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Abstract We generalize the Jacobi elliptic function expansion method used to solve the

(3 ? 1)-dimensional nonlinear Schrödinger equation for the case of an arbitrary inverse of

an elliptic integral. Among the obtained solutions are functions based on the Weierstrass

elliptic function and the inverses of Carlson’s elliptic integrals.
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1 Introduction

The generalized nonlinear Schrödinger equation (NLSE) is a generic model that is very

important in NL optics, where it describes the full spatiotemporal optical solitons or light

bullets (Akhmediev and Ankiewicz 1997; Kivshar and Agrawal 2003; Hasegawa and

Matsumoto 2003; Malomed 2006). For this equation, along with several other related

equations such as the Klein–Gordon (KG) equation and the Korteweg de-Vries (KdV)

equation, there is a large interest in finding novel exact solutions (Drazin and Johnson

1989). One of the most popular approaches is to use an expansion method which assumes a

certain ansatz for the solutions and the solutions are then expanded in terms of one or

perhaps more than one function, as was done in Ref. Zhang (2010). Some of the most

popular expansion methods are the trigonometric function expansion method (Zhang 2008;
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Zhang et al. 2011c), including hyperbolic trigonometric functions (Malfliet and Hereman

1996; Zhang et al. 2013a), the exponential function expansion method (He and Wu 2006),

the G0

G

� �
-expansion method (Li and Wang 2009; Miao and Zhang 2011; Zhang et al.

2013b), the bifurcation method (Zhang et al. 2011a, b) and the first integral method (Zhang

et al. 2013c). These forms of solutions have in common that they assume a linear form for

the phase of the solution. However, Kruglov et al. (2003) have proposed an ansatz for the

solution to the NLSE which involves a quadratic term in the phase, commonly known as

the chirp (Lai and Cai 2011).

A prominent expansion method that has emerged is the Jacobi elliptic function (JEF)

expansion method (Zhang 2012, 2015). The JEF is a natural choice for the NLSE with a

Kerr nonlinearity because it satisfies the second order nonlinear differential involving a

nonlinear term of the third degree and also because it encompasses both traveling and

solitary wave solutions (Olver 2010). Recently, there has been a huge development in

obtaining stable spatiotemporal soliton solutions, with and without chirp, for a higher

number of transverse dimensions (Malomed 2006; Zhong 2008) using the JEF-expansion

method and the principle of harmonic balance. The traveling wave and soliton solutions to

the generalized NLSE in (3 ? 1) dimensions ((3 ? 1)-D) for the cubic nonlinearity were

first developed in Belić (2008) for the anomalous dispersion and were generalized in

Petrović (2009) for the normal dispersion. However, the important task remains to gen-

eralize these solutions to a wider range of functions.

2 Method

In this paper we expand the work done in Belić (2008) to find new spatiotemporal traveling

wave solutions to the NLSE. We consider the standard form of the NLSE (Malomed et al.

2005):

iozuþ
bðzÞ

2
D?uþ o2

t u
� �

þ vðzÞjuj2u ¼ icðzÞu; ð1Þ

which describes evolution of a slowly-varying wavepacket envelope u(x, y, z, t) in a

diffractive nonlinear Kerr medium with anomalous dispersion, in the paraxial approxi-

mation. Here, z is the propagation coordinate, D? ¼ o2
x þ o2

y represents the transverse

Laplacian, and t is the reduced time, i.e. time in the frame of reference moving with the

wavepacket. All coordinates are made dimensionless by the choice of coefficients. The

functions b, v, and c stand for the diffraction/dispersion, nonlinearity, and gain coefficients,

respectively. As in Belić (2008) we define u in terms of amplitude and phase uðz; x; y; tÞ ¼
Aðz; x; y; tÞ exp iBðz; x; y; tÞð Þ and assume the following form of the solutions:

A ¼ f1ðzÞ þ f2ðzÞFðhÞ þ f3ðzÞF�1ðhÞ; ð2Þ

h ¼ kðzÞxþ lðzÞyþ mðzÞt þ xðzÞ; ð3Þ

B ¼ aðzÞ x2 þ y2 þ t2
� �

þ bðzÞðxþ yþ tÞ þ eðzÞ; ð4Þ

where f ; g; k; l;m;x; a; b; e are parameter functions to be determined.

The key difference from the previous paper is that we will assume F to be the solution

of a more general differential equation:
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dF

dh

� �2

¼ c0 þ c1F þ c2F
2 þ c3F

3 þ c4F
4; ð5Þ

whereas for the Jacobi elliptic functions (JEFs) used in Belić (2008) we had c1 ¼ c3 ¼ 0.

This differential equation has been previously used in several papers, namely in Fan

(2002), Lan-Fang et al. (2011), Wang et al. (2006) and in Zhang et al. (2013d) for

c0 ¼ c1 ¼ 0. However, the ansatz with the more general equation has never been applied to

the (3 ? 1)-D NLSE and in no case was the effect of chirp considered. In this paper we will

explicitly assume c1 6¼ 0 or c3 6¼ 0.

Applying the F-expansion method and the principle of harmonic balance we obtain the

following system of algebraic and first order differential equations for fi ði ¼
1; 2; 3Þ; a; b; k; l;m and x:

dfj

dz
þ 3abfj � cfj ¼ 0; ð6Þ

dk

dz
þ 2kab ¼ 0;

dl

dz
þ 2lab ¼ 0;

dm

dz
þ 2mab ¼ 0; ð7Þ

da

dz
þ 2ba2 ¼ 0; ð8Þ

db

dz
þ 2bab ¼ 0; ð9Þ

dx
dt

þ bðk þ lþ mÞb ¼ 0: ð10Þ

Instead of two equations for v as was obtained in Belić (2008) we obtain four equations:

f2 b k2 þ l2 þ m2
� �

c4 þ vf 2
2

� �
¼ 0; ð11Þ

f3 b k2 þ l2 þ m2
� �

c0 þ vf 2
3

� �
¼ 0; ð12Þ

f2 b k2 þ l2 þ m2
� � c3

4
þ vf1f2

� �
¼ 0; ð13Þ

f3 b k2 þ l2 þ m2
� � c1

4
þ vf1f3

� �
¼ 0: ð14Þ

Equation (11) (or Eq. (12) if f2 ¼ 0) will give us the formula for vðzÞ, given arbitrary

values of bðzÞ and cðzÞ, while the remaining three equations, if not automatically satisfied,

will impose constraints on ci (i ¼ 0; . . .; 4). For the equation for e we obtain two equations

instead of one:

de

dz
� 6vf2f3 � vf 2

1 þ b
4

6b2 � k2 þ l2 þ m2
� � f2c1 þ f3c3

f1

� �
¼ 0; ð15Þ

de

dz
� 3vf2f3 � 3vf 2

1 þ b
2

3b2 � k2 þ l2 þ m2
� �

c2

� �
¼ 0: ð16Þ

We will require an additional matching condition imposed on the coefficients ci
(i ¼ 0; . . .; 4) for both equations to be satisfied simultaneously.
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3 Results

We now proceed to solve the system of ordinary algebraic and differential equations

obtained in Sect. 2. Using standard elementary calculus, Eqs. (6)–(10) are solved as in

Belić (2008) to obtain:

fiðzÞ ¼ a3=2fi0 exp

Z z

0

cdz

� �
; ð17Þ

kðzÞ ¼ ak0; lðzÞ ¼ al0; mðzÞ ¼ am0; ð18Þ

xðzÞ ¼ x0 � a k0 þ l0 þ m0ð Þb0

Z z

0

bdz; ð19Þ

aðzÞ ¼ aa0; ð20Þ

bðzÞ ¼ ab0; ð21Þ

where:

a ¼ 1

1 þ 2a0

R z

0
bdz

ð22Þ

is the chirp function and subscript ‘0’ denoted the value of the respective function at z ¼ 0.

From solving Eqs. (11)–(14) we obtain three distinct cases.

3.1 Case I: f3 ¼ 0

Assuming f3 ¼ 0, Eqs. (12) and (14) are automatically satisfied, and from Eqs. (11) and

(13) we obtain:

f2 ¼ f1
4c4

c3

; ð23Þ

vðzÞ ¼ �bc4 k2
0 þ l20 þ m2

0

� �
f�2
10 exp �2

Z z

0

cdz

� �.
a: ð24Þ

The matching condition is:

c2 ¼ c2
3

4c4

þ 2c4c1

c3

: ð25Þ

The formula for e is:

eðzÞ ¼ e0 þ
a
2

Z z

0

bdz � k2
0 þ l20 þ m2

0

� � 2c4c1

c3

� c2
3

8c4

� �
� 3b2

0

� �
: ð26Þ

For c1 ¼ 0, the condition (25) reduces to c3 ¼ �2
ffiffiffiffiffiffiffiffiffi
c2c4

p
. A range of functions that can be

used in this case is given in Refs. Lan-Fang et al. (2011) and Zhang et al. (2013d).
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3.2 Case II: f2 ¼ 0

Assuming f2 ¼ 0, Eqs. (11) and (13) are automatically satisfied, and from Eqs. (12) and

(14) we obtain:

f3 ¼ f1
4c0

c1

; ð27Þ

vðzÞ ¼ �bc4 k2
0 þ l20 þ m2

0

� �
f�2
20 exp �2

Z z

0

cdz

� �.
a: ð28Þ

The matching condition is:

c2 ¼ c2
1

4c0

þ 2c0c3

c1

: ð29Þ

The formula for e is:

eðzÞ ¼ e0 þ
a
2

Z z

0

bdz � k2
0 þ l20 þ m2

0

� � 2c0c3

c1

� c2
1

8c0

� �
� 3b2

0

� �
: ð30Þ

For c3 ¼ 0, the condition (29) reduces to c1 ¼ �2
ffiffiffiffiffiffiffiffiffi
c2c0

p
.

For this case, the function of most interest which satisfies the necessary requirement

c0; c1 6¼ 0 is the Weierstrass elliptic function (WEF) (Lawden 1989). It is well known that

for the WEF }ðx; g2; g3Þ we have c4 ¼ c2 ¼ 0, c3 ¼ 4, c1 ¼ �g2 and c0 ¼ �g3. Using

Eq. (29) we get g3
2 ¼ 32g2

3. In Fig. 1 we see the solutions plotted with and without chirp for

g3 ¼ 1 and g2 ¼
ffiffiffiffiffi
323

p
. Thus we have shown that the WEF can also be used in the F-ex-

pansion method for solving the (3 ? 1)-D NLSE.

3.3 Case III: f2; f3 6¼ 0

Assuming both f2 and f3 are non-zero, we obtain the following equations:

Fig. 1 A solution for Case II using the Weierstrass elliptic function. The parameters are: F ¼
}ðx;

ffiffiffiffiffi
323

p
; 1Þ; f10 ¼ b0 ¼ k0 ¼ l0 ¼ m0 ¼ 1;x0 ¼ 0 and a a0 ¼ 0, b a0 ¼ 0:3
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f2 ¼ f1
4c4

c3

; f3 ¼ f1
4c0

c1

; ð31Þ

and an additional condition:

c2
3

c4

¼ c2
1

c0

ð32Þ

needed to make Eqs. (11)–(14) consistent. The formula for vðzÞ is the same as the one in

Eqs. (24). The matching condition for Eqs. (15)–(16) is:

c2 ¼ c2
3

4c4

� 2c4c1

c3

: ð33Þ

The formula for e is:

eðzÞ ¼ e0 �
a
2

Z z

0

bdz �
�

k2
0 þ l20 þ m2

0

� �� 2c4c1

c3

þ c2
3

8c4

�
þ 3b2

0

�
: ð34Þ

Note that a symmetric formula for (33) is also available using c0, c1 and c3.

For this case we will chose the following values of coefficients, which satisfy conditions

(32) and (33): c4 ¼ �1, c3 ¼ 2, c2 ¼ 0, c1 ¼ 1 and c0 ¼ �1=4. The polynomial pðFÞ ¼

c0 þ c1F þ c2F
2 þ c3F

3 þ c4F
4 has two positive zeros, giving us a range for

dF

dh
that

insures bounded solutions (Drazin and Johnson 1989). When the polynomial P has distinct

zeros, function F can be considered an inverse of Carlson’s elliptic integrals (Carlson

1987), though cases with complex conjugate zeros can also be evaluated (Carlson 1977). A

plot is given in Fig. 2. The plots depict roughly a single period of the function. We can see

that the combination of two elliptic functions, given that both f2 and f3 are non-zero. Also,

it is important to note that unlike JEF the maxima and minima of F are not the same width,

due to the asymmetry of the elliptic integral. The modulational stability of these solutions

is not addressed in this paper, though is likely that the solutions are stable since work done

in Petrović et al. (2015) has shown that in most regimes solutions to Eq. (1) obtained in

Belić (2008), Petrović (2009) are either unconditionally modulationally stable or

stable under the regime of dispersion management.

Fig. 2 A solution for Case III where function F satisfied the differential equation
dF

dh
¼ � 1

4
þ F þ 2F3 �

F4 for x ¼ y ¼ t ¼ 0. Other parameters are the same as in Fig. 1
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4 Conclusion

To sum up, we have generalized the Jacobi elliptic function expansion method for the case

of a general fourth order-polynomial for the elliptic integral. We have shown that it is

possible to use the Weierstrass elliptic function in the F-expansion method for the (3 ? 1)-

D NLSE. Finally, we have shown that general inverses of elliptic integrals may be used for

solving the (3 ? 1)-D NLSE. This opens the door to a far more general class of solutions

for the (3 ? 1)-D NLSE than what was previously obtained.
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