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Abstract We consider the phenomenon of an optical soliton controlled (e.g. amplified) by

a much weaker second pulse which is efficiently scattered at the soliton. An important

problem in this context is to quantify the small range of parameters at which the interaction

takes place. This has been achieved by using adiabatic ODEs for the soliton characteristics,

which is much faster than an empirical scan of the full propagation equations for all

parameters in question.
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1 Introduction

The idea of controlling light by light becomes increasingly popular as new optical and

optoelectronic technologies become available (Miller 2010). A possible scheme is scat-

tering of a low-intensity dispersive wave (DW) packet at an optical soliton mediated by

cross-phase modulation (XPM) in a nonlinear fiber (De Sterke 1992). The XPM interaction

induces frequency conversion of the DW (Yulin et al. 2004; Skryabin and Yulin 2005;

Efimov et al. 2005; Lobanov and Sukhorukov 2010; Rosanov et al. 2011) if the group

velocity of the DW is close enough to the group velocity of the soliton. The soliton in turn

acquires a permanent shift in frequency and time delay. Moreover, it may experience an

all-optical switching to a new state with considerable gain (loss) in peak power (Demircan
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et al. 2011, 2014). This phenomenon has been observed in experiments (Tartara

2012, 2015; Wimmer et al. 2013; Webb et al. 2014); it is a generic effect which appears in

many nonlinear wave systems (Demircan et al. 2012).

The reflection of the DW depends on fiber dispersion, carrier frequencies of both pulses,

their amplitudes, and initial delay. It only occurs in a very small range of parameters, and

within this ranges it is most sensitive to the particular choice of initial delay and amplitude.

Since parameter search by direct numerical simulations with the full generalized nonlinear

Schrödinger equation (GNLSE) is time consuming, the prediction of adequate initial

parameter ranges is particularly useful. We shall quantify the DW reflection and find the

parameter ranges in which the changes in soliton characteristics are most pronounced.

The adequate parameter values were obtained by scale separation between the ‘‘fast’’

DW scattering and ‘‘slow’’ evolution of the soliton. We start with two simplified propa-

gation equations, one for the soliton and one for the DW. These equations are coupled by

the XPM terms. Using a multiscale approach we then introduce adiabatic equations for the

soliton parameters. The solution resides in results from soliton perturbation theory com-

bined with quantum mechanical scattering theory for the DW. The predicted optimal

parameter values are tested against numerical solutions of the full GNLSE.

2 An exemplary numerical simulation

Figure 1a, b shows possible profiles (here for bulk silica) of the group delay b0ðxÞ and the

group velocity dispersion b00ðxÞ (GVD) that favor scattering of DWs at solitons. Here the

dispersion relation is encoded by k ¼ bðxÞ. The carrier frequencies of soliton and DW (xa

and xb þ X respectively) belong to opposite sides of the zero dispersion frequency at

which b00ðxÞ vanishes. The reference frequency xb is chosen such that b0ðxaÞ ¼ b0ðxbÞ,
note that b00ðxaÞ\0 and b00ðxbÞ[ 0. X denotes the small initial DW frequency offset from

xb. The arrows in Fig. 1a indicate frequency shifts that lead to energy transport from the

DW to the soliton and thus to increase of the soliton peak power.
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Fig. 1 A typical (here: bulk silica) profile of a the group delay b0ðxÞ and b group velocity dispersion b00ðxÞ
that leads to the collision phenomenon shown in Fig. 2. Collision can only be realized for initial DW
frequency offsets in a small interval (shaded grey) around the reference frequency of matching group
velocity

503 Page 2 of 7 S. Pickartz et al.

123



Figure 2 shows how a DW scatters at a soliton in a typical simulation of the full

GNLSE. The electromagnetic power density (Fig. 2a) is plotted in space-time domain in a

frame that co-moves with the unperturbed soliton. The monochromatic DW (A) ap-

proaches the initially stationary soliton (B) and, being reflected, yields an interference

picture (C). The soliton is compressed and deflected (B, D). The reflected part of the DW is

frequency shifted, as clearly seen in the frequency domain (Fig. 2c). Like the DW, the

soliton is frequency shifted during reflection (Fig. 2b), although this effect is less pro-

nounced. The frequency shifts correspond to arrows in Fig. 1a and to the energy transfer

from the DW to the soliton. Steepness of the fiber dispersion is of crucial importance for

the soliton evolution. If a small increase in the soliton carrier frequency leads to a sig-

nificant decrease of its GVD, the soliton peak power significantly increases. The peak-

power increase for the profiles in Fig. 1a, b is clearly observable, though not very strong

(see below).

3 Model

As can be seen in Fig. 2b, c, the spectra of soliton and DW are neatly separated and remain

so even after scattering. This observation suggests to describe the total electric field by two

envelopes: waðz; sÞ for the soliton and wbðz; sÞ for the DW. Here s ¼ t � b0ðxaÞz ¼
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Fig. 2 An exemplary reflection of a DW from a soliton. a Normalized power in space-time representation.
The DW is less intense than the soliton. The chosen frame of reference co-propagates with the unperturbed
soliton. b, c normalized power in frequency domain for soliton and DW respectively. See Fig. 1 for the
carrier frequencies and text for explanation of the patterns A–D
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t � b0ðxbÞz is introduced as the common retarded time (Fig. 1a). The envelopes solve the

following system of two GNLSEs

iozwa þ
XJ

j¼2

bðjÞa
j!

ðiosÞjwa þ
n2a

c
ðxa þ iosÞ jwaj

2 þ 2jwbj
2

� �
wa ¼ 0; ð1Þ

iozwb þ
XJ

j¼2

bðjÞb
j!

ðiosÞjwb þ
n2b

c
ðxb þ iosÞ jwbj

2 þ 2jwaj
2

� �
wb ¼ 0; ð2Þ

which are coupled by the XPM terms. The dispersion parameters bðjÞa;b are the derivatives

bðjÞðxa;bÞ, the total field is given by

Eðz; tÞ ¼ Re waðz; sÞei baz�xatð Þ þ wbðz; sÞei bbz�xbtð Þ
h i

;

and n2a;2b quantify nonlinear refraction. We found J ¼ 4 to be sufficient. We reformulated

the system (1–2) in the following three steps which were suggested by observations in

numerical simulations.

Firstly, the soliton equation is split into two parts, where the LHS is a standard nonlinear

Schrödinger equation providing a fundamental soliton solution. The RHS includes all

remaining terms of Eq. (1), and is treated as a perturbation. It is responsible for evolution

of the soliton parameters quantifying the higher-order dispersion effect, nonlinearities, and,

most important, the influence of the DW. As a starting point we approximate wa by the

fundamental soliton solution of the unperturbed equation:

jwaj
2 � jb00ðxa þ mÞjc

ðxa þ mÞn2a
1

r2 cosh2 s�T
r

; ð3Þ

with soliton frequency offset m ¼ mðzÞ from xa, its time delay T ¼ T ðzÞ, and its duration

r ¼ rðzÞ. These parameters are yet unkown but to be identified in the third step.

Secondly, we need an analytic expression for the DW envelope wb. We insert the

approximate jwaj
2
from (3) into in the GNLSE (2). Equation (2) is then linearized with

respect to wb, as the DW has much lower intensity compared to the soliton (Fig. 2a). Both

higher order dispersion and nonlinear terms are neglected. The resulting equation describes

the scattering problem of a plane wave at a squared hyperbolic secant barrier. It can be

solved analytically (Landau and Lifshitz 1965) for a static soliton barrier with vanishing

T ðzÞ. To account for the soliton motion, a suitable Galilei transformation is applied to the

standard scattering solution.

Thirdly, we insert the derived jwbj
2
in the perturbation part of the already split Eq. (1)

for the soliton. Then soliton perturbation theory (Hasegawa and Matsumoto 2003) results

in a set of adiabatic ODEs for the soliton parameters, which provides a good prediction of

the soliton evolution. We shall describe in Sect. 4 to which extent these equations have to

be exploited for the present purposes. For a more thorough analysis see Ref. Pickartz et al.

(2016).
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4 Results

If we are merely interested in determining an appropriate set of initial parameters for the

DW in order to produce earliest changes in a given soliton, it is sufficient to inspect the

adiabatic ODEs at z ¼ 0. We derive the following expression for the change of the soliton

frequency offset at z ¼ 0 with mð0Þ ¼ 0 from Pickartz et al. (2016, Eqs. 36–37):

dm
dz

����
z¼0

¼ 4lT
r0Ld

Z 1

0

F a; b; c; fð Þj j2 2f� 1ð Þdf; ð4Þ

with initial soliton duration r0 ¼ rð0Þ, dispersion length Ld ¼ r20=jb
00
a j and DW power l

normalized by that of the soliton. The arguments of the hypergeometric function F are

a; b ¼ 1

2
� ir0 �X� is; c ¼ 1� ir0 �X; ð5Þ

with

�X ¼ Xþ 1

r20b
00
b

b00a
xa

� b000a
6

� �
; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
jb00a j
b00b

xb

xa

n2b

n2a
� 1

4

s

: ð6Þ

The transmission coefficient reads

T ¼ sinhðpXrÞ
coshðpsÞ þ sinhðpXrÞ : ð7Þ

The easiest and least time consuming way to determine the realm of reflection is to

evaluate the transmission coefficient (7) for any combination of two initial carrier fre-

quencies xa and xb þ X and possible values of r0. The soliton should be short enough

such that T � 0, the energy transfer is then most effective. According to our experience, a

noticeable soliton transformation by a DW can be expected if at least T \0:1.
To choose the optimal X within the interval which allows reflection, we evaluate

expression (4) for varying X, as depicted in the example of Fig. 3a for a soliton with

xa ¼ 1:215 PHz and initial duration r0 ¼ 55 fs. The curve shows the interval of
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Fig. 3 Initial effect of the DW on the soliton as predicted by perturbation theory (a), and soliton deflection
at propagation distance of 1m from simulation with the full GNLSE (b)
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interaction. The maximal X at which the DW is still reflected is at X � 0:07 PHz. At the
peak we expect the strongest initial effect on the soliton. We confirmed this by a sequence

of simulations with full GNLSE at different values of X, and read out the soliton delay

T ðzÞ at z ¼ 1m. Figure 3b shows that about the predicted optimal X � 0:05 PHz the

absolute soliton deflection becomes maximal. For increasing values of z the optimal X is

slightly shifted to the left.

Moreover, the earliest increase of soliton peak power is to be expected at the optimal

value of X derived from Eq. (4) (Fig. 3a). This was again confirmed by direct simulations

using the full GNLSE, as indicated in Fig. 4.

In conclusion, Eqs. (4–7) provide a simple and effective tool to estimate optimal

parameters for investigations of a soliton controlled by a DW. The required calculations

are very fast, as opposed to parameter search with the full GNLSE.
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