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Abstract
The aerodynamic performance characteristics of anunmanned aerial vehicle airfoil and
wing are optimized in the lowReynolds number regime using a variable-fidelityMulti-
Level Hierarchical Kriging (MHK) surrogate modeling framework. This methodology
employs aerodynamic data obtained from computational grids of varying grid res-
olution. This approach results in an efficient framework for optimizing expensive
aerodynamic functions with the aid of lower fidelity data. The MHK-based optimiza-
tion framework is first applied to enhance the aerodynamic properties of an Eppler
E214 airfoil. The endurance factor of the airfoil is improved by 28%. Next, the aero-
dynamic characteristics of a small unmanned aerial vehicle wing is optimized. The
endurance factor of the optimal wing is improved by 12.5%, with a substantial 45
drag count reduction. The optimal wing is of a swept wing design with a leading edge
sweep of 13.6°. The evolution of a swept wing as the optimal wing design is an inter-
esting outcome of the present study. Though the effect of wing sweep is well studied
in high-subsonic and supersonic flows, its effect in the incompressible low Reynolds
number regime is quantified in the present study. Thewing sweep increases the suction
on the outboard portion of the wing leading to a higher lift coefficient of the optimal
wing. Further, the drag coefficient of the optimal wing is also reduced compared to the
baseline wing. Much of this drag reduction comes from the reduction in the pressure
drag component. Thus the wing sweep not only increases the lift coefficient, but also
decreases the drag coefficient. This leads to a significant increase in the lift-to-drag
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ratio and the endurance factor of the optimal wing design. The present results demon-
strate the optimization efficiency of the MHK modeling approach in the sensitive low
Reynolds number regime.

Keywords Low Reynolds number flow · Laminar-turbulent transition · Aerodynamic
shape optimization · Surrogate modeling · Hierarchical Kriging

1 Introduction

Unmanned Aerial Vehicles (UAV) are employed for a variety of civilian and military
applications. Austin (2010), Gundlach (2012), Jayaraman (2014) and Marshall et al.
(2016) are excellent compendiums on unmanned aircraft design and technologies.
Small/mini UAVs are gaining much importance recently since they are portable and
can be easily deployed by hand launch. The small Unmanned Aircraft Systems or
sUAS, as classified by the US Department of Defense as Group 1 and Group 2,
are categorized with maximum gross take-off weight under 55 lbs (25 kg), normal
operating altitude less than 3500 ft (1066.8 m) above ground level and air speed less
than 250 knots (128.6 m/s).

The small unmanned air vehicles andmicro air vehicles operate in the lowReynolds
number regime, O(105). The Reynolds numberRe≡Uc/ν, is based on the flight veloc-
ity U and wing chord length c, and ν is the fluid kinematic viscosity. In this Reynolds
number regime, the maximum achievable lift coefficients are lower, and the drag
coefficient values are higher than high Reynolds number vehicles. Consequently, the
maximum lift-to-drag ratio values are lower by more than an order of magnitude.
Low Reynolds number operation is also of interest for small-scale wind turbines,
low-pressure turbines of gas turbine engines, and more recently, powered flight in the
Martian atmosphere. These engineering applications necessitate an enhanced under-
standing of low Reynolds number flows for improving their aerodynamic efficiency.

At low Reynolds numbers, the laminar boundary layer on the airfoil upper surface
separates due to an adverse pressure gradient. The separated shear layer is unstable
to small disturbances and transitions to turbulence via the Kelvin–Helmholtz insta-
bility mechanism. The transitioned shear layer could reattach on the airfoil surface
well ahead of the airfoil trailing edge and a turbulent boundary layer subsequently
develops on the airfoil surface. This flow system of laminar separation, transition to
turbulence, and turbulent reattachment is referred to as a Laminar Separation Bubble
(LSB) (Tani 1964; Gaster 1967; Horton 1968; Carmichael 1981; Lissaman 1983). The
LSB occupies a substantial proportion of the airfoil chord length and alters the aero-
dynamic characteristics of the airfoil compared to inviscid flow (Mueller et al. 2003).
Further, the LSB is extremely sensitive to changes in airfoil geometry and changes in
Reynolds number or freestream turbulence intensity (Shyy et al. 2008). The designers
of UAVs and MAVs, therefore, have a challenging task of designing aerodynamically
efficient lifting surfaces for enhanced flight performance.

Optimization methods are employed to improve the aerodynamic characteristics of
airfoils and wings. Some of the early work in aerodynamic optimization employed
gradient-based methods (Hicks and Henne 1978; Jameson 1988). It is well-known
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that these methods often get trapped into a local optima and also the optimal solu-
tions depend on the initial design. Attempts to alleviate these drawbacks led to the
development of evolutionary optimization algorithms that can obtain global optimum.
However, directly coupling such optimization algorithms with high-fidelity compu-
tational codes is computationally prohibitive since a very large number of function
evaluations are required to achieve the global optimum. Surrogate-based optimization
methods are useful in such contexts. In these methods a select number of high-fidelity
computations are performed and a surrogate model is constructed using this dataset;
then the surrogatemodel is subjected to the optimizer in lieu of direct high-fidelity eval-
uations, thereby reducing the computational cost of the optimization process (Jones
et al. 1988; He et al. 2020; Qui et al. 2022). Due to a large number of design variables
involved in engineering optimization problems and also due to the fact that high-
fidelity computations are required to evaluate the function response, the construction
of a surrogate model itself is computationally demanding. Therefore, there is a need to
reduce the computational cost of the optimization process but still retain high-fidelity
information in the surrogate models. Multiple-fidelity modeling can be employed to
overcome these challenges. Kriging models are very popular in the engineering opti-
mization community for surrogate modeling (Krige 1951; Sacks et al. 1989; Queipo
et al. 2005; Jones 2001; Forrester et al. 2008; Forrester et al. 2009). These models
generally employ a single-level of fidelity. Co-Kriging models proposed by Kennedy
and O’Hagan (2000), Forrester et al. (2007) and Zadeh et al. (2016) employ two-levels
of fidelity. Han and Goertz (2012) and Han et al. (2020) proposed a Multi-Level Hier-
archical Kriging (MHK) modeling approach that employs arbitrary levels of fidelity
data. This procedure was found to be computationally efficient in aerodynamic shape
optimization.

Several optimization techniques have been applied for aerodynamic optimization
in the past. However, aerodynamic shape optimization in the low Reynolds number
regime involving laminar-turbulent flow transition have been limited. Amoignon et al.
(2006) solved the parabolized stability equations to predict the transition location,
and used the adjoint method to optimize the aerodynamic coefficients of RAE 2822
airfoil. Driver and Zingg (2007) used the eN method for transition prediction, and the
discrete-adjoint algorithm for optimization. Lee and Jameson (2009) applied the eN

method for transition prediction, and employed the gradient-based continuous adjoint
method for optimizing natural-laminar-flow airfoil and wing. Cameron et al. (2011)
performed a global optimization of natural-laminar-flow airfoil using eN method and
linear stability theory for transition prediction. Khayatzadeh and Nadarajah (2012)
used the γ -Reθ transition model and an adjoint-based shape optimization procedure
for optimizing natural-laminar-flow airfoil. Rashad and Zingg (2016) also used the eN

method for transition prediction, and sequential quadratic programming for optimiza-
tion. Han et al. (2012) performed design optimization of laminar supercritical airfoils
using a surrogate-based approach; eN transitionmethodwas employed by them. Zhang
et al. (2015) performed aerodynamic optimization of supercritical natural-laminar-
flow airfoil using the γ -Reθ transition model. Han et al. (2018) employed the full
eN method that accounts both Tollmien-Schlichting and crossflow instabilities for
transition prediction; their optimizer was a Kriging surrogate model. Chi et al. (2019)
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performed inverse design and direct optimization of transonic natural laminar flow air-
foils using surrogate-based optimization. Halila et al. (2020) performed aerodynamic
shape optimization by an adjoint-based method; their flow solver is RANS coupled
with amplification factor transport model for transition prediction. Shi et al. (2020,
2021) employed a discrete adjointmethodology to optimize natural laminar flowairfoil
and wing. Wauters and Degroote (2021) used the γ -Reθ transition model and regres-
sive co-Kriging surrogate model to optimize the wing fence of an UAV. Arshad et al.
(2021) used modeFRONTIER optimization package and XFoil aerodynamics solver
to optimize the SG6043 airfoil. Wang and Guo (2022) optimized natural laminar flow
airfoil for surface contamination conditions using non-dominated sorting genetic algo-
rithm—II andMonte Carlo simulation with XFoil as the aerodynamics solver. Sabater
et al. (2022) performed a robust design optimization of transonic natural laminar flow
wing using a surrogate based optimization strategy. Piotrowski and Zingg (2022) used
a local correlation-based transition model in conjunction with RANS-based New-
ton–Krylov flow solver and discrete-adjoint gradient-based optimization algorithm to
minimize the drag of airfoils. Nie et al. (2022) presented a surrogate-based eN method
for compressible boundary layers to be used in lieu of linear stability analysis. The
results were demonstrated on NLF-0416 and NPU-LSC-72613 airfoils. Chen et al.
(2023) performed robust optimization using adjoint-based method to design laminar
flow airfoils under uncertainties due to flight conditions. Yan et al. (2023) optimized a
natural laminar flow nacelle in transonic flow using a differential evolution algorithm
combined with a radial basis function; transition was modeled using the γ -Reθ tran-
sition. Sudhi et al. (2023) used multi-objective genetic algorithm to optimize natural
laminar flow and hybrid laminar flow airfoils. The Euler flow solver integrated with
boundary-layer coupling was used for flowfield and linear stability analysis was used
for transition prediction. Li et al. (2022) used the three-equation transition model and
optimized the performance of S809 and NLF0416 airfoils. Yu et al. (2023) optimized
the aerodynamic performance of FX63-137 airfoil for solar powered unmanned aerial
vehicle application using the k-kL-ω and γ -Reθ transition models.

It is seen that most of the existing work have focussed on design optimization
of two-dimensional airfoils. Only a few studies have dealt with three-dimensional
wing optimization. Further, these studies have considered flows at high Reynolds
numbers, and high transonic Mach numbers relevant to commercial transport aircraft.
Aerodynamic shape optimization at low Reynolds numbers of design relevance to
UAVs and MAVs have not been considered in the past and is the focus of the present
study.

The presentwork is furthermotivated by the need for an efficient aerodynamic shape
optimization methodology in the sensitive low Reynolds number regime. Our previ-
ous work in the low Reynolds number domain employed co-Kriging surrogate models
for optimization (Pranesh et al. 2018; Priyanka and Sivapragasam 2021; Das and
Sivapragasam 2024). We had obtained significant improvements in the aerodynamic
performance using this modeling approach. The Multi-Level Hierarchical Kriging
(MHK) modeling approach of Han et al. (2020) forms the basis of the present work.
Recently, Zhang et al. (2024) proposed amulti-fidelity expected improvement criterion
based on the multi-level hierarchical kriging model approach to select new samples
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of arbitrary fidelity levels and update the MHK models. Another interesting applica-
tion of hierarchical Kriging was recently proposed by Xu et al. (2024). The expert’s
experience-informed hierarchical kriging (EEI-HK)model is built in a sequentialman-
ner and was found to improve the prediction accuracy of the aerodynamics model. In
the present study, we implement the MHK modeling methodology and demonstrate
its effectiveness using an analytical test function. Then, this methodology is applied
to aerodynamic shape optimization of an Eppler E214 airfoil, and an UAV wing at a
low Reynolds number involving laminar to turbulent flow transition.

2 Multi-level hierarchical Krigingmodeling

In this section, themathematicalmodelingofMulti-LevelHierarchicalKriging (MHK)
is presented briefly. Suppose that for a chosen m-dimensional problem, with x as the
vector of design variables, the prediction of an expensive high-fidelity function

y1 � f1 (x) (1)

where y1: Rm → R, is to be accomplished with the aid of inexpensive lower-fidelity
functions

yk � fk (x) , k � 2, 3, . . . , L (2)

where yk : Rm → R. k denotes the kth level of fidelity, with k � 1 being the highest
level fidelity, and k � L the lowest level fidelity. The high-fidelity function is sampled
at S1 � [x1(1), x1(2), …, x1(n1)]T ε Rn1 × m with the corresponding responses being y1
� [y1(1), y1(2), …, y1(n1)]T ε Rn1. Similarly, the lower fidelity functions are sampled
at Sk � [xk (1), xk (2), …, x1(nk)]T ε R

nk × m, and their responses being yS,k � [yk (1),
yk (2), …, yk (nk)]T ε Rnk . In order to limit the number of high-fidelity evaluations, n1
� n2 � … � nL . We now have the high-fidelity (S1, y1), and lower-fidelity (Sk , yS,k)
datasets in the vector space. Then, the task at hand is to develop an approximation
model using these datasets to quickly predict the high-fidelity response at any untried
location x ε Rm.

The multi-level hierarchical Kriging model is formulated as

Yk(x) �
{

βk + Zk(x) k � L for the lowest level fidelity
βk ŷk + 1(x) + Zk(x) k � L − 1, L − 2, . . . , N

. (3)

It may be noted that with k � L, i.e., the lowest level fidelity, the above expression
is a pure Kriging model. However, for higher levels of fidelity, L—1, L—2,…, N , the
Kriging models are constructed in a recursive manner using a lower-fidelity Kriging
model ŷk+1(x) scaled by an unknown constant βk that serves as a model trend. Zk(x)
is a Gaussian random process representing the kth level fidelity. The predictor for the
kth level of fidelity is

ŷk(x) � βk ŷk + 1(x) + rTk (x) R−1
k

(
yS,k − βk Fk

)
(4)
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In Eq. (4), the spatial correlation function Rk , the correlation vector representing
the correlation between the untried point and the observed points rk , and the regression
matrix of the Kriging predictor Fk are defined as follows:

Rk :�
(
R
(
θk, x(i)k , x( j)k

))
i, j

∈ R
nk × nk (5)

rk :�
(
R
(
θk, x(i)k , x

))
i

∈ R
nk (6)

Fk �
{

[1, 1, . . . , 1]T ∈ R
nk k � L, the lowest level fidelity[

ŷk + 1
(
x(1)k

)
, ŷk + 1

(
x(2)k

)
, . . . , ŷk + 1

(
x(nk )k

)]T ∈ R
nk otherwise

.

(7)

In Eqs. (5–7), θk are the hyperparameter vectors for spatial correlation functions. In
the present study, the hyperparameters of each of the Kriging models are determined
bymaximizing the concentrated log-likelihood function (Toal et al. 2008). The scaling
factor βk representing the degree of correlation between twomodels of adjacent levels
of fidelity is evaluated as

βk �
(
FT
k R

−1
k Fk

)−1
FT
k R−1

k yS,k . (8)

Finally, the predictor of the MHK model is

ŷ1(x) �
L∏

k�1

βk +
L∑

k�1

[
k−1∏
i �1

βi K k(x)

]
+ K 1(x) (9)

where the first term on the right-hand side represents the global trend of the MHK
model, and the second term represents the trend of the low-fidelity data. Kk(x) is
defined as

K k(x) � rTk (x) R−1
k

(
yS,k − βk Fk

)
. (10)

The procedure for constructing a MHK is as follows. First, a Kriging model of the
lowest fidelity YL is built using the dataset (SL , yS,L). Then, using YL as a model trend,
a Kriging model of the next higher level fidelity YL-1 is built using the dataset (SL-1,
yS,L-1). In a similar manner, the Kriging models of higher level fidelities YL-2, YL-1,
…, Y2 are built using the datasets (SL-2, yS,L-2), (SL-3, yS,L-3),…, (S2, y2), respectively.
Finally, the Kriging model of the highest fidelity Y1 is built using the dataset (S1, y1).
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3 Optimizationmethodology usingMHKmodels

3.1 MHK optimizationmethodology

A general constrained high-fidelity optimization problem with the aid of lower-level
fidelity analyses can be formulated as follows:

min y1(x)

s. t. g1, i (x) ≤ 0, i � 1, 2, . . . , Nc

using yk(x) and gk, i (x), k � 2, 3, . . . , L

xl ≤ x ≤ xu

(11)

where y1(x) and g1,i(x) are the high-fidelity objective and constraint functions, respec-
tively; yk(x) and gk,i(x) are the lower-fidelity objective and constraint functions,
respectively. There are a total of L levels of fidelity, and Nc number of constraint
functions. xl and xu are the lower and upper bounds, respectively, of the design vari-
ables x.

The MHK-based optimization methodology is listed in the following steps:

(1) Design space sampling: A suitable Design of Experiments (DoE) method is
employed to sample the L levels of fidelity. A very large number of low-fidelity
samples are selected with decreasing number of samples chosen with increasing
level of fidelity.

(2) High- and lower-fidelity function evaluations: For the chosen samples, the
function responses are evaluated using the appropriate high- and lower-fidelity
numerical simulations.

(3) MHKmodel building:AKrigingmodel of the lowest fidelity is first built, followed
by successive builds of Kriging models each one using the model trend of the
previous lower level fidelity till the Kriging model of the highest fidelity is built.

(4) Infill sampling: A suitable infill sampling technique is employed to select the new
samples for the high-fidelity Kriging model.

(5) Model update: High-fidelity function evaluation is done at the new sample and
the MHK models are updated.

(6) Termination: Steps (2–5) are repeated until a termination condition is satisfied.

This process is illustrated by means of a flowchart in Fig. 1.

3.2 Demonstration of theMHK optimizationmethodology

The Branin function is chosen as the test case to demonstrate the effectiveness of the
optimization methodology discussed in the previous section. In particular, we choose
the forms of the Branin function and the lower fidelity functions used in Perdikaris
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Fig. 1 Flowchart of MHK-based optimization process (adapted from Han et al. 2020)

et al. (2017). Themathematical formulation of theminimization of the Branin function
is

min y1 ≡ f (x)

�
(

−1.275 x21
π2 +

5 x1
π

+ x2 − 6

)2

+

(
10 − 5

4π

)
cos x1 + 10

using y2 � 10
√
y1 (x − 2) + 2 (x1 − 0.5) − 3 (3 x2 − 1) − 1
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y3 � y2 [1.2 (x + 2)] − 3 x2 + 1

x1 ∈ [−5, 10], x2 ∈ [0, 15] (12)

Here, y1 is the high-fidelity function whose optimum is to be obtained with the aid
of a medium- fidelity function y2, and a low-fidelity function y3. The global minimum
of the high-fidelity Branin function y1 is f (x*)� 0.397887, at x*� (− π, 12.275), (π,
2.275) and (9.42478, 2.475) (Surjanovic and Bingham 2013). The medium- (y2) and
low-fidelity (y3) functions are obtained by shifting the phase and amplitude, and also
by non-uniformly scaling the high-fidelity Branin function. The surface plots of these
functions are plotted in Fig. 2. The Pearson’s correlation coefficient values between
the high-to-medium, high-to-low and medium-to-low fidelity models are − 0.511,
0.485, and − 0.901, respectively, using 40 randomly sampled points in x. There is a
complex nonlinear spatial cross-correlation between the three functions (Perdikaris
et al. 2017), thus making the optimization problem in Eq. (12) a good test case to
illustrate the efficiency of the MHK-based optimization methodology.

To assess the performance of the MHK-based optimization, the results of pure
Kriging of the high-fidelity function, two-level hierarchical Kriging of the high- and
medium-fidelity functions, and finally multi-level hierarchical Kriging of the high-,
medium- and low-fidelity functions are compared. The space-filling Latin Hypercube
Sampling (LHS) technique of Morris and Mitchell (1995) is used to select the number
of samples for low-fidelity (80 samples), medium-fidelity (40 samples) and high-
fidelity (10 samples). The function values are evaluated for these many samples using
their respective functions and the Kriging models are constructed. The models are

Fig. 2 Contours of high-, medium- and low-fidelity response surfaces the Branin function
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subjected to the genetic algorithm optimizer and the optimum obtained. The infill
sample points are chosen by maximizing the expected improvement (EI) function
(Jones et al. 1998), and the Kriging models are updated using high-fidelity infills. The
best-so-far convergence history of the three optimization procedures are plotted in
Fig. 3. It is seen that compared to the pureKriging or the two-level hierarchical Kriging
models, the three-level MHK model leads to faster convergence and also with lesser
number of high-fidelity function evaluations. Further, the three-level MHK results in
better convergence with the relative error defined as | f̂ (x*)—f (x*) |/f (x*), dropping
below 10–8, better than the other two models; here f (x*) is the global optimum and f̂
(x*) is the predicted optimum. The results are summarized in Table 1. It is clear that
the usage of a three-level MHK model in the optimization process is advantageous

 No. of high-fidelity infills

R
el
at
iv
ee

rr
or

0 10 20 30 40 50
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

1 - level MHK
2 - level MHK
3 - level MHK

Convergence

Fig. 3 Comparison of convergence of the three MHK models

Table 1 Summary of optimization of Branin function

Optimization
method

Number of initial
samples

Number of
high-fidelity
infills

Optimum Relative error

y1 y2 y3

Pure Kriging 10 41 0.397915966 7.28 × 10–5

Two-level
hierarchical
Kriging

10 40 19 0.397887312 7.83 × 10–7

Three-level
hierarchical
Kriging

10 40 80 11 0.397887027 6.78 × 10–8
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compared to the pure Kriging or the two-level hierarchical Kriging models. Finally,
we mention that in the analytical test case chosen here and also in the aerodynamic
shape optimization problems in Sect. 4, we have employed three levels of fidelity since
it was deemed sufficient in Han et al. (2020). However, the MHK modeling approach
can readily be extended to arbitrary levels of fidelity, if such datasets are available.

4 Aerodynamic shape optimization at low Reynolds number

The efficacy of the MHK model-based optimization approach was established in
Sect. 3.2. We now apply this methodology for aerodynamic shape optimization at a
low Reynolds number involving laminar to turbulent boundary layer transition. These
problems pertain to maximizing the endurance factor of an airfoil, and then the wing
of a small UAV. The endurance factor is chosen as the objective function here since it
is one of the key design drivers for small UAV class of vehicles (Austin 2010).

4.1 Maximization of endurance factor of Eppler E214 airfoil

The first problem is the maximization of the endurance factor of an Eppler E214 airfoil
at a Reynolds number, based on the airfoil chord length and cruise velocity, Re � 2.8
× 105, and at a freestream turbulence intensity of Tu � 0.1%. The angle of attack is
set to α � 2.5°. The E214 airfoil is a popular choice for small remotely piloted and
autonomous air vehicles. It is designed with a laminar separation ramp leading to mild
pressure recovery on the aft of the upper surface (Selig et al. 1989). This airfoil has
a maximum thickness of 11.10% at 32.14% chord location, and a maximum camber
of 4.03% at 53.16% chord location. The relatively large amount of aft camber is an
interesting geometric feature of this airfoil.

The aerodynamic optimization problem is posed as

max

⎛
⎜⎝C

3/2
l

Cd

⎞
⎟⎠

s. t.

{
Cl ≥ C∗

l
tmax ≥ t∗max

(13)

We are to maximize the endurance factor, Cl
3/2/Cd , of the airfoil subject to two

inequality constraints. The first inequality constraint is that theCl of the optimal airfoil
must be greater than or equal to theCl of the baseline airfoil,Cl

*. We have chosen Cl
*

� 0.75. The second constraint is that the maximum thickness-to-chord ratio tmax must
be greater than or equal to that of the baseline airfoil, tmax

* � 0.111. The constraints
are handled by penalizing the objective function. It must be mentioned that though the
geometric constraints are simpler to handle, the aerodynamic constraints are not. The
penalty function approach offers a simple and an efficient way to handle aerodynamic
constraints (Leifsson and Koziel 2015), and has been used in the present study.
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Fig. 4 Bezier representation of Eppler E214 airfoil with control points and their bounds

The E214 airfoil is parameterized using Bezier curves (Samareh 2001). Six control
points each are used to represent the upper and lower surfaces of the airfoil separately.
The control points η1, η6, η7and η12 are fixed to maintain x/c � 1. The control points
η2 and η11 are fixed to maintain the airfoil leading edge curvature. This leaves six
control points (η3, η4, η5, η8, η9 and η10) as design variables for optimization which
vary along the y-axis and constitute the vector of design variables. These six control
points are allowed to vary by 0.025c on either side of the baseline y-coordinate value.
This defines the design space for optimization. The control points and their bounds
are shown in Fig. 4.

The incompressible Reynolds-averaged Navier–Stokes (RANS) equations

∂

∂xi
(ρui ) � 0 (14)

∂

∂x j

(
ρui u j

) � − ∂p

∂xi
+

∂

∂x j

[
μ

(
∂ui

∂x j
+

∂u j

∂xi
− 2

3
δi j

∂ul

∂xl

)]
+

∂

∂x j

(−ρui ′u j ′
)

(15)

are solved using the CFD code Fluent which employs a finite-volume-based method
to obtain the numerical solution. In eqs. (14) and (15), ui and ui

′ are the mean and
fluctuating velocity components, respectively, p is the pressure, and ρ and μ are the
fluid density and fluid viscosity, respectively, both assumed constant. In Eq. (15),(−ρui ′u j ′

)
are the Reynolds stresses and are modeled using the Menter shear-stress

transport k-ω model (1994). Here k is the turbulence kinetic energy, and ω is the specific
dissipation rate of k. The Langtry-Menter γ -Reθ t transition model (2009) is used for
transition prediction. This model uses two transport equations, one for intermittency
γ , and another for transition momentum thickness Reynolds number Reθ t .

The computational domain extends 10c from the leading edge of the airfoil and 20c
in the downstream direction as shown in Fig. 5. A structured curvilinear body-fitted
grid of the C–H type topology is generated around the airfoil. A large number of grid
points are kept close to the airfoil surface to resolve the steep velocity gradients in
the boundary layer. It is also ensured that the near wall y+ is less than 1 for all the
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Fig. 5 Computational domain for airfoil computations

simulations. The grid is progressively coarsened away from the airfoil to maintain an
acceptable total number of grid points for the computations.

The velocity inlet boundary condition is specified at the inlet of the computational
domain. The freestream turbulence intensity is also specified at the inlet. The pressure-
outlet boundary condition is specified at the outlet of the computational domain. The
no-slip boundary condition is applied on the airfoil surface. The convective terms in
the momentum equations are discretized by a second-order accurate upwind scheme,
and the viscous terms by a second-order accurate central difference scheme. The pres-
sure values at the cell faces are interpolated using a second-order accurate central
differencing scheme. The turbulence and transition model equations are discretized
using second-order upwind schemes. The gradients used to discretize the convec-
tion and diffusion terms are evaluated by the least-squares cell-based method. The
momentum and pressure-based continuity equations are solved in a coupled manner
resulting in excellent solution convergence. The numerical calculations are performed
in double-precision arithmetic.

The high- and low-fidelity computational analyses are carried out by solving the
Reynolds-averagedNavier–Stokes equations alongwith the SST k-ω turbulencemodel
and the γ -Reθ t transition model on computational grids of varying grid resolution.
Three levels of fidelity are considered in the present optimization. The high-, medium-
and low-fidelity grids are determined by performing a careful grid independence study.
The high-fidelity grid has 916 grid points around the airfoil surface and 301 in the
normal direction; the medium- and low-fidelity grids have 640 × 206, and 456 ×
144 grids, respectively. A close-up view of the grid surrounding the airfoil for the
three grids is shown in Fig. 6. The Cl

3/2/Cd values obtained using the three grids and
the computational time required for solution convergence for each of the grids are
tabulated in Table 2. The present computational results are validated by comparing
with the experimental results of Selig et al. (1989) as shown in Fig. 7. The flow
conditions corresponding to the experimental set up are applied for the computations;
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Fig. 6 Computational grids for airfoil; a high-, b medium-, and c low-fidelity grid

Table 2 Summary of airfoil grid independence study; Re � 2.0 × 105, Tu � 0.188%, α � 4°

Grid No. of cells Cl Cd Cl
3/2/Cd Time (mins)

L1 (high-fidelity grid) 916 × 301 0.9108 0.01549 56.11 420

L2 (medium-fidelity grid) 640 × 206 0.9186 0.01472 59.79 300

L3 (low-fidelity grid) 456 × 144 0.9198 0.01451 60.80 180

(deg.)

C l

0 2 4 6 8 10
0

0.5

1

1.5

Present computation
Experiment (Selig et al.)

Fig. 7 Comparison of present computational results with experimental data for E214 airfoil

Re � 2.0 × 105 and Tu � 0.188%. An excellent agreement is obtained validating the
computational procedure.

The LHS technique is used to sample the three fidelity levels. We choose 120
samples for the low-fidelity, 30 samples for the medium-fidelity, and 6 samples for the
high-fidelity computations. It must be noted that the number of high-fidelity samples
is substantially lower than the medium- and low-fidelity samples. It is indeed the
purpose of theMHK to limit the number of high-fidelity evaluations as low as possible.
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Surrogate models are built for the endurance factor (Cl
3/2/Cd) as discussed in Sect. 2.

The Pearson’s correlation coefficient values between high-to-medium, high-to-low,
and medium-to-low fidelity models are 0.187, 0.647, and 0.229, respectively. There is
a positive correlation between the endurance factor values obtained from the different
fidelity aerodynamic computations. The GA is employed as the optimization engine.
The Expected-Improvement (EI)-based infilling strategy is employed in the current
optimization study. The sample point in the design space where an infill must be made
is obtained by maximizing the EI function using GA. A high-fidelity computation is
performed for every infill sample given by EI. The data is appended to the high-fidelity
dataset and the MHK model is built iteratively until the optimal shape is obtained by
maximizing the objective function.

The baseline and optimal airfoil geometries are plotted in Fig. 8. The thickness
constraint is satisfied in the present optimization procedure. The maximum camber of
the optimal airfoil has increased from 4.03% of the baseline to 5.83% for the optimal
airfoil. The aerodynamic characteristics of the airfoils are tabulated in Table 3.

The endurance factor of the optimal airfoil has improved by 28% compared to
the baseline airfoil. This improvement is due to the increase in the Cl of the optimal
airfoil. The Cl of the optimal airfoil has increased by 25.3 lift counts (1 lift count �
102 Cl). The increase in the maximum camber of the optimal airfoil and the delay in
flow separation have contributed to this improvement. There is an increase in Cd of
the optimal airfoil by 23.3 drag counts (1 drag count � 104 Cd). The increase in Cd is
due to the maximum thickness of the optimal airfoil being slightly thicker (11.26%)
than the baseline airfoil (11.1%). Another interesting observation is the delay in flow
separation of the optimal airfoil. The boundary layer separates at xs/c � 0.511 for the
optimal airfoil as compared to xs/c � 0.483 for the baseline airfoil. The flow transition

x/c

y/
c

0 0.2 0.4 0.6 0.8 1
-0.1

0

0.1

0.2 Optimal airfoil
Baseline airfoil

Fig. 8 Comparison of baseline and optimal airfoils

Table 3 Aerodynamic characteristics of baseline and optimal airfoils

Airfoil Cl Cd Cl
3/2/Cd xs/c xt /c xr /c lB

Baseline 0.7500 0.01117 58.15 0.485 0.727 0.744 0.259

Optimal 1.0027 0.01350 74.36 0.511 0.725 0.750 0.239
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xt /c and reattachment xr /c occur at nearly the same locations for both the airfoils. The
net result is a reduction in the length of the LSB lB for the optimal profile.

The contours of pressure coefficient Cp superimposed over streamlines are plotted
in Fig. 9. The laminar separation bubble on the upper surface of the airfoils is shown in
the inset in these frames. The Cp distribution over the optimal and baseline airfoils are
plotted in Fig. 10. The suction pressure on the upper surface of the optimal airfoil is
enhanced compared to the baseline airfoil. Further, the positive pressure on the lower
surface is also greater in the case of optimal airfoil. Consequently, the Cl of optimal
airfoil is higher than the baseline airfoil.

Fig. 9 Contours of Cp superimposed with streamlines; a baseline and b optimal geometry

x/c

C p
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Optimal airfoil
Baseline airfoil

Fig. 10 Comparison of Cp distribution over baseline and optimal airfoils
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Fig. 11 Schematic sketch of baseline wing geometry; three-dimensional model of the wing is shown in the
inset

4.2 Maximization of endurance factor of UAVwing

The second optimization problem considered is the maximization of the endurance
factor of the wing of a small UAV. The flow conditions are Re � 2.8 × 105, α � 5°,
and Tu � 0.1%. A sketch of this wing is shown in Fig. 11, with the three-dimensional
model in the inset. The wing semi-span is denoted by b. The rectangular inboard wing
is of span b1 � 0.4375b. The outboard section of the wing is tapered and has a leading
edge sweep of Λ � 8.96°, and a dihedral of Γ � 12°. The wing taper ratio, λ � ct /cr
is 0.7586, where cr and ct are the wing root and tip chord lengths, respectively. The
wing has an aspect ratio of AR� 5.93. The wing is constructed of Eppler E214 airfoil.

The aerodynamic optimization problem is

max

⎛
⎜⎝C

3/2
L

CD

⎞
⎟⎠

s. t.

{
CL ≥ C∗

L
(tmax) j ≥ (tmax)

∗
j , j � 1, 2, . . . , 5

.

(16)

The endurance factor of the wing is to be maximized subject to one CL and five
thickness constraints at the five spanwise control stations. The lift coefficient cor-
responding to cruise condition of the UAV, CL

* � 0.80 is chosen. The maximum
thickness of the baseline airfoil is tmax

* � 0.111. The constraints are absorbed in the
objective function via penalty terms.
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Fig. 12 Control stations along the span of the baseline wing

Five control stations are chosen along the wing semi-span, namely, z/b � 0 (wing
root), z/b � 0.22, z/b � 0.44, z/b � 0.72, and z/b � 1 (wing tip), for wing geometry
parameterization as shown in Fig. 12. At each of the spanwise stations the E214 airfoil
is parameterized using Bézier curves as shown earlier in Fig. 4. Thus, at each control
station there are six control points as design variables, and a total of 30 control points
(5 stations × 6 control points at each station) controlling the wing airfoil shape. The
upper and lower bounds for variation of these design variables are ηi,j ε [0.75 ηbl,1.25
ηbl], where, i � 1–6 are the movable control points at each control station, and j � 1–5
are the spanwise stations. Further, three planform geometric parameters are included
in the design optimization. They are: the rectangular portion of the wing b1/b, leading
edge sweep of the wing Λ, and wing dihedral Γ . These planform parameters are
chosen as they are the independent variables. All the other planform variables are
affected by the variation of these independent variables. For example, the tip chord
is dependent on the variation of the leading-edge sweep. The planform area depends
on the rectangular portion of the wing and leading-edge sweep. The bounds for these
planform geometric design variables are b1/b ε [0, 1], Λ ε [0, 18°] and Γ ε [0, 20°],
respectively. Thus, there is a total of 33 design variables making it a formidable wing
design optimization problem.

The computational domain uses half of the wing due to symmetry in wing geometry
about the mid-span. The computational domain inlet is set at a distance of 4b from the
wing leading edge at root chord and the outlet is set at 8b behind the wing leading edge
of the root chord. The spanwise extent of the domain is set at 3b from the symmetry
plane. The computational domain used in the present study is shown in Fig. 13. The
C–H type grid around the airfoil at the symmetry plane is swept along the span of the
computational domain to generate the grid for the wing. A fine grid is used to resolve
the boundary layers and away from the wall the grid is coarsened. The near wall y+ <
1 for all the computations.

Computations are performed for a Reynolds number Re � 2.8 × 105. This Re is
calculated based on the mean aerodynamic chord of the wing and the UAV cruise
velocity. The velocity inlet boundary condition is specified at the inlet of the computa-
tional domain. The pressure-outlet boundary condition is specified at the outlet of the
computational domain. The no-slip boundary condition is applied on the wing surface.
The computational procedure is the same as that employed for the airfoil computations
as discussed in Sect. 4.1.
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Fig. 13 Computational domain for wing computations

The optimization is performed using three levels of grids—namely, fine, medium
and coarse grids as tabulated in Table 4. The grid on the symmetry plane and on the
wing for these three grids are shown in Fig. 14. The endurance factor obtained from
simulations of these three grids and the computational time are tabulated in Table 4.

The LHS technique is used to choose 200, 50 and 5 samples for the low-, medium-
and high-fidelity CFD simulations, respectively. Computations are carried out for
these samples using their respective grids. Hierarchical Kriging surrogate models are
constructed for the wing endurance factor (CL

3/2/CD) as discussed in Sect. 2. The
Pearson’s correlation coefficient values between high-to-medium, high-to-low, and
medium-to-low fidelity models are 0.453, 0.965, and 0.277, respectively. The GA is
used for obtaining the global optimum. Subsequently, EI infilling method is employed
to update the MHK. High-fidelity computation is performed for the sample given by
the EI, and the MHK models are updated in this manner until convergence of the
objective function.

The optimal wing geometry is compared with the baseline wing in Fig. 15. The
geometrical parameters of the wing planform are compared in Table 5. A striking

Table 4 Summary of grids used for wing optimization; Re � 2.8 × 105, Tu � 0.1%, α � 5°

Grid No. of cells CL CD CL
3/2/CD Time (hours)

L1 (high-fidelity grid) 260 × 125 × 180 0.8060 0.04383 16.51 25

L2 (medium-fidelity grid) 180 × 100 × 130 0.8235 0.04514 16.56 8

L3 (low-fidelity grid) 140 × 75 × 100 0.8289 0.04549 16.59 4
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Fig. 14 Computational grids for wing; a high-, b medium-, and c low-fidelity grid

Fig. 15 Comparison of wing geometries a baseline and b optimal

Table 5 Comparison of geometrical parameters of the wing planform

Wing b b/b1 Λ (deg) Γ (deg)

Baseline 1 0.4375 8.96 12

Optimal 1 0.0288 13.62 11.32

geometrical feature of the optimal wing is the leading edge sweep right from the mid-
span. The effect of sweep on the aerodynamic characteristics ofwings in high-subsonic
and supersonic flows iswell-known (Anderson 2021;Vos andFarokhi 2015).However,
in the present work, we obtain the swept wing as an optimal wing for incompressible
flows at a low Reynolds number. Interestingly, the swept wing evolves as an optimum
design. It must be mentioned that no special preference is given to the sweep angle
as a design parameter; it is treated on par with all the other design variables in the
design optimization problem. Further, nothing special is carried out in the optimization
process to bias the optimal design towards swept wings. Thus, the evolution of the
swept wing as an optimal design is truly remarkable. It may be noted that Λ � 8.96°
for the baseline wing which has increased to Λ � 13.62° for the optimal wing. In our
recent study (Patel et al. 2023), we performed comprehensive numerical simulations
to evaluate the aerodynamic characteristics of the wing in Fig. 11 by systematically
varying the wing geometric parameters. An interesting outcome of that study was
that the wing with a leading edge sweep of Λ � 17° had the highest endurance
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factor amongst the wing geometries investigated. The drag of that wing was 19.3 drag
counts lower than the baseline wing. In the present study also we see similar trends.
These results clearly demonstrate the beneficial effects of wing leading edge sweep
on the aerodynamic characteristics of wings at low Reynolds numbers. This important
outcome, we believe, will be useful to the designers of UAV wings.

The aerodynamic performance characteristics of the baseline and optimal wings are
compared in Table 6. TheCL of the optimal wing is higher than the baseline wing. The
CD of the optimal wing is a substantial 45 drag counts lower than the baseline wing.
Themajor drag reduction comes from the pressure drag component being reduced from
0.03860 for the baseline wing to 0.03342 for the optimal wing. The lift-to-drag ratio,
another important aerodynamic performance metric, is increased by 12.1%. Finally,
the endurance factor of the optimal wing is 12.5% higher compared to the baseline
wing. These improvements in the aerodynamic parameters are substantial considering
the fact that baseline wing itself is of good aerodynamic design having been designed
by experienced designers.

The contours of Cp superimposed with limiting streamlines on the upper surface of
the baseline and optimalwings are compared in Fig. 16. The enhanced suction pressure
(Cp ~ − 0.96 to − 1.20) in the leading edge region of the optimal wing is clearly seen
in the contour plots. The higher suction region spans almost the entire wing span of
the swept optimal wing. The Cp distribution at the five spanwise stations are plotted
in Fig. 17 for both the baseline and optimal wings. It is seen that the suction pressure
peak of optimal wing at stations 2, 3, 4, and 5 is higher compared to the baseline
sections. The lift generated at the tip section is reduced in the case of optimal wing.

The spanwise lift distribution of the baseline and optimal wings are compared
in Fig. 18. In this figure the variation of the local section lift coefficient, non-

Table 6 Aerodynamic characteristics of baseline and optimal wings

Wing CL CD CL /CD CL
3/2/CD

Baseline 0.8060 0.04383 18.39 16.51

Optimal 0.8113 0.03936 20.61 18.57

Baseline wing Optimal wing

Fig. 16 Comparison ofCp contours superimposed with limiting streamlines on the upper surface of baseline
(left frame) and optimal (right frame) wings
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Fig. 17 Comparison of Cp distribution over baseline and optimal wings
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Fig. 18 Spanwise lift distribution of baseline and optimal wings

dimensionalized by the lift coefficient at the wing root, along the wing span is plotted.
The classical elliptical lift distribution (Katz and Plotkin 2001) is also plotted in Fig. 18
for comparison. It is interesting to note that both the baseline and optimal wings pro-
duce higher Cl than the equivalent elliptic loading. It may be recalled that the baseline
wing itself had an outboard leading edge sweep of Λ � 8.96° (see Fig. 11). It is seen
that at the inboard section both the wings produce nearly the same sectional Cl. How-
ever, the effect of sweep on the local lift coefficient is striking in the outboard portion
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of optimal wing. The optimal wing produces substantially higher Cl than the baseline
wing in the outboard region for y/b ≥ 0.44, reiterating the aerodynamic benefits of
wing sweep.

Some comments regarding the wing sweep in the low Reynolds number range in
the literature are in place here. Yen and Huang (2011) found that the maximum lift
coefficient of a swept wing increased by approximately 45% compared to the unswept
wing based on their experiments. Chen and Qin (2013) concluded that a swept wing
with an 18° leading edge sweep exhibited the highest lift coefficient; they also noted
that the loading was greater near the wing tips. Our current findings support their
conclusions. Okamato and Azuma (2011) conducted experimental research on the
effects of sweep on the aerodynamic characteristics of wings at Reynolds number
about 1 × 104 to understand insect flight. This Reynolds number regime is termed
ultra-low. Even at these low Reynolds numbers, they observed that the maximum lift
coefficient increased with an increasing sweep angle, particularly at high angles of
attack. It is important to note that in our present study, we limited the sweep angle to
18°, based on our recent computations (Rajiv and Sivapragasam 2024). In that study,
we found that the lift coefficient at cruise condition of theUAVdecreased afterΛ�10°;
hence, we set the range of sweep angles Λ ε [0°, 18°] in the current work. The present
optimization is performed for the UAV cruise condition. It is possible that other sweep
angles may be optimal at other flight conditions. A multi-point optimization should
be carried out to account for this. The present MHK-based optimization methodology
can readily be extended for such optimization problems.

5 Conclusions

TheMulti-Level Hierarchical Kriging (MHK) surrogate model has been implemented
for constrained aerodynamic shape optimization in the low Reynolds numbers regime.
In this Reynolds number regime the boundary layer undergoes laminar separation,
transition to turbulence of the separated shear layer, and turbulent flow reattachment
on the surface. The Reynolds numbers chosen in the present study are conducive
to promote flow transition and possible reattachment. Further, the flow at such low
Reynolds numbers are extremely sensitive to the design parameters. For example, if
the flow field exhibits a laminar separation bubble for a set of design parameters,
and for only a small perturbation in the design variables, the laminar separation bub-
ble completely disappears with a fully separated flow, leading to substantial changes
in aerodynamic force coefficients that are to be optimized. Hence the optimization
methodology should be robust to account for these sensitivities. It is remarkable that
the MHK-based optimization methodology implemented in the present study is able
to achieve this.

The application of theMHKmodeling approach resulted in an efficient and a robust
optimization framework. The efficacy of the MHK modeling framework was first
demonstrated on a three-level Branin function. Subsequently, the MHK methodology
was applied to improve the aerodynamic characteristics in the low Reynolds numbers
regime. The endurance factor of the Eppler E214 airfoil improved by 28%. Next, an
optimization study was performed to improve the endurance factor of an UAV wing
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using the MHK method. The optimal wing had leading edge sweep starting from the
wing mid-span. Though the effects of sweep on the aerodynamic characteristics of
wings at high subsonic and supersonic Mach numbers is well known, the wing sweep
evolves as an optimal wing in low Reynolds number flow regime in the present study.
In the present optimization procedure, no special status is accorded to the wing sweep
angle as a design variable; it is treated on parwith all the other design variables. Further,
no special processing is carried out in optimization procedure to handle thewing sweep
angle. The fact that the swept wing evolves as an optimal wing is indeed remarkable,
and is a novel contribution of the present paper. These results will be beneficial to UAV
designers. The endurance factor of the optimal wing had improved by 12.5%. The drag
coefficient was reduced by 45 drag counts. The present optimization methodology
can be readily extended to full aircraft configurations and also for other expensive
engineering functions particularly when variable fidelity data is available.
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