (Sakaguchi and Malomed 2001).

Over the last few years, the soliton solutions of picosecond of the CGLE and their potential

applications in optical communication have been the subject of intense investigation. With

the rapid development of nonlinear sciences based on computer algebraic system, many

effective methods have been presented to solve nonlinear partial differential equations

(NPDEs) such as, first integral method (Darvishi et al. 2016), the Exp-function method

(Gurefe and Misirli 2011), Bernouli’s approach (Mirzazadeh et al. 2015), sech–tanh method

(Triki and Wazwaz 2009), tanh method (Wazwaz 2006), sine–cosine method (Akram and

Batool 2017; Wazwaz 2004), the ðG0

G
Þ-expansion method (Akram and Batool 2017; Zhang

2009), and so on. Feng (2002) first proposed the first integral method in solving Burgers–KdV

equation which is based on the ring theory of commutative algebra. The basic idea of this

method is to construct a first integral with polynomial coefficients of an explicit form to an

equivalent autonomous planar system using the division theorem. The ðG0

G
Þ-expansion method

is developed by Wang et al. (2008) and successfully used by many authors for finding exact

solutions of partial differential equations in mathematical physics.

The current paper suggests the first integral method and ðG0

G
Þ-expansion method to find

the exact solutions of nonlinear complex Ginzburg Landau equation. The format of this

paper is as follows. In the next section description of algorithms for solving nonlinear

partial differential equations by utilizing the first integral method and ðG0

G
Þ-expansion

method have been given. In Sect. 3, the solutions of complex Ginzburg Landau equation

has been obtained using these method. The last section concludes the main findings.

2 Algorithms for the methods

Consider nonlinear partial differential equation of the form, as

Pðu; ux; ut; uxx; uxt; . . .Þ ¼ 0; ð1Þ

where u ¼ uðx; tÞ is the solution of nonlinear partial differential equation (1).

Seek the wave variable, to convert partial differential equation Eq. (1) into ordinary

differential equation, as

uðx; tÞ ¼ uðnÞ; n ¼ kxþ ct; ð2Þ
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where k and c are arbitrary constants such that the nonlinear partial differential Eq. (1) can

be turned into an ordinary differential equation, as

Qðu;�cu0; ku0; c2u00; k2u00;�kcu00; . . .Þ ¼ 0; ð3Þ

where prime denotes the derivatives with respect to n.

2.1 The first integral method

Step 1 Suppose the solution of Eq. (3) can be written, as

uðx; tÞ ¼ f ðnÞ: ð4Þ

Introducing a new independent variable, as

XðnÞ ¼f ðnÞ;

YðnÞ ¼ of ðnÞ
on

:
ð5Þ

Step 2 Under the conditions of Step 1, Eq. (3) can be converted to a system of nonlinear

ordinary differential equations, as

X0ðnÞ ¼ YðnÞ;
Y 0 ¼ FðXðnÞ; YðnÞÞ:

ð6Þ

By the qualitative theory of ordinary differential equations (Ding and Li 1996), if the

integrals to Eq. (6) can be found under the same conditions, then the general solutions to

Eq. (6) can be constructed directly. By applying the Division theorem for two variables in

the complex domain C which is based on the Hilbert-Nullstellensatz theorem (Bourbaki

1972), one first integral to Eq. (6) can be obtained which reduces Eq. (3) to a first order

integrable ordinary differential equation. An exact solution to Eq. (1) is then obtained by

solving this equation directly.

Theorem 1 (Division Theorem) Suppose that P(w, z) and Q(w, z) are polynomials in

C½w; z�, and P(w, z) is irreducible in C½w; z�. If Q(w, z) vanishes at all zero points of

P(w, z), then there exists a polynomial G(w,z) in C½w; z� such that

Qðw; zÞ ¼ Pðw; zÞGðw; zÞ.

Theorem 2 (Hilbert-Nullstellensatz Theorem (Bourbaki 1972)) Let K be a field and L be

an algebraic closure of K. Then:

(i) Every ideal c of K½X1;X2; . . .;Xn� not containing 1 admits at least one zero in Ln.

(ii) Let x ¼ xðx1; x2; . . .; xnÞ and y ¼ yðy1; y2; . . .; ynÞ be two elements of Ln. For the

set of polynomials of K½X1;X2; . . .;Xn� zero at x to be identical with the set of

polynomials of K½X1;X2; . . .;Xn� zero at y, it is necessary and sufficient that there

exists a K-automorphism S of L such that yi ¼ SðxiÞ for 1� i� n.

(iii) For an ideal a of K½X1;X2; . . .;Xn� be maximal, it is necessary and sufficient that

there exists an x in Ln such that a is the set of polynomials of K½X1;X2; . . .;Xn�
zero at x .

(iv) For a polynomial Q of K½X1;X2; . . .;Xn� to be zero on the set of zeros in Ln of an

ideal c of K½X1;X2; . . .;Xn� it is necessary and sufficient that there exists an

integer m[ 0 such that Qm 2 c.
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2.2 The ðG0

G
Þ-expansion method

Step 1 According to the ðG0

G
Þ-expansion method (Wang et al. 2008), the solution of Eq. (3)

can be expressed by a polynomial in ðG0

G
Þ, as

uðnÞ ¼
Xi¼m

i¼1

ai
G0

G

� �i

þa0; am 6¼ 0; ð7Þ

where a0 and ai for i ¼ 1; 2; . . .;m are constants to be determined later, G ¼ GðnÞ satisfies

a second order linear ordinary differential equation,

d2GðnÞ
dn2

þ k
dGðnÞ
dn

þ lGðnÞ ¼ 0; ð8Þ

where k and l are real constants.

Step 2 The positive integer m can be determined by balancing the highest derivative

term with the nonlinear term in Eq. (3). Substituting Eq. (7) together with Eq. (8) in

Eq. (3) yields an algebraic equation involving powers of ðG0

G
Þ. Equating the coefficients of

each power of ðG0

G
Þ to zero gives a system of algebraic equations for k; c; k; l; and ai.

Step 3 Substituting ai; k; l; k; c and general solution of Eq. (8) into Eq. (7). Depending

on the sign of the discriminant ðk2 � 4lÞ, the solution of Eq. (1) can be obtained.

3 Exact solution by first integral method

In this section, the new exact solutions of (1?1)D complex Ginzburg–Landau equation

ut þ a0ux ¼ cuþ ða1 þ ia2Þuxx � ðb1 þ ib2Þjuj2u; ð9Þ

has been obtained.

The following transformation is introduced, as

u ¼ vðnÞeig; g ¼ pxþ st; n ¼ kxþ ct: ð10Þ

where p, s and c are constants to be determined (Fig. 1).

Substituting the transformation (10) into Eq. (9), the real part and the imaginary part,

respectively, can be separated, as

k2a1v
00 � ðcþ ka0 þ 2a2pkÞv0 þ ðc� a1p

2Þv� b1v
3 ¼ 0;

k2a2v
00 þ 2pa1kv

0 � ðsþ pa0 þ p2a2Þv� b2v
3 ¼ 0:

�
ð11Þ

Under the constraint conditions:

r ¼ cþ ka0 þ 2pka2

a1k2
¼ � 2pka1

a2k2
;

l ¼ c� p2a1

a1k2
¼ � sþ pa0 þ p2a2

a2k2
;

m ¼ b1

a1k2
¼ b2

a2k2
;
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Equation (11) can be transformed to the following nonlinear ordinary differential equation,

as

v00 � rv0 þ lv� mv3 ¼ 0: ð12Þ

Let XðnÞ ¼ vðnÞ; YðnÞ ¼ v0ðnÞ; then Eq. (12) can be reformulated as a planar dynamic

system

dX

dn
¼ YðnÞ;

dY

dn
¼ rYðnÞ � lXðnÞ þ mX3ðnÞ:

8
>><

>>:
ð13Þ

According to the first integral method, suppose that XðnÞ and YðnÞ are nontrivial solutions

of Eq. (13), and

QðY ;XÞ ¼
Xm

i¼0

aiðXÞYi;

is irreducible polynomial in C½X; Y �, such that

Q½YðnÞ;XðnÞ� ¼
Xm

i¼0

aiðXðnÞÞYiðnÞ ¼ 0; ð14Þ

where aiðXÞði ¼ 0; 1; 2; . . .;mÞ, are polynomials of X and amðXÞ 6¼ 0. Equation (14) is

called the first integral to Eq. (13). Applying the division theorem, there exists a poly-

nomial gðXÞ þ hðXÞY in the complex domain C½X; Y �, such that

dQ

dn
¼ oQ

oX

dX

dn
þ oQ

oY

dY

dn
¼ ðgðXÞ þ hðXÞYÞ

Xm

i¼0

aiðXÞYi: ð15Þ

Fig. 1 3D graphics of real part of u1 with t[ 0
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Suppose that m ¼ 1 in Eq. (14), and then by equating the coefficients of Yi, ði ¼ 0; 1; 2Þ on

both sides of Eq. (15), following equations can be obtained, as

Y0 : a1ðXÞðlX þ mX3Þ ¼ a0ðXÞgðXÞ; ð16Þ

Y1 : _a0ðXÞ þ ra1ðXÞ ¼ a0ðXÞhðXÞ þ a1ðXÞgðXÞ; ð17Þ

Y2 : _a1ðXÞ ¼ a1ðXÞhðXÞ: ð18Þ

Since aiðXÞ; ði ¼ 0; 1Þ are polynomials in X, so from Eq. (18) it is conclude that a1ðXÞ is a

constant and hðXÞ ¼ 0. For simplicity, take a1ðXÞ ¼ 1. Then balancing the degrees of g(X)

and a0ðXÞ in Eq. (17), it is concluded that deg(g(X)) = 1 only. Assume that

gðXÞ ¼A1X þ B0;

a0ðXÞ ¼A1

X2

2
þ ðB0 � rÞX þ A0; ðA1 6¼ 0Þ

where A1;B0 and A0 are all constants to be determined.

Substituting a0ðXÞ and g(X) in Eq. (16) and equating the coefficients of Xi; ði ¼
0; 1; 2; 3Þ to zero, the following system of nonlinear algebraic equations are obtained, as

X0 : m� A2
1

2
¼ 0 ð19Þ

X1 :
3

2
A1B0 � rA1 ¼ 0 ð20Þ

X2 : B2
0 � l� rB0 þ A0A1 ¼ 0 ð21Þ

X3 : A0B0 ¼ 0 ð22Þ

Using Eq. (12) and solving the system of Eqs. (19–22), simultaneously the following

nontrivial solutions can be obtained, as

A1 ¼ �
ffiffiffiffiffiffi
2m

p
; A0 ¼ 0; B0 ¼ 2r

m
: ð23Þ

Taking the solution (23) into account, Eq. (14) can be written, as

YðnÞ ¼ �
ffiffiffiffiffiffi
2m

p

2
X2 þ r

3
X: ð24Þ

Combining Eq. (24) with the system given by Eq. (14), following expression can be

obtained, as

XðnÞ ¼ 2r

2C1re
�rn

3 � 3
ffiffiffiffiffiffi
2m

p ; ð25Þ

where C1 is arbitrary constant. Combining Eq. (25) with Eq. (13), the exact solution to

Eq. (9) can be written, as

u1ðx; tÞ ¼
2reig

2C1re
�rn

3 þ 3
ffiffiffiffiffiffi
2m

p ð26Þ
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and

u2ðx; tÞ ¼
2reig

2C1re
�rn

3 � 3
ffiffiffiffiffiffi
2m

p ð27Þ

where g ¼ pxþ st and n ¼ kxþ ct (Fig. 2).

3.1 Exact solution by ðG0

G
Þ-expansion method

Balancing the order of v00 and v3 in Eq. (12), one can found the value of m ¼ 1, therefore

the solution takes the form, as

vðnÞ ¼ a0 þ a1

G0

G

� �
; a1 6¼ 0: ð28Þ

The following algebraic equations are obtained from Eqs. (8), (12) and (28), as

G0

G

� �3

: 2a1 � ma3
1 ¼ 0;

G0

G

� �2

: 3ka1 þ ra1 � 3ma0a
2
1 ¼ 0;

G0

G

� �1

: 2a1lþ a1k
2 þ ra1kþ la1 � 3ma2

0a1 ¼ 0;

G0

G

� �0

: a1klþ ra1lþ la0 � ma3
0 ¼ 0:

Solving these algebraic equations with the aid of Maple the following solution can be

obtained, as

Fig. 2 3D graphics of real part of u2 with t[ 0
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a0 ¼ ka1

2
þ ra1

6
; a1 ¼ a1; l ¼ k2

4
� r2

36
:

Using Eq. (28) and the solution of Eq. (8), three types of traveling wave solutions of

Eq. (1) can be calculated (Fig. 3).

If k2 � 4l[ 0, hyperbolic function solution is obtained, as

u3ðnÞ ¼
eigra1

6
1 þ

A1 sinh rn
6

� �
þ A2 cosh rn

6

� �

A1 cosh rn
6

� �
þ A2 sinh rn

6

� �
( )" #

: ð29Þ

If k2 � 4l\0, the trigonometric function solution is obtained, as

u4ðnÞ ¼
eigra1

6
1 þ i

�A1 sin rin
6

� �
þ A2 cos rin

6

� �

A1 cos rin
6

� �
þ A2 sin rin

6

� �
( )" #

: ð30Þ

If k2 � 4l ¼ 0, rational function solution is obtained, as

u5ðnÞ ¼
a1e

igC2

C1 þ C2n
: ð31Þ

4 Conclusion

The present analysis indicates that the first integral method and ðG0

G
Þ-expansion method are

effective and efficient for solving nonlinear complex Ginzburg Landau equations. The

obtained solutions may be worthwhile for explanation of some physical phenomena

accurately. Different from other methods, the first integral method and ðG0

G
Þ-expansion

Fig. 3 3D graphics of real part of u3 with t[ 0
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method have many advantages, which is the avoidance of a great deal of complicated and

tedious calculations resulting in more exact and explicit traveling wave solutions with high

accuracy. Apart from the elemental application, the exact solutions of nonlinear partial

differential equations aid the numerical solvers to assess the correctness of their results and

assist them in stability analysis. The solutions presented here are found for the first time

and they might serve as seeding solutions for a wider class of localized structures which, no

doubt exist in these systems.
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