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Abstract In this paper, a variable-coefficient generalized nonlinear Schrodinger equa-
tion, which can be used to describe the nonlinear phenomena in the optical fiber, fluid or
plasma, is investigated. Lax pair, higher-order rogue-wave and multi-soliton solutions,
Darboux transformation and generalized Darboux transformation are obtained. Wave
propagation and interaction are analyzed: (1) The Hirota and Lakshmanan—Porsezian—
Daniel coefficients affect the propagation velocity and path of each one soliton; three types
of soliton interaction have been attained: the bound state, one bell-shape soliton’s catching
up with the other and two bell-shape soliton head-on interaction. Multi-soliton interaction
is elastic. (2) The Hirota and Lakshmanan—Porsezian—Daniel coefficients affect the
propagation direction of the first-step rogue waves and interaction range of the higher-
order rogue waves.
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1 Introduction

Some of the nonlinear evolution equations with soliton or rogue-wave solutions have been
studied (Agrawal 1995; Hesegawa and Kodama 1995), such as the nonlinear Schrodinger-
type (Chabchoub et al. 2011; Solli et al. 2007; Hirota 1973; Sun et al. 2015a, b; Xie et al.
2015a) and Lakshmanan—Porsezian—Daniel (LPD) (Lakshmanan et al. 1988; Porsezian
et al. 1992; Porsezian 1997; Jia et al. 2015) equations. Those equations can be used to
describe the nonlinear phenomena in nonlinear optics, fluid mechanics, plasma physics,
biophysics and star formation (Ablowitz and Clarkson 1991; Jia et al. 2015; Agrawal 1995;
Hirota 1973; Lakshmanan et al. 1988; Porsezian et al. 1992; Porsezian 1997; Hesegawa
and Kodama 1995; Chabchoub et al. 2011; Solli et al. 2007). A rogue wave is thought of as
an isolated “huge” wave with the amplitude “much larger” than the average wave crests
around it in optics (Solli et al. 2007), ocean (Akhmediev et al. 1987), and also seen in the
Bose-Einstein condensates and superfluids (Akhmediev et al. 2009; Ankiewicz et al.
2010). A soliton is a solitary wave which preserves its velocity and shape after the
interaction (Ablowitz and Clarkson 1991), i.e., the soliton can be considered as a quasi-
particle (Benes et al. 2006; Christov and Christov 2008).

However, in the practical situations, the nonlinear phenomena are so complicated that
the higher-order terms, such as the third-order dispersion, self-steepening and other non-
linear effects, need to be taken into account (Porsezian and Nakkeeran 1995; Ankiewicz
et al. 2009). In this paper, we will work on a variable-coefficient generalized nonlinear
Schrédinger equation:

— io(x) W — it (X)W, Y +- 47(“‘)‘#1‘#‘#? + 8y () + 67(x)¢12¢*
+ 6V(x)‘//3 (lp*)z + 2V(x)w2¢; + )W + ‘//2‘10* + %l//n +iy, =0,

where  is a function of the scaled temporal coordinate 7 and spatial coordinate x, the
Hirota coefficient, «(x), and LPD coefficient, y(x), are both the real functions of x. In the
nonlinear fibre, fluid or plasma, special cases of Eq. (1) are seen as follows:

(a) When a(x) = y(x) = 0, Eq. (1) degenerates into the nonlinear Schrédinger equation,
which describes the solitons and rogue waves in the nonlinear fiber (Solli et al.
2007), water tank (Chabchoub et al. 2011) or Bose-Einstein Condensate (Wen et al.
2011).

(b) When o(x) =0 and y(x) = constant, Eq. (1) degenerates into the LPD equation,
which can be used to describe the nonlinear spin excitations in one-dimensional
isotropic biquadratic Heisenberg ferromagnetic spin with the octupole-dipole
interaction (Palacios and Fernandez-Diaz 2000; Daniel et al. 1999).

(c) When p(x) =0 and o(x) = constant, Eq. (1) degenerates into the Hirota equation
(Hirota 1973), which can be considered as a combination of the nonlinear
Schrodinger equation and modified Korteweg-de Vries equation (Hirota 1973).
Modified Korteweg-de Vries equation can describe the interfacial waves in the two-
layer liquid with gradually varying depth, Alfvén waves in the interaction-less
plasma and acoustic waves in the an-harmonic lattice (Ames 1967).

(d) When y(x) = constant and «(x) = constant, Eq. (1) degenerates into an extended
nonlinear Schrédinger equation with higher-order odd and even terms with
independent coefficients, soliton solutions of which have been attained by virtue
of the Darboux transformation (DT) (Ankiewicz and Akhmediev 2014).
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To our knowledge, Lax pair, soliton and rogue-wave solutions, DT and generalized DT of
Eqg. (1) have not been obtained. With the aid of symbolic computation (Zhen et al. 2015a,
b; Xie et al. 2015b), in Sect. 2, Lax pair, multi-soliton solutions and DT for Eq. (1) will be
attained. In Sect. 3, higher-order rogue-wave solutions and generalized DT of Eq. (1) will
be obtained. In Sect. 4, wave propagation and interaction will be discussed. Section 5 will
be the conclusions.

2 Lax pair, DT and soliton solutions of Eq. (1)
2.1 Lax pair of Eq. (1)

With the Ablowitz-Kaup-Newell-Segur procedure (Ablowitz et al. 1973), Lax pair of
Eq. (1) have the forms

—

E)[ = LEZ Rx = B?, (2)

— . . . .
where R = (ry, r2)T is a vector function while r; and r, are both the functions of x and ¢, T
denotes the transpose of a vector/matrix, and matrices L and B have the forms of

L {iﬂv " ], B {Bn By ]7
iy — il B —By

By = il? — 4i2a(x) — 8ilty(x) — %n/n//* + 2000 ()Y + 42y (x)
—3iy()WP () — a2, — 22, 4+ a4 22 (x)py!
+ iy Wy — )Y, — iy ()Y,

By = il)* — 4il2a(x)* — il y(x)yp + i (x)p () + Aidy (x)p ()
UL = 2] — A+ S 20500
+ ()W

By = idh — 4720\ — 8i3 (0 + 20" + 40y ()Y — %w,
+ 2/1“()5)% + 4127’()5)'% - 67(")'#'10*‘//: + io‘(x)‘//tt + 2”*7’()5)%1 - V(x)‘//tttv

where complex parameter 4 is independent of x and ¢. The compatibility condition B, —
L, + BL — LB = 0 leads to Eq. (1).

2.2 DT of Eq. (1)

We assume that np[(’] is a solution of Eq. (1). By virtue of Lax Pair (2), DT matrix M!! has
the form of

S CRM R P [ [
(3)

where [¢,,(41), ¢1,(21)]" is a solution of Lax Pair (2) at A = 4, and y = Y, while ¢,,
and ¢, are both the functions of x and ¢, 4, is a complex parameter independent of x and 7,
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while (H!')™" is the inverse matrix of H!!) and the sign ¥ (k =1,2,3,...,N) with Nas a
positive integer means that the matrix/function is engendered from the k-th DT. Therefore,
the first-order solutions of Eq. (1) can be given as

0 2(41 = 4) 12 (41) 971, (1)

m_ _ —. 4
Y G E () + bl 6 i) @
Iterating the DT N times, we can give the Nth-iterated potential transformation
PP S /11 /11 (5)
= D1 (A) Py (Aie) + Pra (Ak) P (Ak)
with /;s as the different complex parameters and
” Am(im - /1* )¢ ‘()Hn)
m+1j )m =m 7}'; mj )”m - * n * ’
P} =t =)0 ) g G G + b))

Am :(rbml (;“mel)d)fnl (/bm) + d)mZ(/lval)(rb:{nZ(;bm)?
j:1,2,m= 1727"'7N_ 17

where [¢y; (), ¢ (Z)]" is a solution of Lax Pair (2) at 2 =/ and ¢ = ! while
w1 (A) and ¢y, (A ) are both the functions of x and ¢.

2.3 Soliton solutions of Eq. (1)

By virtue of Expression (5), we can obtain the soliton solutions for Eq. (1). For the one-
soliton solutions 1//[1], we take z//[o] = 0 as the seed solution of Eq. (1), then, the solution

[011(41), 1a(A1)]" of Lax Pair (2) at 2 = 2, and ¢ = y!¥ is

b1 (i) = Gt [ [4)+8735(x) 1] ax (7a)

h1a(l) = TR f:[“l“(’f)%iﬁ’(x)fl]dx. (7b)

Substituting Expressions (7) into Expression (4), we can obtain the one-solition solutions
for Eq. (1).

We take N = 2 in Expression (5) and substitute Expressions (7) into Expressions (5)
and (6), we can attain the two-solition solutions for Eq. (1). If we continue such process,
the N-soliton solutions of Eq. (1) can be obtained.

3 Rogue-wave solutions and generalized DT of Eq. (1)

In this section, we will get the rogue-wave solutions for Eq. (1). To get the non-zero seed
solutions of Eq. (1), we need to take o(x) and y(x) as the constants by virtue of the method
of undetermined coefficients (Akhmediev et al. 2009; Ankiewicz et al. 2010). Thus, we
will rewrite o(x) and y(x) as « and y correspondingly in this part.
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3.1 Generalized DT of Eq. (1)

By virtue of DT (3), the generalized DT for Eq. (1) will be obtained. Guo et al. has
assumed that y is a solution of Eq. (1) and

Bl +2) (8)

is a solution for Lax Pair (2) at {y = J and A ={; +¢ where {; and ¢ are both the

parameters independent of x and ¢. Expanding 6 at {;, we have
— — — —
Ol +¢& =Eo+ Ere+ B2 4+, 9)

= 19 o~ = . .
where E; = a7 O({)]c—, (1=10,1,2,---). It can be shown that E is a solution of Lax

Pair (2) at yy = 1/~/ and 4 = (.
By virtue of DT (3), the generalized DT matrix MW of the first-step generalized DT for
Eq. (1) is

A L DA | O A S )

where (¢, ¢1,)" = E,, while ¢, and @, are both the functions of x and 7. Thus, the

first-order solutions 1/7[1] for Eq. (1) are

. ~ 2 _ * *
w[l] —J- (& El)q’lz(ﬁon) . (11)
?11(@11)" + @12(012)
As the second-step generalized DT, using DT (10) for Expression (9) and taking the limit

process, we have

— —
(MU, )® - (e+ M, )e

o —0 & (12)
_ 1 - T

=Eo+ MU B = (0a1, 22)

lim
e—0 &

~1
and find a solution (¢,;, ¢22)T for Lax Pair (2) at yy = 1//[ ] and A = {;, while ¢,; and ¢,,
are both the functions of x and ¢. Thus, we can obtain the second-step generalized DT

matrix M? as

e I D | A B IS

~2
which allows us to find the second-order solutions l,b[ ] of Eq. (1) as

50— g 2 = G)enlen)’
©021(021)" + 0 (92)"

Similarly, for the third-step generalized DT, we have

(14)
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(M), ) (MY |A:cl+s)6

113(% &2
+M[2] . +M[1] . 6
i & ) (& =t (15)
e—0 82
=2 = =
= &g+ (M[2]|z:;, + M[I]U:gl):l + M[z]‘z:g,M[l”z::, =2
= (931, (Paz)T-

~[2
Thus, we find a solution (¢, @3,)" for Lax Pair (2) at y = zp[ : and 1 = {;, while @5, and

~[3
@3, are both the functions of x and ¢. That allows us to find the third-order solutions 1//[ ] of
Eq. (1) as

JB] _ J[QJ . 2(8, - CT)(P32((P31)* .
?31(031)" + 032(032)"

If we continue such a process, the fourth- and fifth-step generalized DTs for Eq. (1) might
be obtained.

(16)

3.2 Rogue-wave solutions of Eq. (1)

In order to obtain the rogue-wave solutions of Eq. (1), we need to take the plane waves
Y= %e% as the seed solutions for Eq. (1) via the method of undetermined coefficients.
Then, the solution 6(}(, t;h) for Lax Pair (2) at yy = %eh and A = ’—\/h; is

. h—=vhr—1 _ |[h+ VR -1
i| e —e e

B -1 W1
O(x,t;h) = , (17)
SRV =T VIR
“Nom—1 ¢ w—1 )¢
where
_ VR -1 [(2+ 4h*)o + ih(5 + 8h%) /7] i ty
1 T 2+ 4R+ ih(5 + 812) /7]

N
and h is a parameter independent of x and ¢. Expanding the vector function ® (x,#; /) at
h=1, we take h = 1 + 72, where 7 is a parameter independent of x and ¢, we have

— — — —
Ox,1;1) = Zg+ B 1> + Bt -+, (18)

where

ik (2 6xo + 13ixy/7 + 17 1)

372 3
§0 - [ 6x00+ l?jjix\/_—H ’ g' - {31[1]} (19)
o (22 ) an
P32
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with

0 = ﬁie%{sﬁ (60 + 13i/7)” + 1222 (21 — /7) (63 + 13i/7)
672 (47 (60 + 130/7) — 41(60/7 + 13i7) + 38y -+ 1297°%]
+7° (88 = 1225 + 61y + 37°2)

0,[1] = ﬁﬁ{sﬁ (60 + 13i/7)” + 1222 (60 + 13iy/7) (21 + v/7)7
+ 77 (88 + 122 /7 + 61y — 37%%) + 6xy* [41 (60 + 13i\/7) + 41 (60,/7
+ 13ip) + 38ay + 129i7°7] }

By virtue of Expressions (11) and (19), we can obtain the first-order rogue-wave solutions
as

¢ [8x(610 — 13iy)y + (42 — 37)7% + 42 (3652 + 1697)]
V7 [480xay + 92 (412 4 7) + 4x2 (3602 + 169y) |

yll = (20)

By virtue of Expressions (14), (16), (18) and (19), we can obtain the second-order rogue-
wave solutions npm and third-order rogue-wave solutions wm, which are exhibited in the
“Appendix”.

If we continue such a process, the fourth- and fifth-order rogue-wave solutions for
Eq. (1) might be obtained.

4 Wave interaction and propagation
4.1 Solitons’ propagation and interaction

Figure 1 displays that the coefficients affect the propagation of one soliton: Propagation
velocity of the one soliton in Fig. 1b is larger than that in Fig. 1a; Propagation path of the
one soliton in Fig. 1a, ¢ are both S-shaped curves, while it is not in Fig. 1b. All of the
above phenomena caused by the sign of a(x). Figure 1c shows an example of the stationary
solition for Eq. (1). Besides, the solitons in Fig. 1 have the same shapes as the bright
solitons described by the nonlinear Schrodinger equation, which has been used to char-
acterized the propagation and interaction of the optical solitons (Hasegawa 2003).

-3
(@)
Fig. 1 One-soliton solutions for || via Expression (4) with the parameters A; =1+i and a of
(x) = Sy (x) = S b of afx) = — 5 y(x) = A ¢ of ox) = 5 y(x) =
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Fig. 2 One-soliton solutions for || via Expression (4) with the parameters A; =1+ 0.9/ and a of

“(x) — cosj2x7,y(x) — %; b of OC(X) — cosj4x7,y(x) — %; ¢ of O(()C) — ccsj4x7y(x) — si1122x

Figure 2 displays that the propagation path of each soliton has the double periodic
properties: one period caused by o(x) is shown in Figure 2a, b while the other period
caused by y(x) is exhibited in Fig. 2b, c.

For the interactions, Fig. 3a represents the bound state of the two solitons, where the
solitons do not diverge (Zakharov and Shabat 1972); Fig. 3b shows that the one bell-shape
soliton catches up with the other one; Fig. 3¢ exhibits the two-bell-shape-soliton head-on
interaction.

Figure 4 displays that the real parts of A; and A, affect the interaction of the two
solitions, i.e., Fig. 4a shows that the one soliton catchs up the other one and exceeds it,
while Fig. 4b exhibits the two solitons’ head-on interaction, during which the amplitude
and velocity of each soliton remain unvaried after the interaction. The two-soliton inter-
action is elastic, i.e., the amplitude and velocity of each soliton remain unvaried after the
interaction.

4.2 Rogue waves’ propagation and interaction

Figure 5a shows that the propagation direction of the first-order rogue waves is consistent
with the positive x axis. Figure 5b exhibits that the propagation direction of the first-order
rogue waves is consistent with the negative x axis. Wave crest in Fig. 5c is higher than that
in Fig. 5a, b. Besides, shapes of the rogue waves in Fig. 5 are similar to those of the rogue
waves detected in the high-speed pulse trains via the pulse-resolved filtering of long
wavelengths (Solli et al. 2007). Figure 5 displays that the Hirota coefficient, o, and LPD
coefficient, y, do not affect the shapes of the first-order rogue waves.

Fig. 3 Two-soliton interaction for || via Expression (5) with the parameters N =2 and a of
a(x) = X p(x) =805 )1 = 0.8 4 0.9, Jp = 0.2 — 0.5i; b of a(x) = — X y(x) =x ) — 0.5 4+ 0.4,
Ja =02 —0.50; ¢ of a(x) =3¢8x o(x) = — % ), = 0.5 4 0.4i, 1 = 0.2 — 0.5i
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(a)

Fig. 4 Two-soliton interaction for || via Expression (5) with the parameters N = 2, «(x) = 1,7(x) = 1 and
aof 4, =0.840.5i,4p = —0.8+0.5;; bof 2, =0.4+0.5{, 4, = 0.4+ 0.5i

Fig. 5 The first-order rogue-wave solutions for || via Expression (20) with the parameters (a) of
o=-3,y=53;bofa=3,7=53;cofa=3,7=19

Fig. 6 The second-order rogue-wave interaction for || as shown in the “Appendix” with the parameters a
of e =2,y=53;bofa=-2,y=53;cofa=2,7y=23

Figure 6 shows the two-rogue-wave head-on interaction. Interaction range of the sec-
ond-order rogue waves in Fig. 6¢ is smaller than those of the others.

Figure 7 shows the third-order rogue-wave interaction, the behaviors of which are
similar to those of the second-order rogue waves in Fig. 6.

5 Conclusions

In this paper, a variable-coefficient generalized nonlinear Schrodinger equation, Eq. (1),
has been investigated. Our main results are exhibited as follows:
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1l 1]

(b)
Fig. 7 The third-order rogue-wave interaction for || as shown in the “Appendix” with the parameters a of
o=-2,y=43;bofa=2,y=43;cof a=2,7=23

(a) Lax Pair (2), The First-Order Rogue Waves (20), second- and third-order rogue
waves shown in the “Appendix” and Multi-Soliton Solutions (5), DT (3), The
First-Step Generalized DT (10) and The Second-Step Generalized DT (13) have
been obtained.

(b) Solitons’ propagation and interaction have been analyzed: Figure 1 has displayed
that the propagation velocity of the one soliton in Fig. 1b is larger than that in
Fig. 1a, because of the sign of the Hirota coefficient o(x). Figure 1c has shown an
example of the stationary solition for Eq. (1). Shapes of the solitons in Fig. 1 are
alike except for Fig. 1b due to the sign of a(x). Besides, the solitons in Fig. 1 have
the same shapes as the bright solitons described by the nonlinear Schrédinger
equation, which has been used to characterized the propagation and interaction of
the optical solitons (Hasegawa 2003). Figure 2 has displayed that the propagation
path of each one soliton has the double periodic properties: one period caused by
o(x) is shown in Fig. 2a, b, while the other period caused by the LPD coefficient,
y(x), is exhibited in Fig. 2b, c. For the soliton interaction, Fig. 3a has represented
the bound state of the two solitons, where the solitons do not diverge; Fig. 3b has
shown that the one bell-shape soliton catches up with the other one; Fig. 3c has
exhibited the two-bell-shape-soliton head-on interaction. Fig. 4a has shown that the
one soliton catches up the other one and exceeds it, while Fig. 4b has exhibited the
two solitons’ head-on interaction, during which the amplitude and velocity of each
soliton remain unvaried after the interaction.

(c) Rogue waves’ propagation and interaction have been analyzed: Figure 5a has shown
that the propagation direction of the first-order rogue waves is consistent with the
positive x axis; Fig. 5b has exhibited that the propagation direction of the first-order
rogue waves is consistent with the negative x axis; Wave crest in Fig. 5c is higher
than those in Fig. 5a, b. Besides, shapes of the rogue waves in Figs. 5 are similar to
those of the rogue waves detected in the high-speed pulse trains via the pulse-
resolved filtering of long wavelengths (Solli et al. 2007). Figure 5 has displayed that
the Hirota coefficient, «, and LPD coefficient, ), do not affect the shapes of the first-
order rogue waves. For the rogue-wave interaction, Fig. 6 has presented the two-
rogue-wave head-on interaction: Interaction range of the second-order rogue waves
in Fig. 6¢ is smaller than those of the others. Figure 7 has shown the third-order
rogue-wave interaction, the behaviors of which are similar to those of the second-
order rogue waves in Fig. 6.

Acknowledgments We express our sincere thanks to all the members of our discussion group for their
valuable comments. This work has been supported by the National Natural Science Foundation of China

@ Springer



Lax pair, rogue-wave and soliton solutions for a... Page 11 of 14 76

under Grant No. 11272023, by the Open Fund of State Key Laboratory of Information Photonics and Optical
Communications (Beijing University of Posts and Telecommunications) under Grant No. IPOC2013B008,
and by the Foundation of Hebei Education Department of China under Grant No. QN2015051.

Appendix

The second-order rogue-wave solutions of Eq. (1):

W2 = (7 (384x° (610 — 13i7)7 (369 + 1697)” + 64x° (3652 + 1697)° + 24y

(96170 — 208ty — 2081 0y + 696it>y* — 234tay* + 291iy°) +9°

(641° — 144r%y — 180£*y* + 45)%) — 12x*y* (9984ir> ory — 6720itory>

— 16¢* (1800 + 169y) + 157> (100a* + 401y) + 241>y(2040> + 12617))

+ 192x%y* (—=52i*y (1080 + 169y) — 6tay (2520 + 3107y) — iy?

(61207 + 10309y) + 241 (60c + 1690y) ) — 48x*y* (2496itery (360> + 1697)
— 472 (64800 + 3650407y + 285617%) + (108000* 4 17503257y

+ 1735637%)))) / (v7(23040 0y (365 + 1697)° + 64x5 (36> + 169y)°

+ 48txory” (481 — 8%y + 519%) +1°(641° + 48¢*y + 108£*)* + 9y°)

+ 11520 0y* (472 (600 + 169y) — 7(108a% + 1079y))

+ 12:%y* (=360 (40 4 39y) + 16¢* (1800 + 1697) + 3y*(5560° + 5379y))
+ 48x*y? (41° (64800* + 3650407y + 285617%) + 13y(—432a* — 22320y

+ 305897%)))),

The third-order rogue-wave solutions of Eq. (1):

v (3]

— — (7 (49152x" (61 — 13iy)7 (365 + 1697)° + 4096x'? (365> + 1697)°
+ 7'2(4096¢'% — 18432¢'%) — 576001%)* — 1728001%* + 226800¢*y*
+ 113400£%)° — 14175y°) + 48xy"" (6144¢' o — 13312it'%y — 332801 ary
+ 111360ir%y> — 5760017 oy* + 1920ir%y> — 187200 o> + 165600ir*y*
+ 2862001 ay* — 936900ir*)° + 141750t0ry> — 13702507°) + 24x*y"°
(—1597440i oy + 10690560it” ory* — 5760¢° (35607 — 4545y) 7
+ 10828800i’0ry® — 7200¢* (15960% — 1993y)7” + 34675200ir oy’
— 14536800it0)° + 675(11160> — 8837y)y° + 10241'°(3965> + 169y)
— 3840%(612a” + 1261y) + 2700y (37000° + 332477)) + 960x
7 (—57680. (6840 — 308177)y + 720ir* (136200 — 68937) "
— 3328ir%y (32407 + 169y) — 4608t ory (2520 + 1261y) + 15930¢ay*
(15607 +2231y) — 1440F0ry* (273202 + 97417) + 1440it*y?
(3108a? + 10933y) + 256it°y* (219244> + 31603y) + 45iy°
(1167607 + 748199y) + 1536 (13207 + 169a7)) — 6144x'%?
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(3602 + 1697)° (6240iray (365> + 1697) — 47> (142560 + 730085y

+ 285617%) + 7(21168x" + 382824a’y + 305383y7)) + 240x*)*
(15360ir2.(27000> — 1651y)y* — 638976it" oy (1080* + 169y)

+ 34560itoy* (69400 + 36839y) + 12288ir oy (219240 + 860217)

+ 2561%(427684* + 10951207y + 285617%) — 1792°9 (324000

+ 27237607y + 134017y%) + 480¢*y* ( — 38880* + 168717627y

+ 164437y%) — 720¢%)° (1415525" + 13489680y + 15875997%)

+ 45y*(9703200" + 1922666457y + 42713269y%)) — 61440x°y°

(3602 + 169y)° (52ir*y(11664a* + 608405 + 285617) + 61y
(194400* + 36223207y + 65690377 ) + iy* ( — 1127520* — 9612720y

+ 5969249y%) — 241> (47520 + 283920°y + 2856177 ) ) + 153617
(—4160ir°7(272165" + 851760y + 285617%) + 6001 ) (142564

+ 135021607y + 1161199y7) + 720it*y* (4384800* + 308932007y

+ 1627977y%) — 45010 (1067040* + 17719440y + 4105049y°)

— 961 oy (7892640* + 9533160a’y + 13500565y%) — 180ir*y” (6847200
+ 10797800cy + 42206567y%) + 45iy* (25452000 + 4122764007y

+ 154878191y%) + 38417 (427684 + 18252007y + 14280507% ) ) — 256x°°
(179712i oy (272166* + 14196007y + 142805y%) — 11520it>ay?
(7892640* 4 821340007y + 11681449y%) + 12960y’ (3961440

+ 66638000y +291827517%) — 641°(107775360° + 689925600*y

+ 1079605800y + 24134045y°) + 720¢*y(35925120° + 571989600y

+ 155152140079 + 55322657y) — 180¢7y*(20995200° + 1087149600y
+ 3018171000y + 848461627y%) + 135y (23760000 + 668959200 *y

+ 4803206200%)” + 25721619177%) ) + 6144x7y° ( — 15y (268272005°

+ 5000205600*y + 22441827720 *y* — 191958481y°) — 1040it*y(9797764°
+ 76658400y + 154229400%) + 48268097 ) + 120ir*y* (94711680:°

+ 1288591200*y + 3135997800%y* + 62748517y ) + 270t0ry* (171072a°

+ 75621600y + 407999800y + 135293457y°) — 801 oy (51788160

+ 1029581280*y + 4448925000%y* + 4592894417%) + 961 (153964807

+ 1379851207y + 3598686007 y* + 2413404507° ) ) + 3840x"*
(—39936iray (360 + 1697)° (10802 + 1697) + 161 (3607 + 1697)° (427684
+ 10951207y + 285617%) + 768itay* (40590720 + 659262245y

+ 2066673960%)* — 62748517y) + 37*(274337284" + 13024488960y
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+ 97239355200y + 336471428807y’ — 245264645717y*) — 72¢*y
(229547520 + 5491100160°) + 33946286400*)* + 67307995040%)°

+ 24471921637%)))) / (v/7(2949120x ey (3652 + 1697)” + 4096x"2

(3607 + 169y)6 + 96txay'! (3072¢'0 — 1280F%) + 172801%) + 73440¢*y°

— 15300%y" + 19575y°) +'2(40961'* + 6144¢'%y + 34560¢%y* + 1497601%)°
+ 54000¢*y* + 486007*)° + 2025)°) + 24x*y'°(21600¢* (3160 — 5617)y’

— 172800¢%) (4o + 13y) + 10241'° (39607 + 1697) + 1920 (948a> + 56277)
— 2700¢%7* (97207 + 10993y) + 6757° (19960 + 306077)) + 5760tx ory”
(—69121% (120 + 65y) + 2561% (13207 4 169y) + 2407y (17324 + 3359y)

+ 28817 (4440 + 4067y) — 45y* (314847 + 599077)) + 3686401x" oy

(3602 + 169y)° (4% (47524 + 283920y + 2856177) + 7( — 142564

— 11887207y + 3712937%) ) + 6144x'%2 (365> + 169y)” (47> (142564

+ 7300807y + 285617%) + y( — 15984%* — 9079207y + 9513017))

+ 92166y’ (2029 (2890080 + 39430800y — 5354765y%) + 64¢°

(427680* + 18252007y + 142805)%) — 16¢*y(4626720* + 442260007y

+ 4932265)%) + 45y°(204048+" + 3111560ay + 19527885y%)) + 240x*)*
(1440r*y* (228960* + 24540007y — 396305)°) — 33281%y(9072a* + 680400%)
+ 28223%) +256° (427680* + 10951207y + 285617%) + 720r*y* (1159200

+ 10718640y + 54907977%) + 45y* ( — 826080 — 3162480y + 356235897%))

+ 256x%9°(45% (120942720° 4 2130732000*y + 12002647800%y* — 1433652357 )
+ 641°(107775360° + 689925600y + 1079605800%) + 24134045)%) — 240¢*y
(68584320° + 796068000 *y + 1569976200%y* + 30817319y%) + 540¢*>
(157075205 + 310716000*y + 7635082007y + 372920977y%) ) + 122881 ey’
(—2007%y(6998400° + 95528160y + 2728674007y + 10767497y°) + 48¢*
(153964840 + 137985124*y + 359868600y* + 24134045)° ) + 159* (26593920
+ 797856480*y + 62345790007y* + 310975024177 ) ) + 3840x")*

(16¢* (3607 + 169y)2 (427684* + 10951207y + 285617%) — 72177 (162362880*

+ 2547417600y + 926958240a*y* + 24356820807y — 815730721y*) + 37
(408706560 + 18264890880°) + 237706747200 y* + 1460838028000

+ 162851708851y)))).
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