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Abstract The influence of substrate potential shape on the diffusion mechanism of a

classical particle is studied in the framework of a Bhatnagar, Gross, and Krook (BGK)

model, where each collision of the particle with the thermal bath reequilibrates the

velocity. In this model, the particle suffers the collisions of frequency g with the substrate

atoms. In this paper, we investigated the dynamic proprieties of one-dimensional system of

a classical particles immersed in a symmetric periodic Remoissenet–Peyrard potential

using strong collision BGK model. Molecular dynamics simulations are carried out in

order to simulate the dynamics properties of moving particle in a one-dimensional struc-

ture. Our potential model is characterized by a parameter n called deformability factor. The

analysis of the strong collision model in the deformable potential showed that the

deformability factor n play an important role in the diffusion process. Indeed, its variation

has a considerable effect on the following physical quantities: jump rate rj and simple jump

probability P1.
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1 Introduction

For a long time, many fields of science such as physics, chemistry and biology are con-

cerned with the classical atomic diffusion problem (Risken 1989; Jung 1993; Ala-Nissila

and Ying 1992). The permanent interest allocated to this topic resides on the large range of

physical applications that are related to it. The study of thin film growth on such surfaces is

very interesting. This interest stems from its important role in several areas that affect the

daily lives of each us. We can cite as an example the photovoltaic cells and the electronic

structures at low dimensions (micro and nano-capacitors). The diffusion surface has been

observed in many experiments on different systems (Ehrlich 1991; Geisler et al. 2012; Liu

et al. 2012). In the existing literature, the study of the diffusion of classical particles in a

one-dimensional (1D) periodic potential has been developed by many different approaches:

Klein-Kramers equation at high and low friction (Moro and Polimeno 1992; Ferrando et al.

1992), saw-tooth potentials (Magnasco 1993), fluctuation barriers (Reiman 1995; Hanggi

et al. 1990), systems with time-dependent periodic perturbations (Jung 1993). Also, more

efforts have been made to study the diffusion in two-dimensional periodic potential by

several theoretical models (Zayzoune et al. 2009; Chhib et al. 2004; Asaklil et al. 2003;

Lachtioui et al. 2009; Ferrando et al. 1999; Mazroui et al. 1997; Mazroui and Boughaleb

1996; Elkoraychy et al. 2014; Mazroui et al. 1998). However, the situation is not yet

developed in the case of the deformable substrate. For this reason, we devote the present

work to investigate the influence of the shape of the substrate potential on the diffusion

process. We focus our attention on the Remoissenet–Peyrard potential, where its shape can

vary continuously as a function of deformation parameter n.
The diffusion phenomenon in a periodic potential is a transport mechanism at the

microscopic scale. At this scale, the thermal energy kBT (kB and T are the Boltzmann

constant and the temperature respectively) is not negligible. In fact, the dynamic of such

particle is influenced by its collisions with the heat bath. When a single adatom moves over

a substrate, different mechanisms are possible, depending of the height barrier (compared

with the thermal energy) and the coupling strength between the substrate and the adatom

(the heat bath). For the present work, we assume that the diffusion only proceeds by jump

mechanism. At low temperature kBT\Ea (Ea is the activation barrier); the adatom spends

most part of its time oscillating at the bottom of the adsorption sites. However, when the

adatom receives enough energy from the substrate by the thermal fluctuations, it jump over

the barrier from a potential well to another. If the adatom re-thermalize in a cell which is a

nearest neighbor of the departure one, the diffusion process is called single jump; otherwise

in a long jump, the adatom rethermalizes in a lattice cell which is not a nearest-neighbor of

the departure cell. During the last few decades several theoretical works have been interest

in how diffusion occurs on 2D periodic substrate for the real systems (Elkoraychy et al.

2015; Sbiaai et al. 2013, 2014; Montalenti and Ferrando 1999; Baletto et al. 2002; Han

et al. 2014; Yildirim and Rahman 2009). They were shown that jump diffusion was favored

energetically over other processes for several systems. Here we will investigate how dif-

fusion of single adatom takes place on deformable substrate potential, what sort of atomic

jumps occur and how information about these processes has been obtained?

The purpose of the present work is to investigate the dynamic properties of particle

interacting with Remoissenet–Peyrard substrate potential within the strong collision model

by molecular dynamics simulations. It tries to achieve two main goals: (1) to demonstrate

the usefulness and versatility of the current theoretical method, and (2) to provide an up-to-

101 Page 2 of 12 A. Kotri et al.

123



date reference to theoretical results obtained for the diffusion adatom on deformable

potential.

The rest of this paper is organized as follows. In Sect. 2 we give a detail description of

our model together with the method of calculation and with the Remoissenet–Peyrard

potential. In Sect. 3 the numerical results about the jump rate rj and the probability of the

simple jump are presented and discussed. Finally, we present the conclusions in the

Sect. 4.

2 Theoretical models and method

2.1 Theoretical model

Theoretically, the jump-diffusion of a classical particle in a periodic potential can be

treated by various models. The Langevin model or the theory of Brownian motion in an

external potential is one of the most popular models, both for theoreticians and experi-

mentalists. In this approach, the moving particle is treated as a Brownian particle obedient

to periodic potential and random forces due to the thermal vibrations of the crystal cage.

This type of model is also suitable for other fields such as diffusion of adsorbed particles on

plane or vicinal surfaces (Ala-Nissila et al. 2002; Ala-Nissila and Ying 1992). The simple

approach based on the Langevin equation takes the following form:

m
dv

dt
¼ �mgvþ F rð Þ þ f tð Þ : ð1Þ

Where v is the velocity of the particle at r position, and FðrÞ the periodic force derived

from periodic potential. In the case of white noise, the random force f ðtÞ is connected to

the friction force �gmv through the second fluctuation–dissipation theorem:

\f tð Þf t0ð Þ[ ¼ 2gmkBT d t � t0ð Þ: ð2Þ

With kB and T are respectively the Boltzmann’s constant and the temperature. At low

friction, the particle will change its energy progressively, by suffering many weak colli-

sions with the heat bath (the substrate in surface diffusion). Its velocity is slightly modified

by a single collision, and the equilibration occurs because of the large number of those

collisions. The Langevin approach with a white noise is valid when the characteristic

vibrational times of the adparticle are slower than those of the substrate (Wahnström 1986).

This will happen usually when the mass of the bath particles is smaller than that of the

adsorbate. But in the opposite condition i.e., when the mass of the migrating particles is the

same order with the substrate atoms or, in any case, for light adatoms, the diffusion can be

modeled by a different approach which is based on the Boltzmann equation (Beenakker

and Krylov 1998). However, the solution of this equation is very complicated and very

expensive to solve numerically, even for dynamical systems possessing only a very modest

numbers of degrees of freedom. For that it might to make a simple approximation of the

velocity distribution of the particle after each collision. The Bhatnagar, Gross and Krook

(BGK) equation is a well-known approximation (Bhatnagar et al. 1954), which assumes

that after each collision the velocity of the particle is suddenly thermalized, i.e., after a

collision the final velocity is extracted from the Maxwell distribution at the given tem-

perature T. Within this model, the dynamics of a mobile particle subject to an external
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deterministic force FðxÞ which can describe mathematically by the following equation for

the probability density in phase space f ðx; v; tÞ:

of

ot
þ v

of

ox
þ F xð Þ

m

of

ov
¼ g M vð Þ

Z þ1

�1
f x; v; tð Þdv� f x; v; tð Þ

� �
; ð3Þ

where g is the collision frequency, FðxÞ is the periodic force coming from the potential

VðxÞ, m is the mass of the particle, and MðvÞ is the Maxwell distribution:

M vð Þ ¼ m

2pkBT

� �1
2

exp � mv2

2kBT

� �
: ð4Þ

As underlined in the introduction, in the case of the strong collision, the diffusion will

be processed by an approach which is based on the BGK model. In this latter the diffusing

particles collide with the environment at a given frequency g. After each collision, the

particle’s velocity is suddenly thermalized and it is extracted from the Maxwell distribution

at the given temperature. However, to solve numerically the BGK equation there are two

methods in literature. The first one is based on the solution of the kinetic Eq. (3) by the

Matrix-Continued-Fraction Method (Risken 1989), which is the effective method, because

it gives very accurate numerical results and it is often used to investigate the limits of

validity of analytical approaches, and it is also extremely precise and fast when dealing

with one-dimensional problems with barriers below 20KBT . By reason of that, in this work

we have solved the BGK equation by used the direct simulation method. In this framework,

the diffusing particle moves deterministically in the periodic field of force following the

Newton equation of motion (Eq. 5) until it suffers a collision. But when the collision

occurs, particle’s velocity is suddenly thermalized and it extracted from the Maxwell

distribution. In fact, the BGK model can be numerically executed as follows: at each time

step dtðdt � g�1Þ, the particle has a probability gdt to suffer a collision with the heat bath.

At each step the quantity gdt � 1 is calculated and a random number r is extracted with

uniform probability in the interval [0,1]. If r\gdt the particle suffers a collision and its

velocity is extracted from the Maxwell distribution at the desired temperature T. While, if

r[ got the particle continues its deterministic motion and the Newton equation is solved

by using an algorithm of velocity Verlet (Ferrando et al. 2000, 2005; Allen and Tildesley

1987).

2.2 Remoissenet–Peyrard potential

In order to describe various systems in condensed matter physics, more complicated

potentials than the cosine-like type potential may be required. In this work, we use a non-

linear potential with a convenient shape of the on-site potential given by Remoissenet–

Payrard to study the jump diffusion process of an adatom on a substrate. There are many

versions of this potential, but we concentrate our analyses on the most general case defined

in Ref. (Peyrard and Remoissenet 1982; Remoissenet and Peyrard 1984). Its analytical

expression is given by:

V xð Þ ¼ V0

2

1þ nð Þ2 1� cos q0xð Þð Þ
1þ n2 � 2n cos q0xð Þ
� � ; with q0 ¼

2p
a
: ð5Þ
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Here, a is the separation between two nearest minima and the parameters V0 and n
represent the potential height and the deformation parameter, respectively. Which the latter

parameter should be fulfills the following condition nj j\1. Likewise, the shape of our

potential can be varying continuously as a function of the parameter n (see Fig. 1). As can

be seen from Fig. 1, when n = 0, the potential (5) has a well-known form of a Sine–

Gordon (SG), with energy barriers Ea = V0. If n has positive values the potential lead to a

shape with sharp wells separated by flat wide barriers. On the other hand, when n is

negative the minimums become flat and separated by thin barriers (see again Fig. 1).

Furthermore, the frequency of atomic vibrations at the minimum of the substrate potential

is connected to the deformation parameter by the following formula:

xo ¼ q0
1þ n
1� n

� � ffiffiffiffiffiffi
V0

2m

r
: ð6Þ

In the last two decades considerable effort has been made to use the Remoissenet–

Peyrard (RP) potential for studying many problems of science like: to examine the

influence of deformation of the substrate potential on the dissipative (over damped)

dynamics in different commensurate structures of the Frenkel–Kontorova Model driven by

dc and ac forces (Hu and Tekic 2007), to describe the disturbance of the sinusoidal shape

of the substrate periodic potential of the Sine–Gordon equation (Braun and Kivshar 1998;

Braun et al. 2000, 1990; Remoissenet 1999), to study the relationship between synchro-

nization and the rate with which information is exchanged between nodes in a Spatio-

temporal which describes the dynamics of classical particles under a substrate RP potential

(Kakmeni and Baptista 2008), and so on (Peyrard and Remoissenet 1982; Remoissenet and

Peyrard 1984; Kakmeni and Baptista 2008; Kofané and Dikandé 1993; Dikandé and

Kofané 1994). In addition, it has also been used in many different domains such as

deformable spin model Hamiltonian, discrete lattice systems (Nguenang et al. 2005),

thermodynamically properties of kink-antikink at low temperatures (Alexander et al.

2008).

As discussed in the introduction, the main purpose of this work is to go beyond the

restrictive assumption concerning the periodic sinusoidal potential (Ferrando et al. 1999;

Elkoraychy et al. 2014; Ferrando et al. 2005), and to describe the diffusion phenomenon of

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0
0 ,0

4 ,0 x 1 0 -4

8 ,0 x 1 0 -4

1 ,2 x 1 0 -3

1 ,6 x 1 0 -3

2 ,0 x 1 0 -3

ξ = - 0.9
ξ = 0
ξ = 0.9

V(
x)

x

Fig. 1 Representation of the RP potential for different values of the deformation parameter n. For
n ¼ �0:9; 0 and 0:9
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a particle in the general case where the substrate potential is not sinusoidal, with particular

reference to the effect of the shape parameter n. For this study we performed simulations of

the molecular dynamics to solve the BGK equation in order to calculate the jump rate rj
and the probability of single jump P1 for different values of the parameter n and nor-

malized collision c.

3 Results and discussion

Very few works using deformable potential in the study of diffusion problems can be found

in literature. In this section, we present the results of our simulation, studying the influence

of substrate potential structure on the dynamics of classical particle, by using the

Remoissenet–Peyrard substrate potential, which whose shape can be varied as a function of

the deformation parameter. In order to investigate the diffusion phenomena of single

adatom on RP potential, we consider a fixed barrier Ea ¼ 6kBT which is sufficient to ensure

the jump diffusion regime, and varying the deformation parameter n and the normalized

collision frequency c which is defined by the following relation:

c ¼ g
a

2p

ffiffiffiffiffiffiffiffiffi
m

KBT

r
: ð7Þ

The simulation results are limited to jump-diffusion regime, this regime occurs when

the activation barrier is sufficiently high compared to the thermal energy. For each value of

the couple ðn; cÞ, we calculate the jump rate rj and the probability distributions of the

simple jump P1.

The simulation results for the dependence of the jump rate on the deformation

parameter n for a wide interval �1\n\1 and different values of cðc ¼ 0:1; c ¼
0:3 and c ¼ 1Þ are summarized in Fig. 2. We note that the rj increases generally with the

deformation parameter n, this increase becomes very important when the value of the

parameter c increases. This implies that the diffusion of the classical particle is very
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Fig. 2 Jump rate rj as a function
of the deformability parameter n
for three values of the normalized
collision c, at fixed barrier
Ea ¼ 6kBT
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interesting in the case where the potential have the narrow wells separated by the thick

barriers. In this specific case, the particle is well activated and makes a frequent jumps

from a well to another, instead of spending the most part of the time by making small-

amplitude oscillations around the well bottoms. When the particle has escaped a well, it

may be retrapped in a nearest-neighbor one or it may make a flight after which is captured

in a cell which is far away from the cell of departure: particle trajectories consist in ballistic

flights. While in the opposite limit, when the potential has flat bottom separated by thin

barriers, the diffusion process decreases quickly as well as the factor n tends towards -1.

On the other hand, in order to study the collision frequency effects on the diffusion

process, we have reported in Fig. 3, the behavior of the jump rate rj as a function of the

normalized collision frequency c for different values of the deformation parameter n
ðn ¼ �0:9; � 0:7; 0; 0:7 and 0:9Þ. We recall that this physical quantity rj is obtained by

dividing the total number of jumps by the simulation time.

0111,0

0,005

0,010

0,015

0,020

r j

γ

ξ = 0
  ξ = 0.7
ξ = 0.9

0,1 1 10

0,005

0,010

0,015

0,020

ξ= 0
 ξ= -0.7
ξ= -0.9

r j

γ

(a)

(b)

Fig. 3 Upper panel Jump rate rj
as a function of the normalized
collision frequency c for three
positive values of deformation
parameter nðn ¼ 0; 0:7 and 0:9Þ.
Lower panel Jump rate rj as a
function of the normalized
collision frequency c for three
negative values of deformation
parameter
nðn ¼ �0:9; � 0:7 and 0Þ
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As expected, this result shows that the usual turnover behavior that was already found in

different works on 1D and 2D (Ferrando et al. 1999; Elkoraychy et al. 2014; Ferrando et al.

2005) systems, by using the Langevin and the BGK equation. For the upper panel (Fig. 3a),

the rj has qualitatively the same behavior for the three values of the deformation parameter

n. For the low values of c, the rj increases for the three values of n until reaching a

maximum value in the vicinity of c = 1 and still tends to decrease to zero when the

collision frequency c tends to higher values. However, this increase is slightly more

important when n is set to 0.9. This behavior is quite similar to that found in previous

studies of 2D systems (Ferrando et al. 1999, 2000; Caratti et al. 1998). For the lower panel

(Fig. 3b), we have obtained qualitatively the same behavior as for the left one, except for

the deformation parameter n = -0.9. As can be seen from the figure for this value of n, the
function rj is a monotonic decreasing function with the collision frequency. This behavior

is essentially due to the structure of the periodic potential which seems to be rectangular

for n ¼ �0:9 (the width of its well increases). So, from this study the effects of the

deformation parameter n and the normalized collision frequency c on the jump rate are

qualitatively well understood. However, from a quantitative point of view, the effects on

the probability of making either simple jump are much stronger, as can be seen in Figs. 4

and 5. In Fig. 4, the probability of making single jumps P1 is reported as a function of the

deformation parameter n for three values of cðc ¼ 0:1; c ¼ 0:3 and c ¼ 1Þ. The increase of
n from -0.9 to 0.9 corresponds to a transformation of the shape potential from a narrowing

barriers and wide wells to narrow wells separated by thick barriers. So, as can be seen from

the figure, the diffusing particle has a high probability of jumping from one site to the

neighboring one when the deformation parameter increases. This is understandable since

the latter is the more stable configuration for an adsorbate due to the widening of the well.

In this limit the particle spends the most of its time by making small-amplitude oscillations

in the bottom of the wells. This behavior becomes more important when the collision

frequency increases, (i.e., at fixed n, P1ðc ¼ 1Þ[P1ðc ¼ 0:3Þ[P1ðc ¼ 0:1Þ).
In order to study in more details the effect of collision frequency c, the probability of

single jump P1 is reported as a function of c in the range 0\ c\ 1, for three different

values of n (Fig. 5). In general, as expected, the probability of simple jump P1 increases
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Fig. 4 Single-jump probability
P1 as a function of the
deformation parameter n for
c = 0.1, c = 0.3 and c = 1
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Fig. 5 Upper panel single-jump
probability P1 as a function of the
normalized collision frequency c
for the three positive values of
nðn ¼ 0; 0:7 and 0:9Þ. Lower
panel single-jump probability P1

as a function of the normalized
collision frequency c for three
negative values of
nðn ¼ �0:9; � 0:7 and 0Þ
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Fig. 6 Jump rate rj as a function
of the deformation parameter n
for two values of the normalized
amplitude Ea at fixed c = 0.3

Jump diffusion in the strong-collision model on deformable… Page 9 of 12 101

123



with increasing c. We can compare the current results with those of Refs. (Ferrando et al.

1999; Elkoraychy et al. 2014; Ferrando et al. 2000), we found qualitatively the same

behavior. For positive values of n, this increase of P1 is slightly important compared to

case corresponding to cosine-like potential as can be seen from Fig. 5a. While for negative

values (see Fig. 5b), the increase of P1 becomes weak and do not approaches to its

asymptotic value. This finding shows that the diffusing of particle cannot proceed by

simple jumps when the substrate potential presents a structure of flat bottoms separated by

sharp peaks. In this limit, the diffusion mechanism is described by a liquid-like motion

inside the unit cell.

Finally, in short, we study the effect of the normalized amplitude Ea on the jump rate rj,

to this we report in Fig. 6 the variation of the rj as a function of the deformation parameter

n for two values of Ea (Ea ¼ 5kBT and Ea ¼ 6kBT) and for c = 0.3.

The analysis of this figure shows that, for the two values of the normalized amplitude Ea

we note that the rj has the same behavior, with a clear increase of the rj when the parameter

n increases. Moreover, when the values of the normalized amplitude Ea decreases, the rj
tends to the important values. This behavior was already found by our group (Elkoraychy

et al. 2014), in which the diffusion process was studied in the 2D triangular potential. The

results have shown that, for the low values of the parameter c the jump rate increases when

the normalized amplitude decreases.

4 Conclusion

In this paper the jump rate and the simple-jump probability P1 for a particle diffusing in 1D

deformable periodic potential using a strong collision model (in which each collision with

the thermal bath suddenly thermalizes the velocity) has been calculated by direct simu-

lation of the BGK equation, our results have shown that the shape of the substrate potential

plays a crucial role in the mobility of the particle. The jump rate rj is increased with the

parameter n for the small c (0.1\ c\ 1), the increase is interesting when the parameter n
tends to high positive values; because the wells become narrow than the maxima. In

contrast, for large c (c[ 1), the decrease of the parameter n reduces the jump rate rj. Also,

the parameter n has an effect on the single-jump probability P1. As the values of the

parameter n increases, P1 reaches its maximums values more quickly. This effect is again

due to the narrowing of the wells. The results presented here are almost entirely numerical.

Although they were obtained with care, they need to be ultimately backed up by more

analytical results. Work in this direction is in progress.
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