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Abstract The aim of this paper is to introduce a novel study of obtaining an analytical
solutions to the modified dispersive water-wave system. An analytical technique based on
the improved tan(¢/2)-expansion method (ITEM) is extended to handle such a system.
Description of the method is given and the obtained results reveal that the ITEM is a new
significant method for exploring nonlinear partial differential models. By using this
method, exact solutions including the hyperbolic function solution, traveling wave solu-
tion, soliton solution, rational function solution, and periodic wave solution of this system
of equations have been obtained. Moreover, by using Matlab, some graphical simulations
were done to see the behavior of these solutions.

Keywords Improved tan(¢/2)-expansion method - Modified dispersive water-wave
system - Analytical solutions - Soliton wave solution
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1 Introduction

Partial differential equations (PDEs) find special applicability within many scientific and
mathematical disciplines. Moreover, nonlinear partial differential equations (NPDEs) are
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widely used to describe complex phenomena in various fields of sciences. For this
purpose, one way is using integration methods for finding the exact solutions. A large
variety of physical, chemical, and biological phenomena are governed by nonlinear
partial differential equations. One of the most exciting advances in the field of non-
linear science and theoretical physics is the development of methods to look for exact
solutions of NPDEs. One of the most recent approaches is using semi-analytical
methods (Dehghan and Manafian 2009; Dehghan et al. 2010a, b; Rashidi et al. 2013) or
analytical methods (Biswas 2009; Dehghan et al. 2011a, b; Manafian 2015; Manafian
and Lakestani 2015a, b, ¢, 2016a, b; Manafian et al. 2016; Baskonus et al. 2016;
Demiray 2017). So instead of using current models of partial differential equations, we
can transfer PDEs to ordinary differential equations. Hence there occurs a need to use
solitary wave variable that would appropriately transforms PDEs to ODEs and solve
them. In this paper, we apply the ITEM to solve the modified dispersive water-wave
system. Many research papers dealing with analytical methods exists in open literatures
and some of them are reviewed and cited here for better understanding of the physical
problems. Dehghan et al. (2010a) have used the homotopy analysis method for solving
nonlinear fractional PDEs. HAM has been used for finding appropriate solutions for the
Zakharov—Kuznetsov equations with fully nonlinear dispersion (Nawaz et al. 2013).
Hasseine et al. (2013), have developed analytical solutions of the particle breakage
using the population balance equation in batch and continuous flow systems. Authors of
Dehghan and Manafian (2009) and Dehghan et al. (2010b) have applied the homotopy
perturbation method and variational iteration method for variable coefficients fourth-
order PDEs and Fitzhugh—Nagumo equation respectively. Rashidi et al. (2013) have
studied heat transfer in a second-grade fluid through a porous medium with the mod-
ified differential transform method. Exp-function method (EFM) was used to solve
PDEs arising in biology and population genetics and mathematical physics (Dehghan
et al. 2011a, b). Also, in Manafian and Lakestani (2015a) and Manafian (2015), EFM
was utilized to Biswas—Milovic equation for Kerr, power, parabolic and dual parabolic
law nonlinearities. The solitary wave ansatz was used to integrate the K(m, n) equation
having time-dependent damping and dispersion coefficients by Biswas (2009). In
Manafian and Lakestani (2015b), the (G'/G)-expansion method was studied for solving
Burgers, Fisher, Huxley and combined forms of these equations. Authors of Manafian
and Lakestani (2015¢); Manafian et al. (2016); Manafian and Lakestani (2016a, b, c);
Manafian (2016), have solved the generalized Fitzhugh—Nagumo equation with time-
dependent coefficients, Biswas—Milovic equation for Kerr law nonlinearity, (2+41)-di-
mensional Zoomeron, the Duffing and the SRLW equations, Tzitzéica type nonlinear
evolution equations, Schrodinger type nonlinear evolution equations and Kundu—Eck-
haus equation respectively by tan(¢/2)-expansion method. Baskonus and Bulut (2016a)
and Baskonus et al. (2016) have used the Bernoulli sub-equation function method for
solving the for (241)-dimensional Boiti—-Leon—Pempinelli systems and Zakharov-Kuz-
netsov equation with power law nonlinearity. Moreover, the improved Bernoulli sub-
equation function method has been applied for the (2+1)-dimensional dispersive long
water-wave system by Bulut and Baskonus (2016). Baskonus et al. (2016b) have
obtained the exact solutions by the modified exp(—Q(&)) expansion function method for
structures of longitudinal wave equation in a magneto-electro-elastic circular rod.
Finally, in Baskonus and Bulut (2016¢) the sine-Gordon expansion method has been
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proposed for obtaining solutions of the system of equations for the ion sound and
Langmuir waves. Based on the idea of the homogeneous balance method the exact
solutions of nonlinear partial differential equations have been obtained by Fan and
Zhang (1998). For constructing multiple travelling wave solutions of nonlinear partial
differential equations has been used the extended tanh-function method by Fan (2000).
Also, Fan (2000) used the extended tanh method to obtain more travelling wave
solutions for two generalized Hirota—Satsuma coupled KdV systems.

In this paper, we consider the modified dispersive water-wave system as follows (Huang
2009; Wen and Xu 2013)

Uyp + Uy — 2V — (uz)Xy =0, v —ve—2wv),=0. (1.1)

Huang (2009) has obtained a general solution with three arbitrary functions for system
(1.1) by means of the WTC truncation method, special types of periodic folded waves
are derived. Also, Wen and Xu (2013) have give multiple soliton solutions and fusion
interaction phenomena for system (1.1) by means of Backlund transformation and the
Hirota bilinear method. In Liu et al. (2008), method of bifurcation of planar dynamical
systems and method of numerical simulation of differential equations are employed to
investigate the modified dispersive water wave equation. System (1.1) can model
nonlinear and dispersive long gravity waves traveling in two horizontal directions on
shallow waters of uniform depth, it also can be derived from the well-known
Kadomtsev—Petviashvili (KP) equation using the symmetry constraint (Lou and Hu
1997). Tang et al. (2002) and Tang and Lou (2003) have derived abundant propagating
localized excitations with the help of Painlevé-Bicklund transformation and a multi-
linear variable separation approach. Li and Zhang (2004) have derived many new types
of non-traveling solutions have been obtained by a further generalized projective
Riccati equation approach. Moreover, in Zheng et al. (2005), have obtained some
nonpropagating and propagating solitons by means of the extended mapping approach.
Ali et al. (2015) have described the propagation of surface water waves in a uniform
channel by obtaining the solitary wave and topological soliton solutions. Meng et al.
(2012) have modeled the propagation of the long weakly nonlinear and weakly dis-
persive surface waves of variable depth in shallow water by using of the generalized
dispersive water-wave system. In Liu et al. (2008), the method of bifurcation of planar
dynamical systems and method of numerical simulation of differential equations are
employed to investigate the modified dispersive water wave equation. Ma (2002)
presented a novel class of explicit exact solutions to the Korteweg-de Vries (KdV)
equation in the bilinear form. Also, Ma and Maruno (2004) used a set of coupled
conditions consisting of differential-difference equations to solve the Toda lattice
equation. Authors of Ma and You (2004a) utilized the Wronskian determinant to solve
the KdV equation in the bilinear form. Ma and Fuchssteiner (1996) presented two
ansitze methods for obtaining explicit traveling wave solutions to a Kolmogorov—
Petrovskii—Piskunov equation. Constructing rational solutions to the Toda lattice
equation through the Casoratian formulation have been made by Ma and You (2004b).
Moreover, Ma et al. (2007) introduced Frobenius integrable decompositions for partial
differential equations. Explicit exact solution of a generalized KdV equation have been
investigated by Ma and Zhou (1997). Mohyud-Din et al. (2012a) presented a numeri-
cal solution of a family of generalized fifth-order KdV equations using a meshless
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method of lines. Authors of Mohyud-Din et al. (2009a) applied the He’s polynomials to
investigate propagating traveling solitary wave solutions of seventh order general-
ized KdV equations. Ensuring increased and sustainable biomass production is critical
for European countries in Sabattia et al. (2014). The homotopy perturbation method is
used for obtaining soliton solution of the Kaup—Kupershmidt equation by Mohyud-
Din et al. (2011a). Also, authors of Mohyud-Din et al. (2011b) have used the homotopy
perturbation method to obtain numerical soliton solution of the improved Boussinesq
equation. Moreover, Mohyud-Din et al. (2012b) applied Exp-function method to con-
struct generalized solitary and periodic solutions of Fitzhugh-Nagumo equation.
Alam et al. (2014) constructed abundant traveling wave solutions involving parameters
to the Boussinesq equation by means of the novel (G'/G)-expansion method. Also,
Mohyud-Din et al. (2010a) have used the exp-function and variational iteration meth-
ods for re-formated partial differential equations. The exp-function method has
been tested on the modified Zakharov—Kuznetsov and Zakharov—Kuznetsov-Modified-
Equal-Width equations by Noor et al. (2010b). In Mohyud-Din et al. (2009b), HPM and
VIM and in Noor etal. (2008) and Mohyud-Din et al. (2010c) Exp-function
method have been applied for some partial differential equation. The paper is orga-
nized as follows: in Sect. 2, we describe the ITEM. In Sect. 3, we examine the
modified dispersive water-wave system with method introduced in Sect. 2. Moreover, in
Sect. 4, we give discussion and remark of the solutions. Also conclusion is given in
Sect. 5.

2 Description of the ITEM

The ITEM is well-known analytical method which was first presented and developed in
Manafian et al. (2016).

Step 1 We suppose that given nonlinear partial differential equation for u(x,t) to be in
the form

N (u, gty Uy, iy, ..) = 0, (2.1)
can be reduced to an ODE
Qu,ut, —pd 1P, ...) = 0, (2.2)

by the transformation ¢ = x — ur is the wave variable. Also, y is constant to be determined
later.
Step 2 Suppose the traveling wave solution of Eq. (2.2) can be expressed as follows:

m m

> Adlp +tan(¢/2)]'+ ) Bilp + tan(¢/2)] 7, (2.3)

k=0 k=1

<
~
e
)
I
w”
S
<
=
Il

where A;(0 <k <m) and Bi(1 <k<m) are constants to be determined, such that A, #
0,B,, # 0 and ¢ = ¢(&) satisfies the following ordinary differential equation:

¢'(&) = asin(¢(&)) + beos(d(&)) +c. (2.4)
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We will consider the following special solutions of Eq. (2.4):

Family 1:

Family 2:

Family 3:

Family 4:

Family 5:

Family 6:
Family 7:
Family 8:
Family 9:

Family 10:

Family 11:
Family 12:

Family 13:
Family 14:
Family 15:

Family 16:
Family 17:

Family 18:
Family 19:

When A = a? +b> —c* <0 and b — ¢ # 0, then

(&) *2tan’1{b - r‘/jtfxtan(@f)}.

When A =a®> +b*> —c?>0and b — ¢ # 0, then

$(&) = 2tan”! [ﬁJr%tanh(‘/Tzz)}.

When A =a®>+b*> —c?>0,b#0 and ¢c = 0, then

(&) = 2tan™! [%+7Wtanh(7wz)]

When A =a? +b> —c? <0, c #0 and b = 0, then
P VEZ,, (VEZF

¢(&) =2tan 1{—§+T"tan(%g)}.

When A=a?>+b>—c*>0,b—c#0and a =0, then

qﬁ(i):Ztan”{ ”*”tanh(v = f)}

_ o _ —1 [ 2%
When a =0 and ¢ = 0, then ¢(&) = tan L”‘Efl ) ezbE+J ’

When b = 0 and ¢ = 0, then ¢(¢) = tan™! [ f{‘iil , “’3"53] .

When a? + b? = ¢, then ¢(&) = 2tan~! qutﬂ

When a = b = ¢ = ka, then ¢(¢) = 2tan"! {e’““; - l}.

When a = ¢ = ka and b = —ka, then ¢(¢) = —2tan™! [ Iej:'i _}
— 1 +ekac

- _ -1 (a+b)ehgfl
When ¢ = a, then ¢(&) = —2tan {—(aib) bz,l]'

(b—c)eb<—1

When a = ¢, then ¢(¢) = 2tan™! [(”“)7@“}

When ¢ = —a, then ¢(¢) = 2tan~! [ Ctb= “}

]

When b = 0 and a = c, then ¢(¢) = —2tan™! [‘E—;z} .
When a =0 and b = ¢, then ¢(&) = 2tan™" [¢&].
When a = 0 and b = —c, then ¢(¢) = —2tan™! [ﬁ]
When a =0 and b =0, then ¢(&) = cé+ C.
When b = ¢ then ¢(&) = 2tan™! {e;—‘“},

When b = —c, then ¢(&) = 2tan™!

where & = ¢ + C,p,Ai,Bi(k=1,2,...,m),a,b and c are constants to be determined later.

Step 3 Determine m. This, usually, can be accomplished by balancing the linear term(s)
of highest order with the highest-order nonlinear term(s) in Eq. (2.2). But, the positive
integer m can be determined by considering the homogeneous balance between the highest
order derivatives and nonlinear terms appearing in Eq. (2.2). If m = g¢/p (where m = q/p
be a fraction in the lowest terms), we let
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u(&) =vi"r(Q), (2.5)

then substitute Eq. (2.5) into Eq. (2.2) and then determine the value of m in new Eq. (2.2).
If m be a negative integer, we let

u(¢) =v"(&), (2.6)

then substitute Eq. (2.6) into Eq. (2.2). Then we determine the new value of m in obtained
equation.

Step 4 Substituting (2.3) into Eq. (2.2) with the value of m obtained in Step 2. Col-
lecting the coefficients of tan(¢/2)*, cot(¢/2)"(k = 0,1,2,...), then setting each coeffi-
cient to zero, we can get a set of over-determined equations for Ag, Ag, Bx(k = 1,2, ...,m)
a, b, ¢ and p with the aid of symbolic computation Maple.

Step 5 Solving the algebraic equations in Step 3, then substituting
Ao, A1,Bi1,...;Apm, By i, p in (2.3).

3 The modified dispersive water-wave system

We consider the (241)-dimensional modified dispersive water-wave system as follows
Uy + Ury — 20y, — (uz)xy =0, v —vu—2u),=0. (3.1)

By make the transformation ¢ = kx + m(y) + nt, Eq. (3.1) becomes

m'nu 4 kPm'u' — 2k — km'u* =0, nv —k*V — 2kuv = 0, (3.2)
where obtained by twice integrating and neglecting the constant of integration and u’ = g—’g,
vV = :1’—2, m = ‘2—’)’}. By considering the homogeneous balance principle between the highest

order derivatives #’ and nonlinear terms u? and also v’ and uv, we obtain M + 1 = 2M and
N+1=M+ N,then M = 1 and N = 2. Therefore, by considering p = 0 in (2.3), suppose
that the solutions for Eq. (3.2) can be expressed in the following form

u(&) =Y Actan*(§/2) + > Bicot'(¢/2),
k=0 k=1 (3.3)

2 2
v(&) =) Cetan*($/2) + Y Dicot(¢/2).
k=0 k=1
By substituting (3.3) into Eq. (3.2) and collecting all terms with the same order of tan(¢/2)
together, the left-hand side of (3.3) are converted into polynomial in tan(¢/2). Setting each

coefficient of each polynomial to zero, we derive a set of algebraic equations for
a, b, C, k, m’, n,Ao,Al,Bl, C(), Cl, Cz, Dy, and D, as follows :

@ Springer



Application of the ITEM for the modified dispersive water... Page 7 of 27 128

Coefficients of Y = tan(¢/2):

Y°: —4k2Dy — k?m/cBy — 2km'B? — kK2m'bB; = 0,

Y0 : —4kB\D, + 2k*cD, + 2k*bD> = 0,

Y': 2m'nB, — 4k*D, — 2k*>m'aB, — 4km'A¢B; = 0,

Y': —4kB\D; + k*cD, + k*bD, — 4kA¢D, + 2nD, + 4k*aD, = 0,

Y2 kam’A(z) + kPm'cA; — 4k*Co + K*m'bB; + 2m'nAg — k*m'cB; — 4km’A B, + k*>m'bA; = 0,
Y?: 2k?aD; + 2k*cD, — 2k*bD, — 4kA\D, — 4kAoD| — 4kB,Cy + 2nD; = 0,

Y3 2KPmaA, 4 2m'nA, — 4k*Cy — dkm'ApA, = 0,

Y3 : —k*bD| + k*cD| — kK*cC; — 4kA Dy — 4kB|C| — k*bC| — 4kAyCy + 2nCo = 0,
Y4 KPm'cAy — 2km'AT — KPm/bA, — 4k°C, = 0,

Y. —4kB Cy — 4kA,Cy — 2k2bCy — 22aCy — 2k2cCy — 4kA¢Cy + 2nC) = 0,

Y3 : K2bCy — 4kA|C) — 4k*aC; — k*cCy — 4kA(Cy + 2nC, = 0,

Y0 : —4kA|C, + 2K*bCy — 2k*cC, = 0.

(3.4)
Solving the above algebraic equations (3.4), we have the following sets:
Set I We have the following:
_ 2KAo—n k(B? — A}) + nA o k(B? + A}) — nA
k2 ’ k2B, ’ k2B, ’
n2
A=d*+b—ct=—, k=k m =m', n=n,
K , (3.5)
mA()(n — kA())

Ag=Ag, Ay =0, By =By, Cp = , C1=0, G =0,

k2

m'By(n — 2kAo) m'B?
———, Dy =— .

k2 k
By using of Family 2, (3.3) become

D, =

—1
w1 (%, y,1) =Ag — 240(kAg — 1) [ZkAO —n+ ntanh(2k2 (k + m(y) + nt + C))] :

m/A() (I’l — kAo) 2m’A0(kA0 — I’l) (I’l — 2kA())
Vl(x7y7 t) = 12 - kz

-1

[2kAofn+ntanh( (kx 4+ m(y )+nt+C)>}

%2
(kx + m(y) + nt + c))r’

(3.6)

4ml A2 (kAo — n)?
- T |:2kA0 —n+n tanh (2k2

where Ay, k,m,n and C are arbitrary constants. By using of Family 6, (3.3) become

)

mAZ  mA2 1 e—(kx+m( ¥)+2kAo+C) _ 2 (kx+m( )+2kAgt+C)
0 O cot? | ~arctan @

4A, 24
e—o(k,H»m( )+2kAot+C) _ | ZeTO(karm(y) +2kAgt+C)

20 (kxt-m(y)+2kAgt+C) +1 “Tﬂ(kx+m(y)+zmnt+c) +1

e

1
up(x,y,t) =Ap + Ap cot <2 arctan {

VZ(xayat) = k - k

—2(kx+m(y)+2kAgt+C) 4 1 T(kx+m(y)+2kAot+C) +1

(3.7)

e
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where Ay, k, and C are arbitrary constants. By using of Family 12, (3.3) become
Case 1: (k=k,n=n,A¢g = B;,B; = B))

2n—k%kBl ek%(kx+m(y)+nt+c) 1 m'Bl (n B kBl)
u3, (x,,t) =B1 + By zkﬂeﬁ(kXer('VHerc) +1 | Vs, (1) = kR
/Bl(n — 2kB, ) 2n— 2kB| (kx+m( )+nt+C) -1
k2 2% ek’—’z(kx+m(y)+m+c) +1
B =24, pallrtmy)tnee0) _ 47?
k 2% Ek%(kx+zn(y)+m+C) +1
(3.8)
Case 2: (k = k,l’l = k(Ao — Bl),A() :Ao,Bl = Bl)
2n— 2k31 2 (kx+m( )+k(Ag—B1)t+C) 1 on(l’l . kAO)
us, (x,y, t) :AO + Bl 2B, lz(kx+m(y)+k(Ao B1)+C) 1 ) V3, (X Vs ) T
k
/B1 (n — 2kA ) 2n— 2kB| k2(kx+m y) +k(AofB1)I+C) —1
k2 Zkﬁek—z(kx+m(y)+k(Aq B,)i+C) +1
" B% 2nfk%k81 ikt m(y) +k(A0=B)HC) _ 4 2
Tk % ity +k(A0=B)+C) 4 ’
(3.9)

where Ay, k, and C are arbitrary constants.
Set II We have the following:
i—a. b:7716BfA%fSBfkaAofB%k2a274A32+ 8kAja+4k3a*Ag — 2k a*A] kol =i,
(440 +ka)*Bik

—240)* 2k(k*a® — kaAg —2A2
= (ka o) 5, Ao=Ag,A1=0,B1=B|,n=— ( %o )

k2(4Ag +ka) 4Ao+ka
_16BA] +8BtkaA + Bik*a® — 4A + 8kAja + 4k’ a’ Ao — 2K*a® A} D (3k%a® +4kaAo +4A3)m' B}

(4Aq +ka)B 1k 2T Bk(2ka—Ag)Ag

m'Ag(—4A3 +dkaA% + 5k*a*Ag + 6k3a® m' By (3k*a* +4kaA +4A3
0 0 0

Co=— Dy=—
’ 2k(4A0 + ka)’ ! 2k(4A0 1 ka)

,C1=0,C,=0,

(3.10)
By using of Family 2, (3.3) become
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4A0(—2A3 + 4kaA} + 2k3a® — Aok*a?)
us(&) =Ao —
(4A0 + ka)

[ak(4Ao + ka) + (ka — 2A¢)” tanh <% &+ c))

) m'Ag(—4A} + 4kaA} + Sk*a*Ag + 6k3a®)
V. =-—
! 2k(4A0 + ka)?

4m'Ag(—2A3 + 4kaAd + 2K3a — Aok*a 2)

-1

I

2k(4Ag + ka)*(3k2a? + 4kaAg + 4A3) " (3.11)
-1
[ak(4A0 + ka) + (ka — 2A¢)* tanh <% &+ ))

16m'A2(—2A3 + 4kaAl + 23a® — Aok*a®)*
8kA0(2ka — Ao)(4A() + ka) (3]{2(12 + 4kaAy + 4A2 )

-2
ka — 2Aq)
k(4Ag + k k—2A2th(7 C
k(449 +ka) + (ka — 240)* tan (2(4A0+k (e >> ,
where ¢ = kx + m(y) — W” Ag, k,a and C are arbitrary constants. By using of
Family 6, (3.3) become

1 R ketmy+2KkBi1+C) _ | 2 g kx+m(y) +2kB1 1+C)
us(x,y,t) =2By + B) cot| —arctan
1(kx+m(v)+2kB|f+C) 41

m/A(z) /Bz 1 (k_x+m( ))+2kB1+C) __ 1 2 (kx+m( )+2kB; 14-C)
vs(x,y,t) = Sk 3 Lot Earctan 4[31<kx+m( )+2kB11+C) 4 | "¢

e@(kx+m(\~)+2k8|t+c) +1

T(kx+m(y)+2kBlt+C) 41

m’B% 5 1 4—(/o(+m( ))-+-2kB t+C) __ 1 2 zﬂ(kx-%—m(y)-%—ZkB]t-%—C)
+ cot” | —arctan 43 s
2k - (kx+m(y)+2kB, 14-C) + 1
(3.12)

e (kx+m( )+2kB 1+C) a1

where B;,k, and C are arbitrary constants. By using of (a = ‘/TkZA“

) and Family 18, (3.3)
become

\/——ZA“ / 3 3
Ap(14A; + 8V —2A
o, y,1) = Ao + By - — ey 1) = W“—H
\/—ZAO o (la'+m(. g+ C ) 1482424852/ 342 2k(4A0 + V—240)
k(4A0+V—=2A0)*B)

m' By (—2A3 + 4v/~243) 2

\/ /7 F
2k(4A0 + V—240) \/—ZA“ = (kHM(,V) u,ro‘ A:" 1+C ) 14B2A2+8B2V/~2A2
k(440+v/—240)*B; ]

r 12

(—242 + 4/—2A2)m'B} NEN
8k(2v/—2A0 — Ap)Ag V=78 e‘/?“’ (AH»m( )+ ::Jﬂ/__: o) ) 14BfA§+SBf\/j:ZA§
L k(440+v/=240)°B1 |

(3.13)
where Ay, k, and C are arbitrary constants.

Set IIT We have the following:
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2 432]{2 2 432]{2
a:O,b:n 0 ,c= oAb Jk=k,m'=m',n=n,Ay=0,A4,=0,
2k3B; 2k3B, (3.14)
A 4n? m'n? m'nB,
Bi=B, A=-7,Co="77,C1=0,G=0,Di=—7>, D, =0.

By using of Family 5, (3.3) become
uz(x,y,1) = = coth [1 (kx + m(y) + nt + C)] ,
2k k?
2 o (3.15)

v7(x,y,1) =, coth[% (kx + m(y) + nt + C)},

T4k 4k

where k, m, n and C are arbitrary constants. By using of Family 6, (3.3) becomes

1
ug(x,y,t) =B cot <§arctan[ 5

e%(kx+m(y)+2k3,z+c) -1 2 e@(kwm(y)ﬂkgl +C)
e Rellortm(y)+2kBi1+C) | 17 ¢ octm(y)+2kB11+C) +1

m'B:  m'B? 1 e@(kaLm(y)JerB]HrC) -1 Zeﬁ(kaer(y)JerB.tJrC)
vg(x,y,1) =——L + —Lcot ~arctan w, T ,
k k e lketm()+2kB1+C) | o ketm(y)+2kBi4+C)
(3.16)
where B, k, and C are arbitrary constants. By using of Family 11, (3.3) become
4B, e%(kﬁm(y)ﬁk&wc) +1
M9(x7)’af) =B 42 4B, )
_187(kx+m(y)+2kB1Z+C) -1
k (3.17)

)

m’B% m'B% %e‘%(kx+m()')+2k31t+c) +1
V9 (X,y, l) = k k

4_?1 ke m(y)+2kBI+C) _

where By, k, and C are arbitrary constants.
Set IV We have the following:

nD3 D D m'B?
4= ——2 ph=——2 c=—"2 k=—-bl oy = n=n, Ay =0,
n’llzBAlt m’31 m/Bl Dz
A, — _ A nzDg _ _ _ _ nD% _ 1
]—0, Blth 7’;1TB?,C070,C1707C2707 lem,iB:l“szDz. (3 8)
By using of Family 18, (3.3) become
—nD3B,
wo(x,y,1) = - ’fg‘* (*"thm(ymﬁc) 7
—nD3e ™" ? +m'DyB3
. nzD;
m!33
vio(x,y,t) = ; :
_ 'f; <7’Y;ffx+m(y)+nr+C) 3 (319)
—nD3e "\ 7 +m'D, By
2
an%
+ D2 nD% ( m/B% ) ) ’
- ———x+m(y)+nt+C
—nD3e AN g +m'D,B3

where n, B, D, and C are arbitrary constants.
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Set V We have the following:

vV —2A B
a=-" 9 b:%, e=—r k=k, m' =m', n=2kAy, Ag = Ao, A; =0, B, = By,
_2DAG 2V 240D B} "
Co= ,C1=0,C,=0,D)=—=, D, =
0 32 1 =Y, L2 ) 1 B] ) 2 4](
(3.20)
By using of Family 18, (3.3) become
V2408,
up(x,y,t) =Ao+ E )
1(x:3,1) 0 \/7_2Aoef‘/:EA°(kx+m(y)+2kA0t+C)+ﬁ
k k
m'A} AoBin!
vii(x,y,t) = +
6y, 1) =— 2o R k) KA C) 4 1B, (3.21)
m’B% \/—_2124031 g

4k | V=240 7@(kx+m(y)+2kAot+C) By
r ¢ F %

where n,Ap, B1, D, and C are arbitrary constants.
Set VI We have the following:

n* + 4Bk —n* + 4B7k L
a=0, b= 108, ,c= 0B, sy k=k, m =m, n=n, Ay =0, A, =0, B = By,
n? m'n? m'nB, m' B?
A:k_47C0 8k37C1:07C2207D1:77 2 = 2k1
(3.22)
By using of Family 5, (3.3) become
upp(x,y, 1) = 2kcoth [Zkz (kx + m(y) + nt + C)],
m'n? m/n2 n
Via(6, 1) =+ 2 coth [ S5 (o +m(y) + i + C)] (3.23)
mn®
MTE coth [2k2 (kx + m(y) + nt + C)}

where k, n and C are arbitrary constants. By using of Family 6, (3.3) become

)

B lotm(y)+2hB1+C) _ | 9 lkvtm(y)+2kB11+C)

L (kx+m(y)+2kB t+C) 4 l kx+m(y)+2kBt4C) |

o

1 e
ui3(x,y,t) =Bj cot zarctan g

m/B% /BZ 1 —(kx+m( )+2kB1+C) _ | e T](]()C+)n< )+2kBt+C)
Vlz(x y, l) —W + X COt —arctan 431(k\’+m( )+2kB; 1+C) + 1 eT(kx+m(y)+2kB|t+C) +1
' B2 1 Rt m(y)+2kB1+C) _ | 2 2L (kx-m(y)+2kB, 14C)
—arctan = ,
2k THktm(y) +2KkB11+C) 1 e 4 (kex+-m(y) +2kB) 1+C) +1

(3.24)

where B, k, and C are arbitrary constants.
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128 Page 12 of 27 M. Lakestani, J. Manafian

Set VII We have the following:

2B, —k
a =0, b:ch, c=c, k=k m =m', n=2kAy, Ag = Ay, A; =0, B, = By,
m' (kBic — A} — B}) m'By (kBic — A} — BY})
Co=— C;=0,C,=0, D=0, D, = — )
0 2k ) 1 ) 2 ) 1 9 2 Zk(kc—Bl)
(3.25)

By using of Family 5, (3.3) become

(kx 4+ m(y) + 2kAot + C)

I

\/B? — ckB
]kc 1(k)c—&-m(y)

2By —2ck \/B? — ckB,
2B, k

uia(x,y,1) =Ao +B1\/

m' (kB¢ — A} — BY) n m' (kByc — A} — B?)
2k 2k

+2kAot + C)],

coth?

v14(X,y, t) =

(3.26)

where k,n,Ap,B; and C are arbitrary constants. By using of Family 6, (3.3) become
ket RANC) _ | 9k tm(y) 4+ 2kAgt+C) )

1
=Ao+B = )
uys(x,,1) o + By cot (2 arctan Lg (loctm(y)+2kAor+C) | 17 gt lltm(y)+2kA0t+C) 4

m' (A2 + B2
vis(x, ¥, 1) :%
m/(AZ 4 BZ) 1 e%(kx#»m(y)JerAqH»C) 1 ze?(karnz(y)JerAoH»C)
——0 " U¢ot? <arctan 5 > 4B >
2k et etmy)F2UkAHC) | 7 R krtm()+2kA0r+C)

(3.27)
where Ay, By, k, and C are arbitrary constants. By using of Family 11, (3.3) become

2By
zkﬁe 7 (kx+m(y)+2kAo1+C) 4 |

ui6(x,y,t) =Ag + By

)

2B
ZkﬂeT](kx+m(y)+2kAot+C) -1

(3.28)
m’(A% + B%) m/(A(z) —O—B%) %e@(kx-%—m(y)-%—ZkAqHC) 41
vie(x,y,1) = K - 2% %ez%(karm(y){»ZkAoH»C) 1 )
where Ay, By, k, and C are arbitrary constants.
Set VIII We have the following:
V24 2V-2A%
a:0,b:b,c:c,k:b2—oz7m'* /, :bz—g,
—c —c
vV =2(b - c)A
Ag = A, Alzi( 9o
2Vb? — 2
bZ _ ZA /_2 / b— 2
B YoM o0 ci=0,6= - Y2 o, py -0
V=2(b—c) 4v/b? — ¢?
(3.29)

By using of Family 5, (3.3) becomes
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V=249 Vb — 2 [ V=240 2V =247 A2
1) =A tanh c
A Vb2 —c2 (V=24 2V—24}
+ 2 coth ¢ ( Ox—i—m(y)—l—iot—kC) ,
v =2 2 Vb2 —c? b2 —c
—2(b* — 2)m’ Vbr—c2 [ -2A 2v/—24A2
vi7(x,y,1) = — ( y) ) tanhz[ 5 ( b2_22x+m(y)+ e t+C)
(3.30)
where b, c,Ap and C are arbitrary constants. By using of Family 6, (3.3) become
— 2[7(\/ A”x+m( )+ﬂt+c> h(‘ﬁﬂuxﬂn( )+2\?3t+c>
uig(x,y,1) =Ao + 722A0tan %arctan ¢ = — l, 26/_ S
. < N ”t+C> 41 ezb( oxtm(y)+— “r+C) 41
V=249 24y /724y ’@12»
. Ao t 1 t eZb( Fx+m(y t+C) 2eb( ——xtm(y)+—; l+C)
CO — arctan )
V=2 2 e2b<v mOH»m +2V Ot+C) ( x+m(\)+ Ot+C> 1
’_—Zmlb X 1 6217(v J”)Hrm)H» nH»C) 1 Zeb(@.erm(y)JrﬂﬂrC)
vig(x,y,1) = — tan” | ~arctan , — ,
4 2 ezb(“_ 0 tm(y) 42 2 L+C> +1 ezb(‘/_“‘]wm())fvf"@HC) +1
(3.31)
where b,c,Ap and C are arbitrary constants. By using of Family 11, (3.3) becomes
540 | b(\/j?ox+in(y)+2‘/?A(2)t+C) 1
V=24, | be _
uro(x,y,1) =Ag + 5 =
b b(m°x+m( )+ Of+ C) 41
e
A beb(m‘)erm(y) 2 ”r+C) |
0
+ S ) (3.32)
V-2 b b(\/_ Ox+m(y)+ m(z)erC)
e —
V=249 )+ ‘/_g :
+m(y)+——5—L4+C
V=2m'b be ( ’ ) -1
v19(x7y7t) = - 4 /S 2V 3A2 3
b b( 2"“‘J)chm(y)Jr 5 0!+C> 1
e
where b, c,Ap and C are arbitrary constants.
Set IX We have the following:
2A 4A3 b—c)A
a =0 b=b c=c, k=—t m =m, n=—0— Ay=Ag, A :@,
P _ 2 P2 _ 2 b _ 2
V2= A '(b—c)’A
B0, =" o g I g o
2 D2 — 2
(3.33)

By using of Family 5, (3.3) becomes
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128 Page 14 of 27 M. Lakestani, J. Manafian

VB — 2 [ 24 4A3
u(x,y,1) =Ao +Aotanh[ 5 <mx+m(y) + = _czt+C> ,
mVBE— Ay MV — Ay L |[VPE -2 [ 24, 442
vao(x,y,1) = 7 - 3 tanh > \/mer m(y) + —— t+CJ|,
(3.34)
where b, c,Ap and C are arbitrary constants. By using of Family 6, (3.3) becomes
| 2b <2A“x+m(\)+—t+C> 1 26!)(%}(+m()’)+ﬁl+€)
uz1 (x,y,1) =Ao + Ap tan iarctan , = ,
ezh( Ux+m())+—t+C> 1 eZh<T,x+m(y)+Tt+C) 1
w'bAy  m'bA, , | eZb(T°x+m +—t+ ) 2€b( 0r+m())+—t+C>
var (x,y,1) = - tan” | —arctan — ,
2 2 2 eZh(ﬂ,\er +—Ot+C) 1 (%x+m(y)+70t+c) 1
(3.35)
where b, c, Ay and C are arbitrary constants. By using of Family 11, (3.3) become
b(zﬂﬁrm( )+$t+€)
be -1
u22(x7yvt) :AO +A0 (ZAO 4A(Z) ) )
b| Zx+m(y)+—-2+C
pe’ \ O]y
) (3.36)
Fm(y) L +c)
(ryp) A0 mBAs be' ( TOIEIC)
Va2 X, y, = - A2 )
2 2 beb (@Hm(y)JrTDHC) 41
where b, c,Ap and C are arbitrary constants.
Set X We have the following:
o b 4(4A3 4+ A3)DrA, 4(A} — 4AT)DrA, . m' A
= = — cC=——m g
“a=5 m A ’ m A ’ 16A2D,”
m'A} A} 8AID,
m=m, n=——5> Ay=Ap,A =A, B=-"", Co=——L"=,C, =0,
842D, 0 0,41 1, by 4, 0 A2 1
16D,A}
G = §I7D1=0,D22D2-
A
0
(3.37)

By using of Family 5, (3.3) becomes
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A
ux(x,y,t) =Ao+ 70 tanh

Vb — 2 m' A} +m(y) m'A} (4 C
_ m(y) —
2 642D, 7Y 8A2D2

Ao b2 — 2 ’A4 m’A(S)

20 coth - 1+C
T2 2 \Treamn, T “gaap, )|

_ 8AID, N 4D,AY Vb —? ( m'A} m'A} - C)

L tanh -
a2 T 2 teazp, ~ T m0)

V23(X,y, l) =

4D,AT Vb2 —c? m'A m' A}
th - 1+C
ta e 2 16A2D2 xEm) = gap )|

(3.38)
where b, c,Ag, D, and C are arbitrary constants. By using of Family 6, (3.3) are given

4Dy

a2 20, [~
e ,\+m(v)fml+c 1 Zei""{' By ,\+m())fﬁt+c

1 e
urs(x,y,1) =2A; + A, tan Earctan o ( s M? - ,\z
-7 Letm(y)—5tt+C T x+m())——r+c
e ™ e AR
/a2 3
ap, [—n'A2 447 , (-2
x+m(y) —pit+C — x+m(\ ——H—C
1 e m/\|< Dy 2 -1 2e A
+ cot EarCtan ap, (-4 4 ’ ap, (-4 l ’
—\ 5 x+m(y)—D—zH~C T Tx#»m(,\')—WH»C
e "\ 2 +1 e "M\ 2 +1
a2 a3 a2 and
1 —%( ’;2 'x+m(y)—D—2'r+C> 1 5 —jﬁzl( " Ly+m(y )—D—Jt+C)
e e ?
— 2
vaa(x,y,1) = — 2D, + D5 tan Earctan T = o G =
7rn/A2| x+m( )—,,—JHC 11 Ay A*”’( )’TJH’C +1
e 2 e ?
—nl' A 2, (-2 a3
| ﬁ‘jg‘( x+m(\)——t+c) . > *m“ﬁ(,( o Lxm(y )7,)—2'z+c>
e — e -
+ D, cot? 3 arctan R o o R
ap, [—nlA an, [~ 3
ei/"//‘l ( ,\+m())fﬁt+c) 1 eim( Lx-+m(y )*WIJrC) 1
(3.39)

where A, D, and C are arbitrary constants. By using of Family 11, (3.3) get

/A2 3
ap, [-m'a? 443
2D, B l_n’A]( D x+m(y)—D—2t+C

mA1
uzs(x,y,1) =2A; + A, o [ 4A3
_om, m,Az]( Lx+m(y)— +C) 1
mA,
20y ('
2D, TwAr ( Lx+m y)——I+C>
T A, €
+ 0, mA
_ 2D e e 02 ))——H—C
m'A;
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128 Page 16 of 27 M. Lakestani, J. Manafian

142 3
o, [ —m'A 44
2D, 7m’A2]( D, 1x+m(y)7p71t+C)
—=le 2
mA;

-1

vas5(x,¥,t) = — 2Dy + D

2 3

N 447

_2Dy N ——Ly
2D, m,A]( By x+m(y) D, +C 1

e
m'A
1 , (3.40)
2, [(—n'a2 443
20, “wa\ D x+m(y)7D—21+C
— 2, +1
+ Dy |
2 on, [ —m'A? 443 ’
20, 1 1
o0, alag \ "oy ¥AmO) =g t+C
— e : -1
mA;

where A}, D, and C are arbitrary constants.
Set XI We have the following:

A2 4 kaAg + A2 —A? 4 kaAg + A2
a=a, b= 1+k6j4|0+ 0 ¢c= l+k:10+ O k=k, m =m,

n= k(ZAo + ka), Ag = Ay,

ka + 240\ 'Ao(ka + A (3.41)
A=<%) , A=Ay, B =0, G =%ﬂ+o), C, = m'aAy,
/A2
sz—mk‘, Dy =0, D, = 0.
By using of Family 1 and if (ka + 249 = 4i, i = v/—1), (3.3) are given
(9,1) = Ao + <% _ ean| X (ke + m(y) + kit + C)
1z (x = — — —tan|=— m i
261X, Y, 0 2 2 2% Yy )
Ao (ka + A 'ka? 'al A
Vo (x, y, 1) = olka+Ao)  m'ka® maj L (ke + m(y) + Zkit + C)|  (3.42)
k 2 2 2k
m Tka 1 A . 2

where b, c,Ag, D, and C are arbitrary constants. By using of Family 2, (3.3) get

ka ka+2A ka + 2A
uy7(x, v, 1) :Ao—l—ja-i- 4 > Otanh[azk O(kx—O—m(y)—l—k(ka—l—ZAo)t—}—C)},

m'Ag(ka + A m'ka?
V27(x7yat) = 0( k 0) + 2

'a(ka + 2A ka + 2A
+X a( a2+ o) tanh[ a ;k © (kx + m(y) + k(ka + 24¢) + C)]

' 24 24 g
_nm k_a+ka+ 9 tanh ka + O(kx+m(y)+k(ka+2A0)l+C) )

k|2 2 2k
(3.43)

where k,a,Ap, D, and C are arbitrary constants. By using of Family 6, (3.3) become
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® ®)

v,(xy)

v,(Y)

and b and m(y) = L, for ¢ and d at different times t = —16, 16 respectively
I+y

Fig. 1 The real values of v, are demonstrated at Ao =n = 0.5,k = 2,C =2, and m(y) = exp(—y), for a

(a} (b)

0
y 10 -10

0
y =10 -10 x

(©) (@)

v, (xy)
|
o
N

0

10
0
y 10 -10

0 0
y =10 -10 x

Fig. 2 The real values of v, are demonstrated at Ay = n = 0.5,k = 2, C = 2 and m(y) = tan(y), fora and b
and m(y) = cot(y), for ¢ and d at different times t = —16, 16 respectively
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5 ®
o 7 \\\\-.. . -
> ‘R‘\\\\
2 olg \\\““‘\\'*;‘ e
2
-001L, AW
y 10 -10 x

001,

T

0 \\!‘?{J})%‘\\\ \‘\‘x““‘\\“‘ﬁ{\
O™

v, (xy)

Fig. 3 The real values of v, are demonstrated at Ao = n = 0.5,k =2,C =2 and m(y) = sin(y), foraand b
and m(y) = cos(y), for ¢ and d at different times t = —16, 16 respectively

(@) (b)
10000, 400, .
= N = T
< 50001 X 200] -
>N >N
0 0
10 10
0
y =10 -10 x
(c)
=
%
>N

0
y =10 -10 x

y =10 -10 x

Fig. 4 The real values of v, are demonstrated at Ag = 0.5,k = 2,C =2 and m(y) = exp(—y), for a and b
and m(y) = ﬁ, for ¢ and d at different times r = —16, 16 respectively
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(a

(b)

0
y =10 -10

(c)

0
y -10 -10

(@)

0 0

y =10 -10 y =10 -10
Fig. 5 The real values of v, are demonstrated at Ag = 0.5,k = 2, C = 2 and m(y)
m(y) = cot(y), for ¢ and d at different times r = —16, 16 respectively

tan(y), for a and b and

®

0
I
0 \\\\“‘“&\\\\\\\\\\\\

i ,,I[llllll’ w

10

0
Yy -10 -10 X

@

v,(xy)

\\\““{R{{\\\\\\\\\\\\\ \\\‘“‘{{{3\\““‘“‘“‘

0
y -10 -10

0
y =10 -10

Fig. 6 The real values of v, are demonstrated at Ay = 0.5,k = 2, C = 2 and m(y) = sin(y), for a and b and
m(y) = cos(y), for ¢ and d at different times r = —16, 16 respectively
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(a) X 10'3 (b)

100
=

x50
©
=

0

10

V,g(y)
V,g(y)

0 0
y -10 -10 x y 10 -10 x

Fig. 7 The real values of v, are demonstrated at Ag = By = 0.5,k =2,C =2 and m(y) = exp(—y), for a
and b and m(y) = 1, for ¢ and d at different times 1 = —16, 16 respectively

(@) (b)

16%Y)

\%
V,gx)

0 0
Yy -10 -10 X Yy -10 -10 X

@ @

V16(va)

0 0
y =10 -10 y =10 -10

Fig. 8 The real values of v, are demonstrated at Ag = 0.5,B; = 0.5,k = 2,C = 2 and m(y) = tan(y), for a
and b and m(y) = cot(y), for ¢ and d at different times r = —16, 16 respectively
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Y gx)

Y gx)

y -10 -10

X

Fig. 9 The real values of v, are demonstrated at Ag = 0.5,B, = 0.5,k = 2,C = 2 and m(y) = sin(y), for a
and b and m(y) = cos(y), for ¢ and d at different times r = —16, 16 respectively

@ ®

V%)

= \\“‘}“““ '
\R\\\RR\\\\\ il

—
>
x
=
©
N
>

Vyax,y)

V%)

y -10 -10

m(y) = exp(—y), for a and b and m(y) = nyz ,

Fig. 10 The real values of v,3 are demonstrated at b =1,c =Ay=A; =D, =0.5,k=2,C =2 and

for ¢ and d at different times r = —16, 16 respectively
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@ ot ®

Vysx,y)

Vysx.y)

y -10 -10

@

X

y =10 -10

y =10 -10 x
Fig. 11 The real values of v,3 are demonstrated at b =1,c =Ag=A; =D, =0.5,k=2,C =2 and

m(y) = tan(y), for a and b and m(y) = cot(y), for ¢ and d at different times r = —16, 16 respectively

@ ®

~arey]

PO

IIIIIIIIII[{,

Fig. 12 The real values of vy; are demonstrated at b =1,c =Ay=A; =D, =0.5,k=2,C =2 and
m(y) = sin(y), for a and b and m(y) = cos(y), for ¢ and d at different times t = —16, 16 respectively
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(b)

0 0
=

X -5000 -5000
©
>N

-10000
10

-10000
10

on

10

Fig. 13 The real values of v,3 are demonstrated at a = Ag = 0.5,k = 2,C = 2 and m(y) = exp(—y), for a
and b and m(y) = ﬁ, for ¢ and d at different times t = —16, 16 respectively

®)

y =10 -10

X

y =10 -10

Fig. 14 The real values of v,; are demonstrated at a = Ag = 0.5,k = 2, C = 2 and m(y) = tan(y), for a and
b and m(y) = cot(y), for ¢ and d at different times r = —16, 16 respectively
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V()

V()

Fig. 15 The real values of v,3 are demonstrated at a = Ag = 0.5,k = 2,C = 2 and m(y) = sin(y), for a and
b and m(y) = cos(y), for ¢ and d at different times r = —16, 16 respectively
)

A2 A2 1 ke tm(y)+2kA0+C) _ | 9 Rkt m(y)+2kAot+C)
0_ "0 tan —arctan

ket m()+2kAg+C) _ | 9 ketm(y)+2KkAot+C)

1
—Ap + Ap tan [ =
Usg (-x7 Y t) o0 +Aptan <2 arctan |:e4f20(kx+m( )+ 2kAgt+C) + 1 e“%(kx+m(y)+2kAgt+C) + 1

Vzg(X,y, t) =

k k 2 kxtm(y)+2KkAot+C) +1 T Rt m(y)+2kAg+C) +1

(3.44)

where k,Ag and C are arbitrary constants.
o Note that All the obtained results have been checked with Maple 13 by putting them
back into the original equation and found correct.

4 Discussion and Remark

In this section, the numerical simulations of the modified dispersive water-wave system
will be given. Now, we will discuss all possible physical significance for each parameter.
InFigs. 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14 and 15, we plot three dimensional graphics
of real values of vy, v;,vi6,v23 and vy6, which denote the dynamics of solutions with
appropriate parametric selections. We plot three dimensional graphics of Figs. 1-15, when
—10<x<10,-10<y<10. At the different times the surface graphics of the exact solu-
tions are plotted in Figs. 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14 and 15. Figures 1, 2, 3, 4,
5,6,7,8,9, 10, 11, 12, 13, 14 and 15, represent the exact traveling wave solutions of the
modified dispersive water-wave system. The analytical solutions and figures obtained in
this paper give us a different physical interpretation for the modified dispersive water-wave
system. Solution v; of the modified dispersive water-wave system represent the soliton
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wave solution. Solitons are special kinds of solitary waves. Solitons have a remarkable
property that keeps its identity upon interacting with other solitons. Soliton solutions have
particle-like structures, for example, magnetic monopoles, and extended structures, like,
domain walls and cosmic strings, that have implications in cosmology of the early uni-
verse. Solution v, v3 and vy of the modified dispersive water-wave system represent the
exact periodic wave solution. Periodic solutions are traveling wave solutions that are
periodic. Solution v¢ of the modified dispersive water-wave system represent the singular
kink-type traveling wave solutions. In & = kx + m(y) + nt, by considering m(y) in the
forms of functions of trigonometric, hyperbolic, exponential and rational, properties of
soliton, periodic, traveling and singular kink-type wave solutions have been depicted.

5 Conclusion

In this paper, a new analytical technique based on the improved tan(¢/2)-expansion
method is proposed to obtain the exact solutions to the modified dispersive water-wave
system. It has been found that the construction of this recent tan(¢/2)-expansion method
possesses in general a variety of further solutions comparing with other analytical methods.
The improved tan(¢/2)-expansion method is promising technique based on its simplicity
and variety of solutions. The results have been observed that all traveling wave solutions of
Eq. (3.1) are new behaviors. The ITEM is easier and reliable than other methods. We think
that this approach plays an important role for finding traveling wave behaviors to the
systems.
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