
Optimization and Engineering
https://doi.org/10.1007/s11081-023-09868-y

RESEARCH ART ICLE

Aerodynamic shape optimization of wind turbine rotor
blades using the continuous adjoint method

M. Erfan Farhikhteh1 · E. M. Papoutsis-Kiachagias1 · K. C. Giannakoglou1

Received: 10 May 2023 / Revised: 22 October 2023 / Accepted: 22 October 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
This paper presents the development of the continuous adjoint method for incom-
pressible fluid flows, solved for the absolute velocity in the relative reference
frame, allowing the optimization of rotating machines. The development is con-
ducted using an extended version of the OpenFOAM-based continuous adjoint solver
ad jointOptimisationFoam. This implements and solves the adjoint to the Navier–
Stokes system of equations, coupled with the differentiation of the Spalart–Allmaras
turbulence model. Its application to the aerodynamic shape optimization of the MEX-
ICO and NREL Phase VI wind turbines blades follows, targeting the maximization of
the axial moment. The flow solution for the two cases is compared with the outcome
of other CFD solvers and experimental data, where available. Blades and the displace-
ments of the surrounding grid nodes are parameterized using a volumetric B-Splines
morphing box. A number of optimizations are conducted using different operating
conditions and geometric constraints.

Keywords Aerodynamic optimization · Continuous adjoint · Wind turbine rotor ·
Rotating machines · MEXICO wind turbine · NREL phase VI wind turbine

1 Introduction

The consumption of energy has increased dramatically over the past few decades, with
an increasing trend to replace fossil fuels with clean renewable energies. Wind energy
has been a big part of this effort, due to its geographically wide availability and zero
pollution Liu et al. (2013). A significant increase in wind turbine (WT) installations is
expected as this stands for the fastest growing installed alternative-energy production
Lindenberg et al. (2008). Maximizing wind energy extraction is the key to increase
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the annual energy production. One of the possible approaches is to increase the swept
area of the WT blades by simply upscaling the turbine which leads to an increase in
mass by the cube of the rotor radius, introducing structural challenges for the WT
Ashuri and Zaayer (2008). Alternatively, wind energy extraction can be increased by
using shape optimization techniques, without increasing the rotor radius.

Several numerical approaches have been applied to simulate WT flows, based on
either the Blade Element Momentum (BEM) method Glauert (1983); Bai and Wang
(2016) or standard Computational Fluid Dynamics (CFD) software Castelli et al.
(2011). BEM models are the most widely used as they predict the WT aerodynamic
performance at low cost andwith a rather simple implementation. However, one obsta-
cle in using BEM codes is that lift and drag data must be at hand. Moreover, BEM
results highly depend on the accuracy of the above aerodynamic data, which might be
challenging to obtain; on the contrary, CFD is able to predict the flow field around the
WT, compute forces exerted on its blades and, thus, predict aerodynamic performance.

CFD-based aerodynamic shape optimization is used on a regular basis to design
air and ground vehicles.Chen et al. (2016); Papoutsis-Kiachagias et al. (2019); He
et al. (2020). CFD has also been deemed as a promising tool to optimize WTs perfor-
mance. The choice of the aerodynamic model has a large impact on the optimal design
Barrett and Ning (2016). Shape optimization has been used to optimize WT blades
using 3D CFD and gradient-free methods. In order to provide optimal configurations
for different design objectives using a BEM model and Evolutionary Algorithms, an
extended database generation procedure validated with adopting numerical optimiza-
tion methods for vertical axis WT design Bedon et al. (2013) was introduced. The
optimization of a vertical axis WT to maximize torque by using unsteady CFD sim-
ulations along with a differential evolution search method is presented in Carrigan
et al. (2012). In Vučina et al. (2016), a WT blade was optimized in terms of power
extraction using a 3D CFD model and a gradient-free method using 25 design vari-
ables. Furthermore, in Díaz-Casás et al. (2013), an evolutionary algorithm is used to
develop an automatic design environment for WT blades. The design process includes
a fast aerodynamic simulator and an Artificial Neural Network (ANN) correction to
reduce computational costs. Despite the use of ANN, in case of many design variables,
the optimization turn-around time of gradient-free methods might become infeasible.
For this reason, whenever dealing with a large number of design variables, gradient-
based algorithms assisted by the adjoint method become the only viable technique at
a reasonable cost solving the optimization problem.

Among the methods to compute gradients, the adjoint method Jameson (1988);
Strang (1986) has been receiving a lot of attention, due to the fact that the cost of
computing the objective function gradient is independent of the number of the design
variables. Thismakes themethod an excellent choice for large scale optimization prob-
lems. To formulate the adjoint method, a Lagrangian function is defined by adding the
sum/integral of the residuals of the flow equations (a.k.a. primal equations) multiplied
by the adjoint (or co-state) variables to the objective function to be minimized. Then,
the Lagrangian is differentiated with respect to (w.r.t.) the design variables yielding
sensitivity derivatives expressions that include the derivatives of the flow w.r.t. the
design variables. Their computation is costly and, to overcome it, their multipliers are
set to zero, giving rise to the adjoint equations and their boundary conditions. In the
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continuous adjoint approach (Kyle and Venkatakrishnan 1999; Jameson 1988, 1995;
Jameson and Reuther 1994; Alexias and Giannakoglou 2020), the objective function
is augmented using the flow equations in continuous form (PDEs) and this results to
the adjoint equations in the form of PDEs, to be discretized and numerically solved.

The first time the adjoint to the RANS equations was used to optimize the lift-
to-drag ratio of a WT blade airfoil was in Ritlop and Nadarajah (2009). Several 3D
adjoint-based shape optimizations considered rotation effects in configurations other
than those presented here. In one of them, Dhert et al. (2017), the NREL Phase VI
rotor was optimized using the RANS equations to maximize the torque coefficient by
changing the blade shape using discrete adjoint. The frozen turbulence assumption
was made for the same WT Vorspel et al. (2018), meaning that the adjoint turbulence
model equations were not included into the system of adjoint equations to optimize
the thrust. The continuous adjoint to the RANS equations, was used in Tsiakas et al.
(2019) to maximize the power of the MEXICO WT rotor with the flow and adjoint
solvers running on GPUs. In Madsen et al. (2019), a modern 10 MW offshore wind
turbine blade planformand cross-sectional shapewere simultaneously optimized using
discrete adjoint.

This work presents the development of continuous adjoint for incompressible fluid
flows, solved for the absolute velocity in the relative reference frame. Compared to the
continuous adjoint method corresponding to a stationary reference frame, new terms
emerge in the adjoint mean flow equations and the sensitivity derivatives, computed
with the so-called FI adjoint approach Kavvadias et al. (2015). The newly developed
method is implemented within the open-source toolbox OpenFOAM and includes the
adjoint to the Spalart-Allmaras turbulence model equation. This is used for the shape
optimization of the MEXICO and NREL Phase VI WTs. The goal is to maximize the
axial moment, thereby enhancing power production. Even though this paper focuses
onWTs, the developed continuous adjoint method can be used for the optimization of
other kinds of rotatingmachines, too. An equality constraint, stating that the optimized
blade should have the same volume with the initial blade, is imposed in the second
case. At a first step, the CFD analysis of theWT blades is verified/validated vis-a-vis to
other CFD solvers and experimental data, where available. Then, the adjoint method is
used to compute the gradient and support the optimization. A number of optimizations
are performed for theMEXICO and NREL Phase VIWTs, all targeting the increase of
axial moment. For the MEXICO WT, in specific, optimization is performed for both
nominal and off-design conditions and the resulting shapes are re-evaluated at other
operating conditions too.

The rest of the paper is structured as follows: in Sect. 2, the flow and adjoint
equations are presented in brief, focusing mainly on the additional and modified terms
in the adjoint equations, emerging due to the reference frame change; a comparison
with finite differences is included. Section 3 includes the verification of the flow
solver and the optimization of the two aforementioned WT blades. Finally, Sect. 4
summarizes the findings of this work.
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2 Flow and adjoint equations

2.1 Flow (primal) equations

The flowmodel is based on the steady-state RANS equations for incompressible flows,
coupled with the Spalart-Allmaras turbulence model Spalart and Allmaras (1992).
The flow equations are solved for the absolute velocity vi , i = 1, 2, 3 in the relative
reference frame. These equations coincide with those of theMultiple Reference Frame
(MRF) approach Luo et al. (1994), with a uniform angular velocity � along the entire
computational domain in our case. By representing the relative velocity components
as wi (vi = wi + ei jk� j xk where xk is measured from the origin that lies on the
rotation axis and ei jk stands for the Levi-Civita symbol), the flow equations read

Rp =−∂w j

∂x j
=0 (1a)

Rv
i =w j

∂vi

∂x j
− ∂τi j

∂x j
+ ∂ p

∂xi
+ ei jk� jvk =0 , i = 1, 2, 3 (1b)

Rν̃ =w j
∂ν̃

∂x j
− ∂

∂x j

[(

ν+ ν̃

σ

)

∂ν̃

∂x j

]

− cb2
σ

(

∂ν̃

∂x j

)2

− ν̃ P (̃ν)+ν̃ D(̃ν)=0 (1c)

RΔ = ∂

∂x j

(

∂Δ

∂x j
Δ

)

− Δ
∂2Δ

∂x2j
− 1=0 (1d)

where p is the static pressure divided by the constant fluid density, τi j = (ν +
νt )

(

∂vi
∂x j

+ ∂v j
∂xi

)

and ν and νt = ν̃ fv1 are the bulk and turbulent viscosities. Also,

fv1 = χ3

χ3+C3
v1
, χ = ν̃

ν
, cv1 = 7.1, cb2 = 0.622. Equation (1c) is solved for ν̃,

with P (̃ν) and D(̃ν) standing for the production and destruction terms of the Spalart-
Allmaras turbulence model. Equation (1d) is the Hamilton–Jacobi equation, Tucker
(2003), computing distances Δ from the nearest wall, to be used by the turbulence
model. The objective function to be maximized is the axial moment,

J =
∫

SW
ri Mei jk x j (−τklnl + pnk) dS

1
2 l AU

2∞
(2)

where �rM is the unit vector in the axial direction. The blade length is l,U∞ is the inlet
velocitymagnitude, A is the blade area perpendicular to the flowdirection and SW is the
blade surface. In some of the cases presented in Sect. 3, a geometric constraint retaining
the volume blade throughout the optimization is also used, formulated as V−Vinit

Vini t
= 0

(whereV denotes the volume of the blades and Vinit is the initial volume), and imposed
through the gradient projection method (Rosen 1960). The boundary conditions used
to “close” the primal problem are (a) Dirichlet conditions for vi and the ν̃a along with
a zero Neumann condition for p at the inlet and wall boundaries, (b) a zero Dirichlet
condition for p along with zero Neumann conditions for vi and ν̃a at the outlet and
(c) periodic conditions over the periodic boundaries of the CFD domain.
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2.2 Continuous adjoint formulation

The Lagrangian function is first defined as

L = J +
∫

�

(

ui R
v
i + qRp + ν̃a R

ν̃ + Δa R
Δ
)

d� (3)

where ui denote the adjoint velocity components, q is the adjoint pressure, ν̃a is the
adjoint turbulence variable, Δa is the adjoint distance and � stands for the com-
putational domain. The derivatives of L w.r.t. the design variables bn , n ∈ [1, N ],
yield

δL

δbn
= δ J

δbn
+

∫

�

(

ui
δRv

i

δbn
+ q

δRp

δbn
+ ν̃a

δRν̃

δbn
+ Δa

δRΔ

δbn

)

d� (4)

where δ
δbn

(.) represents total (or material) derivatives and

δ J

δbn
= 1

1
2 l AU

2∞

[ ∫

SW
rMi ei jk(−τklnl + pnk)

δx j
δbn

dS−
∫

SW
rMi ei jk x j

δτkl

δbn
nldS

+
∫

SW
rMi ei jk x j (−τkl + pδlk)

δ(nldS)

δbn
+

∫

SW
rMi ei jk x j

δ p

δbn
nkdS

]

(5)

Eq. (4) is developed by using δ
δbn

(

∂(.)
∂x j

)

= ∂
∂x j

(

δ(.)
δbn

)

− ∂(.)
∂xk

∂
∂x j

(

δxk
δbn

)

(see Papadim-

itriou and Giannakoglou (2007)), and the Gauss divergence theorem. Here, only the
differentiation of the continuity equation is indicatively shown,

∫

�

q
δRp

δbn
d� = −

∫

�

q

[

∂

∂x j

(

δw j

δbn

)

−∂w j

∂xk

∂

∂x j

(

δxk
δbn

)]

d�

= −
∫

S
qn j

δw j

δbn
dS +

∫

�

∂q

∂x j

δw j

δbn
d� +

∫

�

q
∂w j

∂xk

∂

∂x j

(

δxk
δbn

)

d�

=
∫

S
−qn j

δw j

δbn
dS +

∫

�

[

∂q

∂x j

δv j

δbn
− ∂q

∂x j
e jlk�l

δxk
δbn

+q

(

∂v j

∂xk
− e jlk�l

)

∂

∂x j

(

δxk
δbn

) ]

d� (6)

In Eq. (6), all terms including the so-called grid sensitivities, δxk
δbn

, contribute to the
sensitivity derivatives. The remaining integrals in Eq. (4) are expanded in a similar
manner. Boundary integrals including derivatives of the flow variables w.r.t. bn con-
tribute to the adjoint boundary conditions whereas field integrals of the same quantities
contribute to the field adjoint equations.
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Table 1 Adjoint boundary conditions. tli , l ∈ [1, 2] are the components of the two tangent to the surface

unit vectors, forming a local Frenet system with ni , u
l
t are the tangent adjoint velocity components aligned

with these vectors and un is the normal component of the adjoint velocity

Boundaries ui q ν̃a

Inlet ui = 0 ∂q
∂n = 0 ν̃a = 0

Outlet v j n j u
l
t + τai j n j t

l
i = 0, ∂un

∂n = 0 q = v j n j ui ni + 2τai j n j ni
∂ν̃a
∂n = 0

Wall ui = ei jkr
M
j xk

0.5AIU2∞
∂q
∂n = 0 ν̃a = 0

2.2.1 Field adjoint equations and boundary conditions

The process described above can be applied to all terms of Eq. (4) and leads to the
following field adjoint equations (for a detailed derivation see Kavvadias et al. (2015)
and Papoutsis-Kiachagias and Giannakoglou (2016))

Rq =−∂u j

∂x j
= 0 (7a)

Ru
i =u j

∂v j

∂xi
− ∂(w j ui )

∂x j
︸ ︷︷ ︸

M.T.

− ∂τ ai j

∂x j
+ ∂q

∂xi
+ei jku j�k

︸ ︷︷ ︸

A.T.

+ν̃a
∂ν̃

∂xi
− ∂

∂xl

(

ν̃a ν̃
CY
�|Y |emjk

∂vk

∂x j
emli

)

=0 , i=1, 2, 3 (7b)

Rν̃a =− ∂(w j ν̃a)

∂x j
︸ ︷︷ ︸

M.T.

− ∂

∂x j

[(

ν+ ν̃

σ

)

∂ν̃a

∂x j

]

+ 1

σ

∂ν̃a

∂x j

∂ν̃

∂x j

+2
cb2
σ

∂

∂x j

(

ν̃a
∂ν̃

∂x j

)

+ν̃a ν̃C̃ν+ ∂νt

∂ν̃

∂ui
∂x j

(

∂vi

∂x j
+ ∂v j

∂xi

)

+(−P+D) ν̃a =0

(7c)

RΔa =−2
∂

∂x j

(

Δa
∂Δ

∂x j

)

+ν̃ν̃aCΔ =0 (7d)

emerge, where τ ai j = (ν + νt )
(

∂ui
∂x j

+ ∂u j
∂xi

)

is the adjoint stress tensor and �Y is the

vorticity vector. TheCν̃a ,CY andCΔ terms are defined in Zymaris et al. (2009). Terms

marked with A.T. in Eq.7 emerge due to switching from
δw j
δb to

δv j
δb when formulating

the field adjoint equations and their boundary conditions whereas terms marked with
M.T. are different than their counterparts for stationary flows, due to the presence
of w j instead of v j in the convection terms of the momentum and turbulence model
equations (Eqs. (7b) and (7c), respectively). The adjoint boundary conditions are listed
in Table 1 (see Papoutsis-Kiachagias and Giannakoglou (2016) for the derivation).
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The primal and adjoint PDEs, Eqs. (1) and (7), are discretized and solved on
unstructured grids using the cell-centered, collocated, finite-volume infrastructure of
OpenFOAM. For the primal and adjoint pressure equations, a SIMPLE-like algorithm
is used. All convection terms are discretized using second-order upwind schemes;
central schemes are used for the diffusive fluxes, including a correction for non-
orthogonality. The Gauss divergence scheme is used for the computation of spatial
gradients, with a linear interpolation of the differentiated values from cell-centers to
cell-faces.

2.3 Sensitivity derivatives

After eliminating all other integrals in the developed form of Eq. (4), by satisfying
the adjoint field equations and boundary conditions (see Papoutsis-Kiachagias and
Giannakoglou (2016) for a detailed derivation), the remaining terms constitute the
sensitivity derivatives of J , which read

δL

δbn
=

∫

SW
τ ai j n j eikl�k

δxl
δbn

dS

︸ ︷︷ ︸

A.T.

+ 1
1
2 l AU

2∞

[ ∫

SW
rMi ei jk(−τklnl + pnk)

δx j
δbn

dS

−
∫

SW
rMi ei jk x j (τkl + pδlk)

δ(nldS)

δbn

]

−
∫

�

(

∂q

∂x j
+ ui

∂vi

∂x j
+ ν̃a

∂ν̃

∂x j
+ ui

)

e jlk�l
δxk
δbn

d�

︸ ︷︷ ︸

A.T.

−
∫

�

[

q
∂v j

∂xk
+ qe jlk�l

︸ ︷︷ ︸

A.T.

+ uiw j
∂vi

∂x j
︸ ︷︷ ︸

M.T.

+τ ai j
∂vi

∂xk
+ u j

∂ p

∂xk

+ν̃aw j
∂ν̃

∂xk
︸ ︷︷ ︸

M.T.

+
(

ν+ ν̃

σ

)

∂ν̃a

∂x j

∂ν̃

∂xk
− 2ν̃a

cb2
σ

∂ν̃

∂x j

∂ν̃

∂xk

+ν̃a ν̃CY Yi

‖ �Y‖ei jl
∂vl

∂xk
+2Δa

∂Δ

∂x j

∂Δ

∂xk

]

∂

∂x j

(

δxk
δbn

)

d� (8)

2.4 Verification of sensitivity derivatives

The continuous adjoint-based sensitivity derivatives computed by the proposedmethod
and software are firstly verified against finite-differences (FDs). Since FDs are compu-
tationally expensive due to the need to solve the flow equations twice for each design
variable, a less costly 2D mixer case, Fig. 1, is used for this purpose. The mesh con-
sists of 12288 elements, with an average y+ = 9.7/4.5 of the first cell centers off the
rotating/stationary walls. The Reynolds number, based on the diameter of the rotor
and peripheral velocity at its tip, is Re = 26, 000, the volumetric B-Splines morphing
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Fig. 1 2D mixer: Verification of the adjoint-based sensitivity derivatives with FDs. a Case geometry;
blue/red lines correspond to rotating/stationary walls. The grey area indicates the rotating part of the com-
putational domain in which the last term of Eq. (1b) is active. The lattice of control points parameterizing the
rotor is also shown. The coordinates of the control points in red act as the design variables. b, c Comparison
of the adjoint-based derivatives with FDs„ and the adjoint-stationary approach, for the x and y coordinates
of the control points. (Color figure online)

box shown in Fig. 1a is used to parameterize the rotor of the mixer and the objective
function is the axial moment. The four blue and red blades shown in the same figure
are rotating and stationary, respectively. A study on the step value of FDs (not shown
here) indicated that the FD results do not change significantly for step size 10−6 (used
in Fig. 1) and 10−7. As it can seen from Figs. 1b and c, the adjoint-based sensitivities
are in a good agreement with FDs. The same figures also present sensitivities com-
puted based on an adjoint approach that does not include the differentiation of terms
emerging from the change in the reference frame system (i.e. terms marked with A.T.
in Eqs. (7) and (8) are omitted and terms marked with M.T. use vi instead of wi ). This
approach is referred to as ’adjoint-stationary’. It is evident that, apart from computing
the wrong sensitivity magnitude, such as approach can occasionally compute wrongly
signed sensitivities (control points 49, 58, 61 in Fig1b and 45, 62 in Fig1c), which
can be detrimental for the convergence of an optimization loop. This highlights the
importance of the adjoint development presented in this paper.
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Fig. 2 MEXICO WT: CFD domain and mesh around the WT blade

3 WT Shape Optimization Results

Based on the aforementioned method, blade shapes of two Horizontal Axis WTs,
namely the MEXICO and NREL Phase VI WT ones, are optimized. In both cases, the
flow equations presented in section 2 are used to numerically predict the flow around
the WT blades.

3.1 TheMEXICOWT case

The MEXICO WT is associated with the EU project "Model Rotor Experiments
In Controlled Conditions" Schepers and Snel (2007). The computational domain �

includes one third of theWT disk, with periodic conditions. The tip radius is R = 2.25
m and the domain and mesh are presented in Fig. 2; the distance of the blade to the
inlet, outlet and top boundaries is 5R, 10R and 7R, respectively. The hybrid mesh
consists of about 107 cells, with an average y+ = 0.14 of the first cell centers of the
walls. A structured mesh is generated on the blade surface, followed by structured
layers of hexahedra around the blade; the mesh over the remaining of the domain is
unstructured with tetrahedra. The global pitch angle of the blade is −2.3◦ and the
rotational speed is 424.49 rpm.

3.1.1 Flow solver verification

Thewind speed and yaw angle are 10m/s and 0◦, respectively. The pressure coefficient
distribution on a number of different spanwise positions over the blade is shown in
Fig. 3. OpenFOAM results are compared with the outcome of the MaPFlow code
Papadakis et al. (2014) of the Lab. of Aerodynamics of NTUA and the in-house
GPU-enabled PUMA code Tsiakas et al. (2019); in all codes, the Spalart-Allmaras
turbulencemodel is used. It can be seen that all CFD predictions are in good agreement
and small differences appear only over the suction side, at 25% and 35% span, Fig. 3a
and b.

To further verify our CFD analysis against other CFD solvers, thrust and power
coefficient (Cp = Power

1
2ρU∞3A

, where Power is computed bymultiplying the aerodynamic

axial moment with the number of blades and the rotational speed, and A is the rotor
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Fig. 3 MEXICO WT, U∞ = 10m/s: Comparison of the pressure coefficient distribution computed by
OpenFOAM (Present(OF)), PUMATsiakas et al. (2019) and MaPFlowPapadakis et al. (2014), at four
spanwise positions

disk area) are computed for U∞ = 10 m/s, and compared in Table 2. It can be
seen that all CFD codes compute similar power coefficient and thrust values slightly
over-estimation only by the MapFlow code.

Experimental Svorcan et al. (2018) andCFD (CENTERCFDSchepers et al. (2012))
results showed that the highest power coefficient of the WT blade occurs at U∞ =
15 m/s, at a Tip Speed Ratio (T SR = ωR/U∞) of approximately 6.67. CFD runs
(using OpenFOAM) for six different inlet velocities namely 8, 10, 12, 15, 16, 25m/s,
were performed and the computed power coefficient and thrust force curves are plotted
in terms of TSR in Fig. 4. This figure reconfirms the experimentally found point of
max. Cp.
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Table 2 MEXICO WT: U∞ = 10m/s: Power coefficient and thrust values of the baseline geometry
computed by four different CFD codes. Over and above to the CFD solvers used in Fig. 3 to verify our
results, values from the CENTER CFD solver Schepers et al. (2012) are also included here

CFD solvers Cp Thrust [N]

OpenFOAM (present) 0.404 1107.66

PUMA Tsiakas et al. (2019) 0.399 1073.00

MapFlow Papadakis et al. (2014) 0.419 1122.91

CENTER CFD Schepers et al. (2012) 0.402 1055.55
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Fig. 4 MEXICOWT: Power coefficient (right) and thrust force (left) curves over a range of TSR, computed
by OpenFOAM (Present(OF)) and CENTER CFD Schepers et al. (2012)

Fig. 5 MEXICO WT: The
morphing box parameterizing
the blade and part of the
surrounding mesh. CPs in red
can be displaced during the
optimization whereas CPs in
blue remain still. (Color figure
online)

3.1.2 Blade optimization

After verifying our CFD results, we proceed with the aerodynamic shape optimiza-
tion of the WT blade at two inlet velocities, namely U∞ = 10m/s (case A) and
U∞ = 15m/s (case B), with the axial moment, Eq. (2), being the objective function to
be maximized. The shape of the blade is parameterized using a 6 ×12×6 volumetric
B-Splines morphing box, with 432 control points (CPs) in total, Fig. 5. After 15 opti-
mization cycles, the axial moment has increased by 11.13% and 2.89%, in case A and
case B, respectively, Table 3; from the latter, it can also be seen that thrust increased
in case B and decreased in A. In addition, Fig. 6 presents the convergence of the axial
moment for case A. No stopping criterion was used; instead, it was decided to run
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Table 3 MEXICO WT: Power
coefficient and thrust values of
the baseline and optimized
geometries, at U∞ = 10m/s and
U∞ = 15m/s

Blade Cp Thrust [N]

Baseline at 10m/s 0.404 1107.66

Optimized at 10m/s (case A) 0.449 1065.75

Baseline at 15m/s 0.483 1843.17

Optimized at 15m/s (case B) 0.497 1998.90
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Fig. 6 MEXICO WT: Convergence of the objective function of Case A; all values have been normalized
with the objective function value of the initial geometry

(a) 25% Span (b) 35% Span

(c) 60% Span (d) 82% Span

Fig. 7 MEXICO WT: Comparison of the baseline (black), and the optimized for case A (green) and case
B (magenta) blade geometries, at four spanwise positions. (Color figure online)

for 15 optimization cycles at which point, results are considered as indeed no more
changing.

In both cases, the optimization has mainly changed the shape of the blades close to
its tip, Fig. 7. It bended the tip towards the axial flow direction and slightly increased
the blades yaw angle at the same position (Fig. 7d). The part from the root to the mid
of the blade was displaced mostly over the pressure side, whereas the rest remained
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(a) Pressure side

(b) Suction side

Fig. 8 MEXICO WT, optimized geometry of case A: Cumulative normal displacement over the blade
surface. Positive/negative signs (red/blue colors) indicate inward/outward displacements. (Color figure
online)

(a) Pressure side

(b) Suction side

Fig. 9 MEXICO WT, optimized geometry of case B: Cumulative normal displacement over the blade
surface; color interpretation as in Fig. 8

Table 4 MEXICO WT: The
Reynolds number at four
spanwise positions, at
U∞ = 10m/s and U∞ = 15m/s

Span (%) ReU∞=10 m/s ReU∞=15 m/s

25 392988 425509

35 461136 482389

60 571852 581428

82 609545 615100

practically unchanged. The part from the mid to the tip experienced noticeable dis-
placements mostly close to the trailing edge and over the pressure side. This was
expected because most of the power extraction occurs near the tip. Figure7c and d
show that the optimized geometry of case A is thinner than that of case B; practically,
this causes the reduction in the thrust of case A (Table 3). Additionally, to get a clear
view on local displacements along the blade span, the cumulative normal displacement
of the optimized blade surfaces are presented in Figs. 8 and 9, respectively. Table 4
displays the Reynolds numbers at various spanwise positions for both U∞ = 10m/s
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Fig. 10 MEXICO WT, U∞ = 10m/s: Comparison of the pressure coefficient distributions and peripheral
force integrands [N/m2] of the baseline and optimized (case A) blades at four spanwise positions. The
left and right axes correspond to the pressure coefficient (magenta/blue indicate baseline/optimized) and

peripheral force (green/yellow indicate baseline/optimized), respectively. FBase
p [N] and FOpt

p [N] present
the integral of the peripheral force of the baseline and optimized blades in each spanwise position. Colored
arrows indicate the correspondence between the colored curves and the left or right axes. (Color figure
online)

andU∞ = 15m/s. As the chord length of the optimized geometry remains unchanged
compared to the baseline, the Reynolds numbers for both baseline and optimized
designs are identical.

The pressure coefficient and peripheral force distributions of the baseline and opti-
mized geometries for cases A and B are also plotted in Figs. 10 and 11, respectively, at
a number of spanwise positions. It is evident that changes in the peripheral force, and
hence in the axial moment, are more pronounced in the upper part of the blade. The
part close to the root of case A (Fig. 10a and b) contributes to the change in the pressure
coefficient more than that of case B (Fig. 11a and b). Another interesting observation
is that, in case A, no significant pressure coefficient difference is observed close to
the leading and trailing edges of the initial and optimized geometries. On the other
hand, these are the positions with the highest pressure coefficient changes between the
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Fig. 11 MEXICO WT, U∞ = 15m/s: Comparison of pressure coefficient distributions and the peripheral
forces integrands of the baseline and optimized (case B) blades at four spanwise positions, notations as in
Fig. 10

optimized blade of case B and the initial one. To help interpret the local flow changes
and their impact on the generatedmoment, the sum of the peripheral force (Fp) at each

spanwise position is also given, for the baseline (FBase
p [N ]) and optimized (FOpt

p [N ])
geometries (sub-captions of Figs. 10 and 11). From the peripheral force curves, it can
be seen that the decrease in the local peripheral force close to the leading edge on the
suction side is compensated by an increase close to the leading edge on the pressure
side and an increase over the mid-chord of the blade, over both sides; this general
trend is observed in both cases.

Similar comments can be made by examing Figs. 12 and 13 which illustrate the
contribution of the blade surface points to the change in axial moment. Mid and tip
blade areas contribute more compared to the practically negligible contributions of
the root. Figures12a and 13a show that, in both cases, the highest increase in axial
moment results from shape changes over the pressure side at mid-to-tip, close to the
leading part.
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(a) Pressure side

(b) Suction side

Fig. 12 MEXICO WT, optimized blade in case A: Contribution of blade surface nodes to the increase in
axial moment after the optimization

(a) Pressure side

(b) Suction side

Fig. 13 MEXICO WT, optimized blade in case B: Contribution of blade surface nodes to the increase in
axial moment after the optimization

Fig. 14 MEXICO WT: Power
coefficient curve as a function of
the tip-speed ratio (TSR) of
baseline and optimized
geometries
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It is interesting to evaluate geometries from case A (optimized at 10m/s) and B
(optimized at 15m/s) at operating points they weren’t optimized for. Figure14 illus-
trates the power coefficient curve of the baseline geometry (see also Fig. 4) and the
performance of the blades optimized in case A and B, both evaluated at 15m/s and
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Fig. 15 NREL VI WT Case: CFD domain

10m/s. It can be seen that the geometry optimized in case A not only outperforms the
baseline one at the conditions this was optimized for, but also has a slightly higher
power coefficient than the baseline one at 15m/s (TSR=6.67) too. On the contrary, the
geometry optimized in case B has a power deficit compared to the baseline one, when
evaluated at conditions it was not optimized for (10m/s, TSR=10).

3.2 NREL phase VIWT case

The National Renewable Energy Laboratory (NREL) completed an experimental test
for a Phase VIWT in a wind tunnel (24.4× 36.6 m) at NASA’s Ames Research Center
Simms et al. (2001). Herein, the computational domain � includes half of the WT
disk, with periodic boundary conditions. The tip radius is R = 5.029m, the domain
and mesh are presented in Fig. 15 (the distance of the blade to the inlet, outlet and top
boundaries is 5R, 10R and 7R, respectively). A hybrid CFD mesh with ∼ 7 × 106

cells was generated, with an average non-dimensional distance of the first cell centers
off the walls equal to 36. The rotational speed is 71.9 rpm and the global pitch angle
is 5◦.

3.2.1 Flow solver verification

The wind speed and yaw angle are 7m/s and 0◦, respectively. The pressure coefficient
distribution at a number of different spanwise positions over the blade is shown in
Fig. 16. OpenFOAM predictions are compared with wind tunnel measurements from
the NREL wind tunnel Simms et al. (2001) and predictions using ANSYS FLUENT
published in Mo and Lee (2012). Despite the use of different meshes, the two CFD
results are in good agreement with measurements.

3.2.2 Wind turbine blade optimization

The objective function to be maximized is still the axial moment, Eq. (2). In addi-
tion, a constraint on the blade volume to be equal to that of the baseline geometry
is also applied. The gradient of the constraint function is taken into account using
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Fig. 16 NREL Phase VI WT Blade: Comparison of the pressure coefficient distribution computed by the
present (OpenFOAM) code, ANSYS FLUENT (Mo. et al) (Mo and Lee 2012) and measurements Simms
et al. (2001), at five spanwise positions
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Fig. 17 NREL Phase VI WT: A
6 ×24×6 volumetric B-Splines
morphing box parameterizes the
blade and part of the
surrounding mesh. CPs in red
can be displaced during the
optimization whereas those in
blue remain still. (Color figure
online)

Table 5 NREL Phase VI WT:
Power coefficient and thrust
values of the baseline and
optimized geometries

Blade Cp Thrust [N]

Baseline 0.309 1080.72

Optimized 0.345 1282.30
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Fig. 18 NREL Phase VI WT: Convergence of the objective function; all values have been normalized with
the objective function value of the initial geometry. (Color figure online)

the method presented in Rosen (1960). 864 CPs were used to parameterize the blade
using the volumetric B-Splines morphing box presented in Fig. 17. After 15 cycles,
the axial moment has increased by 11.65%, Table 5. In addition, Fig. 18 illustrates the
convergence of the axial moment during the optimization process.
It can be seen from Fig. 19 that the optimization method has mainly changed the shape
of the blade close to its tip, as expected. Smaller changes can also be seen close to the
root, where the blade is bended towards the flow direction. From the mid to the tip of
the blade, the trailing edge practically remained intact, whereas the largest deformation
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(a) R0.3 (b) R0.47

(c) R0.63 (d) R0.8

(e) R0.95

Fig. 19 NREL Phase VI WT: Comparison of the baseline (black) and optimized (red) blade sections at a
number of spanwise positions. (Color figure online)

Table 6 NREL Phase VI: The
Reynolds number at five
spanwise positions

Span Re

0.3R 596367

0.47R 783897

0.63R 893471

0.8R 941876

0.95R 926534

occurred at the leading part of the blade. Even though the parameterization was not
setup in such a way, it is as if the optimization rotated the blade sections around the
trailing edge, towards the flow direction. Table 6 presents the Reynolds numbers at
different spanwise positions. Since the chord length of the optimized geometry remains
unchanged relative to the baseline, the Reynolds numbers for both the baseline and
optimized designs are identical.
Fig. 20 presents the cumulative normal displacement of the optimized NREL Phase VI
blade surface. It can be observed that the highest displacement occurs at the leading
edge, at the mid and upper part of the blade, whereas the trailing edge displacement
is almost zero (see Fig. 19).

The pressure coefficient and the peripheral force distributions of the baseline and
optimized geometries of the NREL Phase VI WT are plotted in Fig. 21 at a number
of spanwise positions. It can be seen that the largest increase in the pressure coef-
ficient occurs at the tip. The leading edge of the optimized blade experiences the
highest change in the pressure coefficient, with minor changes close to the trailing
edge. The trailing part of the optimized blade doesn’t exhibit high peripheral force
differences compared to the baseline one. The largest changes in the peripheral force
occur between the mid-chord to the leading part of the blade; moreover, it is shown
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(a) Pressure side

(b) Suction side

Fig. 20 NREL Phase VI WT: Cumulative normal displacement over the blade surface. Positive/negative
signs (red/blue colors) indicate inward/outward displacements. (Color figure online)

that the optimization run increased FOpt
p with respect to FBase

p from the root to the
tip of the blade, approximately by the same percentage.

Figure 22 demonstrates the local axial moment change along the NREL Phase VI
blade after 15 optimization cycles. It can be seen that the optimized blade exhibits
high axial moment change close to the tip, with almost negligible changes close to
the root. The leading part of the blade contributed the most to the increase in axial
moment, whereas the value at the trailing part remains almost unchanged compared to
the baseline design. Figure22b shows that the largest increase in axial moment occurs
at the leading edge on the suction side of the blade, close to its tip. This coincides with
the areas of high peripheral force variations (Fig. 21c, d and e). The largest decrease in
the axial moment occurs over the pressure side, close to the tip of the blade, at about
mid-chord.

4 Conclusions

This paper demonstrates the application of an enhanced version of the publicly avail-
able ad jointOptimisationFoam software, an adjoint-based optimizer developed
in-house for OpenFOAM, in the context of optimizing theMEXICO and NREL Phase
VI wind turbines, with a focus on maximizing the axial moment. The software’s capa-
bilities were augmented through the inclusion of adjoint terms that account for the
computational domain’s rotation, resulting in additional terms in the adjoint continuity,
momentum equations and sensitivity derivatives expressions. Applying this extended
software to the MEXICO wind turbine revealed a remarkable 11.13% increase in
the axial moment for the blade optimized at U∞ = 10m/s. This improvement was
achieved primarily by bending the blade tip in the axial direction and adjusting the
blade yaw angle near the tip. For the MEXICO blade optimized at U∞ = 15m/s,
a 2.89% increase in the axial moment was observed. Analyzing TSR-Cp curves, it
becomes evident that the blade optimized at U∞ = 10m/s exhibited more robust per-
formance compared to both the initial design and the blade optimized forU∞ = 15m/s.
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Fig. 21 NREL Phase VI WT: Comparison of pressure coefficient distributions and peripheral force
integrands of the baseline and optimized blade, at five spanwise positions; notation as in Fig. 10
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(a) Pressure side

(b) Suction side

Fig. 22 NREL Phase VI WT: Contribution of blade surface nodes to the increase in axial moment after the
optimization

Additionally, the axial moment of the NREL Phase VI wind turbine increased by
11.65%. This enhancement was predominantly attributed to changes in the leading
part on the suction side of the optimized geometry, primarily stemming from periph-
eral force variations on the suction side.Notably, the volumeof the optimized geometry
remained consistent with that of the initial design throughout the optimization pro-
cess. The most significant deformations occurred at the blade’s leading edge, near the
tip, where substantial alterations in the pressure coefficient distribution between the
baseline and optimized blade were observed.
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