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Abstract
Maintenance activities are inevitable and costly in integrated mining operations. Con-
ducting maintenance may require the whole system, or sub-units of the system, to
be shut down temporarily. These maintenance activities not only disrupt the unit
being shut down, but they also have consequences for inventory levels and prod-
uct flow downstream. In this paper, we consider an interconnected mining system
in which there are complicated maintenance relationships and stock accumulation at
intermediate nodes. We propose a time-indexed mixed-integer linear programming
formulation to optimize the long-term integrated maintenance plan and maximize the
total throughput. We also devise an algorithm, which combines Benders decomposi-
tion and Lagrangian relaxation, to accelerate the computational speed. To validate our
mathematical model, we perform simulations for a real-world case study in the iron
ore industry. The results show that our method can yield better solutions than CPLEX
optimization solver alone in faster time.
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1 Introduction

Maintenance shutdowns (shutdowns for short) are lengthy and necessary stoppages to
undertake preventive maintenance, strip-down and overhaul, corrective repair and/or
component replacement and occur in all heavy industries (Levitt 2004). They are cru-
cial to restoring plant processes to a good operating condition. In practice, shutdowns
significantly impact the net earnings for companies, not only in direct maintenance
costs, but also the production loss while the plant is not operating (Schulz et al. 2006).
Therefore, having an optimal shutdown maintenance plan that specifies the best tim-
ings for maintenance can bring large benefits.

An integrated mining site is a complex production system that consists of many
processing assets, intermediate buffer storages and linking facilities. Disruption of
any unit may impact upstream/downstream product flow, stock levels, throughput and
the ability to satisfy customer demands. It is therefore essential to take into account
the impact on production and operations when planning maintenance (Budai et al.
2008). The purpose of this paper is to present a mathematical model for optimizing
the interplay between maintenance timings and the performance of the whole system
over a long-term planning horizon.

Planning for shutdown maintenance events is a complex process. Since the 1970s,
interest in tackling shutdown issues has increased significantly (Lawrence 1976). Two
main research streams can be identified: single shutdown planning andmulti-shutdown
planning. In the first stream, the focus is on determining the optimal sequence of
maintenance activities in a single shutdown and minimizing shutdown duration and
resource requirements. The second stream is to find the best way to schedule a series of
shutdowns to ensure they are appropriately staggered to balance resource needs over
the planning horizon. Our work is related to the latter. Optimizing multi-shutdown
planning in an integrated system is a challenging problem due to various constraints.
For example, certain assets cannot be shut down at the same time, and some mainte-
nance cannot be performed during certain seasons.Maintenance conducted on one unit
may impede upstream flows or starve downstream operations, and hence performing
maintenance at the wrong times may impede throughput and cause stock to build up to
excessive levels. Thus, in an interconnected production network, optimizing integrated
maintenance planning at a holistic system level, rather than just at a single sub-unit
level, is highly desired. Al-Turki et al. (2013) reviewed the development of shutdown
maintenance planning and proposed a framework to encapsulate the holistic view.Duf-
fuaa et al. (2019) provided a comprehensive industry survey to measure the impact
of integrated shutdown maintenance planning on system reliability and productivity,
which highlighted the importance of maintenance scheduling at the global level. A
detailed discussion on shutdown maintenance planning and industry applications can
be found in Al-Turki et al. (2019).

Some specific work on integrated shutdown planning in the chemical industry is
described below. Cheung et al. (2004) investigated site-wide shutdown maintenance
scheduling for an integrated production site in the chemical industry to determine
the exact time windows of shutdowns in a short-term time horizon of four to ten
weeks. Their objective was to maximize profit, based on material demand profiles,
inventories, and variation of utility contracts. Amaran et al. (2015) proposed a math-
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ematical model to optimize long-term shutdown planning for integrated chemical
sites, incorporating timing constraints, financial performance and resource availabil-
ity. They later exploredmedium-termmaintenance planning optimization, considering
uncertainty in shutdown duration and production decisions (Amaran et al. 2016). A
combination of robust optimization and stochastic programming was used for that
purpose.

The references discussed in the previous paragraph focus on the chemical industry.
In integrated mining operations, the size and scale of the system is much larger includ-
ing plants, railways and port facilities, and overstock can be more easily accumulated
than in chemical applications. Boland et al. (2013) formulated a two-stage model
for scheduling annual maintenance to maximize the total throughput for the Hunter
Valley Coal Chain in eastern Australia. In a later paper, the same authors developed
an integer programming model to schedule maintenance on arcs (e.g. railway tracks,
pipes) in a weighted network, maximizing the total flow through the network (Boland
et al. 2014a). Since the problem is strongly NP-hard (see Boland et al. 2014b for a
complexity analysis), they proposed several local search-based heuristic approaches to
solve the problem. The network considered consists of the railway track and terminal
equipment, and the only maintenance constraint enforced is that each maintenance
activity needs to be conducted once. In this paper, we take a wider view and consider
not only rail and terminal equipment, but also upstream assets such as the process-
ing plant. The goal is to generate an integrated maintenance schedule for minimizing
production disruptions. The inclusion of the processing plant and other assets means
that we need to consider more complex maintenance relationships, such as main-
tenance on certain units cannot overlap, some maintenance activities can only start
after others are completed and some maintenance activities must be performed in
alignment with others. This type of situation is common in iron ore mining, for exam-
ple.

We organize our paper as follows. After a thorough description of the mainte-
nance planning problem and network structure in Sect. 2, we formulate a bi-criteria
mixed-integer linear programmingmodel to represent shutdownmaintenance planning
scenarios in Sect. 3. In our model, we incorporate not only many practical main-
tenance requirements and timing restrictions, but also the effects of intermediate
storage and network flows. In Sect. 4, we design a Benders Lagrangian decomposition
algorithm to reduce the computational time. In Sect. 5, we present the computational
results of a real-life industry case study involving the production network of an iron
ore mining company in Western Australia and perform extensive sensitivity anal-
ysis to gain insights into the developed model. Finally, in Sect. 6, we summarize
our work and discuss some potential extensions and directions for future work. To
the best of our knowledge, our paper is the first to consider long-term maintenance
planning in the context of simultaneously optimizing throughput and inventory man-
agement in an integrated mining system. We expect that the proposed approach could
also be adapted to other asset-intensive industries in which maintenance schedul-
ing is required and production occurs via an interconnected network with associated
flows.
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Fig. 1 A block model for an integrated mining operation

Fig. 2 An example diagram for an iron ore mining operation

2 Problem statement

Generally, mining operations comprise an integrated network of several pits, crushing
stations, processing units, rail infrastructure and port terminals. The original material
is transported to Run of Mine stockpiles that are located at the edge of the mining
pits. After being crushed in the crushing stations, ore is then delivered by conveyors
to the processing plant, where it is further processed and classified. All products are
then transported along a railway line to the port terminals and loaded onto vessels for
shipping to customers. The process can be visualized as a block model as shown in
Fig. 1.

As an example, Fig. 2 shows a schematic diagram of a real iron ore mining sys-
tem. The whole system is divided into four subsystems according to their functions
(recall the four squares in Fig. 1). Note that subsystem 3 contains loading facilities (in
the processing plant), railway system and unloading facilities (in the port). Mainte-
nance is conducted either during major shutdowns, where an entire subsystem is shut
down, or during modular shutdowns, where individual assets within a subsystem are
shut down. The rounded rectangles in Fig. 2 represent the start and end points (pits
and ships, respectively), and all regular rectangles represent assets that need to be
maintained on a periodic basis. The red assets need to be maintained in major shut-
downs, which must occur at a certain frequency. The blue assets only require modular
shutdowns. The green assets should be maintained during both major and modular
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shutdowns, since these assets require either more frequent maintenance or additional
maintenance outside of major shutdowns due to resource and time limitations. The
triangles with a solid outline represent stockpiles that serve as intermediate buffers
between consecutive assets, while the dotted triangle represents the tailings storage
for waste treatment. All assets and storage units are connected by solid arrows that
indicate the flow of material via conveyor belts or rail tracks. In this paper, we are
interested in scheduling maintenance for all assets from the crushing stations to the
port.

As can be seen from the diagram, the network is strongly interconnected, and
shutting down an asset will reduce the outflow from the asset and cause upstream
stockpiles to grow. Thus, a good maintenance plan should not only be feasible with
respect to the maintenance requirements, but also ensure stock can progress through
the network to meet shipping schedules and maximize total throughput. This means
optimizing the timings of maintenance disruptions (major and modular shutdowns) is
key to operating the system effectively.

In what follows, we impose some assumptions to facilitate the mathematical mod-
ellingof this problem.Thefirst assumption is that there is ample supply of rawmaterials
(no limitations) from the pits to feed the crushing stations. This is because our focus is
on reducing bottlenecks and throughput limits caused by maintenance, not on produc-
tion scheduling. The second assumption is that there is no delay between the inflow
and outflow of an asset. Although in practice there is always some delay (normally a
few hours), it is smaller than the time discretization of our problem (1 day). The third
assumption is that the final products are perfectly separated and product blending is
not considered.

There are typically three types of shutdown plans in the mining industry: long-
term plans, medium-term plans and short-term plans. Our model focuses on long-
term planning and our goal is to give a timeline of shutdowns over 1–2 years. This
information then typically flows intomedium-term plans of 3–6months and ultimately
plans for a single shutdown. This allows for forward planning, such as labour and
contractor hire, inventory and stockpile management, etc. We will focus on providing
long-termmaintenance plans (whichmaintenance operation starts at what time) for the
whole system to satisfy all maintenance requirements, while maximizing throughput
and minimizing excessive accumulation of stock in intermediate storage.

3 Mathematical optimizationmodel

In this section, we give the solution approach and present a time-indexedmixed integer
linear programming (MILP) model for the problem described in Sect. 2.

3.1 Sets and parameters

We consider a directed network (N , E). The nodes in N represent facilities and the
edges in E represent links between different facilities. Specifically, the node set N
can be partitioned into four parts, i.e., {0} ∪ I ∪ P ∪ {e}, where the start node 0 and
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the end node e represent pits and ships respectively, the node set I and P represent all
assets and storage units respectively. Moreover, let N+

n denote the nodes that receive
the flow leaving from node n, let N−

n denote the nodes that provide flow to node n.
Mathematically, they can be formulated as below:

N+
n := {m : (n,m) ∈ E,∀m ∈ N }, N−

n := {m : (m, n) ∈ E,∀m ∈ N }.

Let A denote the set of all maintenance operations and AM denote maintenance
operations that require a major shutdown. Each operation i ∈ A is associated with
a duration di and a number of resources ri . Let D be the number of periods in the
planning time horizon and Di be the set of periods during which the corresponding
shutdown for i may occur. Let Rmax denote the maximum resources provided for the
entire system over the whole time horizon.

To define the relationships between maintenance operations, we introduce the fol-
lowing notations.

• ANO represents the set of pairs of maintenance operations that cannot overlap
with each other. For example, in Fig. 2, the modular shutdowns cannot conflict
with the major shutdown of the same subsystem due to resource limitations.

• For each operation i , there are parameters a−
i and a+

i and a corresponding set of
maintenance operations Ai , such that at most λmax

i operations in set Ai can start
within −a−

i and a+
i of the start of operation i . See Fig. 3 for an illustration. This

constraint can be used to represent limits on the number of similar maintenance
activities that can be performed during the same time window due to resource
limitations, space constraints, and lack of redundancy. The parameter λmax

i only
constrains the numbers of operations in Ai that can start during the specified time
window around operation i , but it does not restrict which operation in Ai will be
chosen.

• For each operation i , there are parameters b−
i and b+

i and a corresponding set of
maintenance operations Bi , such that at least λmin

i operations in set Bi must start
within −b−

i and b+
i of the start of operation i . For example, in subsystem 2 in the

network in Fig. 2, it is strongly desired to perform modular shutdowns for some
of the adjacent assets simultaneously while product flow is reduced.

• For each pair of maintenance operations (i, j), the duration between the start of i
and the start of j must be withinGmin

i j (theminimum gap) andGmax
i j (themaximum

gap). Figure4 illustrates the start times for a pair of operations. For instance, there
is typically a frequency at which the same type of operation must occur on the
same asset, such as one shutdown every three months.

Stockyards in the mining industry are designed to manage the inventory while cre-
ating sufficient buffer to reduce the impacts of shutdowns of the subsystems. Figure5
illustrates the structure of a stockyard. For example, product 1 is conveyed to the cor-
responding stockpiles (canyon B) via a specified stacker (the solid square next to B),
and reclaimed by a bucket wheel reclaimer (the solid circle next to B) to feed the next
process. All stock in canyon B is called “live stock", as it can be regained directly by
the reclaimer. When canyon B is full, product 1 will be stacked in canyon A. Unfor-
tunately, those products cannot be reclaimed by the reclaimer in the normal way, that

123



Long-termmaintenance optimization for integrated…

Start time of i

At most λmax
i operations from Ai can start during this time window

︸ ︷︷ ︸

a−
i a+

i

Fig. 3 The definition of Ai , λ
max
i , a−

i , and a+
i

Start time of i

Gmin
ij

Gmax
ij

︸︷︷︸

Potential start times for j

Fig. 4 The start times for a pair of maintenance operations (i, j)

A : overstock

Product 1

B : live stock

C : live stock

Product 2

D : overstock

︸
︷
︷

︸

A storage unit

︸
︷
︷

︸

A storage unit
Stacker

Reclaimer

Fig. 5 Illustration of stockpiles and facilities in a stockyard. The rectangles represent stockpiles. The solid
squares and circles represent stackers and reclaimers respectively

is why they are also called “overstock", and this stock can only be recovered using
mobile facilities at a high additional cost. In this example, canyons A and B together
constitute a storage unit in the network, while C and D constitute another unit.

For the intermediate storages, each unit n ∈ P is assigned with a maximum live
stock capacity zmax

nd and a minimum value zmin
nd during period d ∈ D, as well as an

overstock limit zomax
nd . One of our objectives is to avoid overstock or force it to be as

small as possible. To control the requirement of avoiding overstock in n, we introduce
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Fig. 6 An example diagram illustrating flow capacity

a penalty parameter denoted by αn . Moreover, we introduce a dummy time period and
let zn,0 denote the initial stock level at the beginning of the time horizon.

In terms of flow in the network, let ymax
mnd denote the maximum carrying capacity of

the edge from node m to n during period d. In practice, the flow to some nodes may
have additional capacity limits. For example, in Fig. 6, products from nodes 3 and 4
merge into the same edge to node 5. That is, there exists an inflow limit to node 5. Let
NSI denote the set of such nodes that have inflow capacity limits. Let ymax

n denote the
maximum flow capacity through node n. Moreover, the downstream flow from some
nodes may have restrictions. For instance, recall Fig. 5, the reclaimer is located in the
middle between product 1 and product 2 stockpiles. It only has the ability to reclaim
one type of product at a time, i.e. products 1 and 2 cannot be reclaimed simultaneously.
In Fig. 6, assume nodes 1 and 2 share the same equipment, then there are restrictions
on the summation of outflows from nodes 1 and 2. We say the node set {1,2} is a
group of such nodes. Similarly, if nodes 6, 7 and 8 share the same equipment, then we
have another group {6,7,8} of such nodes. In general, let Ng

SO denote the gth group of
nodes that have outflow capacity limits, and Gc denote the number of such groups.

During the course of the process, the coarse ore is beneficiated to create differ-
ent types of final products, and usually an approximate percentage between the flow
leaving a node and the flow entering its downstream adjacent nodes is maintained.

For instance, an example subnetwork in Fig. 7 shows that after being processed in
node 1, the product is distributed into three parts at percentages of 10%, 40% and 50%.
Let NC denote the set of such nodes which have certain percentages of outflow to their
adjacent nodes. It is worth noting that the percentage of 40% of the total flow to nodes
3 and 4 does not mean there is always 20% of the flow entering node 4. When node
3 is shut down, the flow to node 4 would be 40%, but it may have a certain level of
impact on throughput since the maximum flow limit through node 4 must be satisfied.
For example, referring to Fig. 7, if node 3 should be maintained during a time period,
then the flow from node 1 to 3 is zero. Since the upper bound of flow entering node 4
is 30 kt, the maximum outflow from node 1 should be (0+ 30)÷ 40% = 75 kt during
the same period. These changes imply that the total throughput is affected slightly,
dropping from 100 to 75 kt. We call such nodes 3 and 4 as group adjacent nodes of
node 1, and the set {3,4} is a set of node 1’s group adjacent nodes. Conversely, when
node 2 is shut down, the flow to node 2 is zero (y1,2 = 0). Since flow conservation
must be respected (y1,2 must be 10% of the total outflow from node 1), the flow
from node 1 must be zero, and there is no throughput at all. We call such node 2
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Fig. 7 An example diagram illustrating flow distribution. Note that the numbers in the circles represent the
maximum capacity of each edge with the unit kiloton (kt)

as normal adjacent nodes of node 1. To differentiate these two situations, let NF+
n

denote all the normal adjacent nodes of n. Let N P+
ng denote the gth set of n’s group

adjacent nodes, andGd
n denote the number of such sets. Here, NF+

n ∪N P+
ng = N+

n , and
NF+
n ∩N P+

ng = ∅. Accordingly, let βn,m denote the percentage of flow from n tom out
of the total outflow from n, where m ∈ NF+

n , while let βg
n be the percentage showing

how much flow from n to the gth set of n’s group adjacent nodes. For example, in
Fig. 7, β1,2 = 10%, β1

1 = β1,{3,4} = 40%, β2
1 = β1,{5,6} = 50%.

When the maintenance operation i is performed, the corresponding shutdown will
affect product flow in the network. Let Ni denote the set of nodes that have impacts
on the incoming flow during the shutdown for i . Let ρn denote the flow impact factor
of the shutdown for node n, and this information can be estimated from historical
throughput data by specialized staff in the demand chain team.

All sets and parameters discussed above are summarized in Tables1 and 2.

3.2 Objective function with decision variables

The problem is to determine the timings of all maintenance operations, which are key
decision variables, denoted by xid indicating whether operation i starts at period d or
not. Apart from these binary variables, there are three classes of continuous variables:
ymnd define how much flow entering n from m during period d, znd define how much
stock is left in n at the end of period d, and zδnd define howmuch overstock is produced
in n during period d. All variables described above are listed in Table 3.

The objective function is to maximize total throughput and minimize overstock
over the entire time horizon, and it can be formulated as follows:

max
∑

d∈D

∑

n∈N−
e

yned −
∑

d∈D

∑

n∈P

αnz
δ
nd . (1)
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Table 1 Sets in the model

Sets Description

I Set of all assets

P Set of stockpiles and tailings storage facility

N = {0} ∪ I ∪ P ∪ {e} Set of nodes in the network (0 represents the pits, e represents the ships)

N+
n ⊆ N Set of nodes that receive the flow leaving from node n

N−
n ⊆ N Set of nodes that provide the flow to node n

NSI ⊆ N Set of nodes that have inflow capacity limit

Ng
SO ⊆ N Set of the gth group of nodes that have outflow capacity limit

NC ⊆ N Set of nodes that have certain percentage of outflow to different nodes

NF+
n ⊆ N Set of the normal adjacent nodes of n

N P+
ng ⊆ N Set of the gth set of n’s group adjacent nodes

Ni ⊆ N Set of nodes that have impact on the inflow when operation i is performed

E Set of edges that connect two adjacent nodes

A Set of maintenance operations

AM ⊆ A Set of operations requiring a major shutdown

Ai ⊆ A Set of operations in which at most λmax
i operations can occur along with i

Bi ⊆ A Set of operations in which at least λmin
i operations must be scheduled with i

ANO ⊆ A × A Set of pairs of operations that cannot overlap

D Set of time periods over the planning horizon

Di ⊆ D Set of potential periods for the shutdown for maintenance operation i

3.3 Constraints

In this subsection, we will list all constraints considered in the model.

3.3.1 Time constraints

• Each maintenance operation must be scheduled.∑

d∈Di

xid = 1, ∀i ∈ A. (2)

• Time constraints on the gap between a pair of operations (i, j).
∑

d∈D
dxid + Gmin

i j ≤
∑

d∈D
dx jd ≤

∑

d∈D
dxid + Gmax

i j , ∀i, j ∈ A. (3)

• Some maintenance operations cannot overlap with each other.
min{d+di−1,|D|}∑

t=max{1,d−d j+1}
x jt ≤ M1(1 − xid), ∀(i, j) ∈ ANO , ∀d ∈ D (4)

where M1 = di + d j − 1.
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Table 2 Parameters in the model

Parameters Description

di Duration of shutdown for operation i

ri Resources required in shutdown for operation i

Rmax Max resources limits for the whole system

Gmax
i j , Gmin

i j The max/min gap between start times of operation i and j

a−
i ,a+

i Time tolerance for operation i when operations in Ai are scheduled

b−
i ,b+

i Time tolerance for operation i when operations in Bi are scheduled

λmax
i Maximum number of operations in Ai that can be maintained along with operation i

λmin
i Minimum number of operations in Bi that must be scheduled with operation i

ymax
m,n,d Max flow capacity from node m to n during time period d

ymax
n Max product flow that go through node n per period

ρn Flow impact factor of shutdown for node n

Gc Number of groups of nodes that have outflow capacity limits

Gd
n Number of sets of n’s group adjacent nodes

βn,m (β
g
n ) The percentage of flow from node n to m (the gth set of n’s group adjacent nodes) out of

the total outflow from n

zn,0 Initial stock in storage n at the beginning of the time horizon

zmax
nd , zmin

nd Max/Min live stock in storage n at period d

zomax
nd Overstock limit in storage n at period d

αn Penalty parameter on overstock in storage n

Table 3 Variables in the model

Variables Type Description

xid Binary Whether the shutdown for operation i starts at period d, i ∈ A

ymnd Continuous Product flow from m to n during period d, m, n ∈ N

znd Continuous Stock level in n at the end of period d, n ∈ P

zδnd Continuous Overstock level in n during period d, n ∈ P

• Only limited numbers of maintenance operations in Ai can start along with oper-
ation i .

∑

j∈Ai

min{d+a+
i ,|D|}∑

t=max{1,d−a−
i }

x jt ≤ λmax
i + M2(1 − xid), ∀i ∈ A, ∀d ∈ D (5)

where M2 = |Ai |(a+
i + a−

i + 1) − λmax
i .
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• At least certain numbers of maintenance operations in Bi must be performed along
with operation i .

∑

j∈Bi

min{d+b+
i ,|D|}∑

t=max{1,d−b−
i }

x jt ≥ min{λmin
i , |Bi |}xid , ∀i ∈ A, ∀d ∈ D. (6)

Note that if xid = 0 or Bi = ∅, the inequality is redundant since the left-hand side
is non-negative. If xid = 1 and Bi 
= ∅, then constraints (6) force at least λmin

i
operations in Bi to be scheduled along with operation i .

3.3.2 Stock status constraints

• Conservation of product stock at each storage.

znd = zn(d−1) +
∑

m∈N−
n

ymnd −
∑

m∈N+
n

ynmd , ∀n ∈ P, ∀d ∈ D (7)

where the initial stock in n is zn0 which is an input parameter.
• The bound on the stock quantity.

zmin
nd ≤ znd ≤ zmax

nd + zomax
nd , ∀n ∈ P, ∀d ∈ D. (8)

• There exists sufficient stock to feed the corresponding assets.

znd ≥
∑

m∈N+
n

ynmd , ∀n ∈ P, ∀d ∈ D. (9)

• Constraints on the overstock in n during period d.

zδnd = max
{
0, znd − zmax

nd

}
, ∀n ∈ P, ∀d ∈ D. (10)

Note that since the “max” term is non-linear, we linearize and replace it by intro-
ducing the following two constraints:

0 ≤ zδnd ≤ zomax
nd , ∀n ∈ P, ∀d ∈ D. (11)

zδnd ≥ znd − zmax
nd , ∀n ∈ P, ∀d ∈ D. (12)

See Proposition 1 for the detailed proof.

3.3.3 Flow constraints

• Bound constraints on the product flow.

0 ≤ ymnd ≤ ymax
mnd , ∀(m, n) ∈ E, ∀d ∈ D. (13)
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• The inflow to an asset will always be equal to the outflow (recall our assumption
in Sect. 2 that processing assets cannot store any product).

∑

m∈N−
n

ymnd =
∑

m∈N+
n

ynmd , ∀n ∈ I , ∀d ∈ D. (14)

• The flow is affected at a predefined level when shutdown is performed for main-
tenance operation i .

ymnd ≤ ymax
mnd

⎛

⎝1 − ρn

d∑

t=max{1,d−di+1}
xit

⎞

⎠ , ∀i ∈ A, ∀n ∈ Ni , ∀m ∈ N−
n ,

∀d ∈ D. (15)

Note that constraints (15) represent three types of restrictions on the flow. If d is
within the time window of the shutdown for i , then the inflow to an affected asset
n will be not greater than ymax

mnd(1 − ρn). In most cases, ρn is 1, which enforces
the flow to be zero during shutdown. For some assets that have redundancy, i.e.
0 < ρn < 1, the flow will be at certain percentage of the maximum flow capacity.
If there is no shutdown during period d, then we only have flow capacity ymax

mnd to
control the inflow to node n. We call these constraints "linking constraints" that
build connections between shutdown and flow.

• Flow cannot exceed capacity limits on some shared equipment.

∑

m∈N−
n

ymnd ≤ ymax
n , ∀n ∈ NSI , ∀d ∈ D. (16)

∑

n∈Ng
SO

∑

m∈N+
n

ynmd ≤ max
n∈Ng

SO

{ymax
n }, ∀g ∈ Gc, ∀d ∈ D. (17)

• The flow from the node in NC to its adjacent downstream nodes follows certain
predefined percentage distribution.

ynmd = βn,m

∑

u∈N+
n

ynud , ∀n ∈ NC , ∀m ∈ NF+
n , ∀d ∈ D. (18)

∑

m∈N P+
ng

ynmd = β
g
n

∑

u∈N+
n

ynud , ∀n ∈ NC , ∀g ∈ Gd
n , ∀d ∈ D. (19)

3.3.4 Resources constraints

• The resources for the whole system must be sufficient.

∑

d∈D

∑

i∈A\AM

ri xid ≤ Rmax. (20)
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3.3.5 Variable domains

• Non-negativity constraints.

ymnd ≥ 0, ∀m, n ∈ N , ∀d ∈ D. (21)

znd , zδnd ≥ 0, ∀n ∈ P, ∀d ∈ D. (22)

• Binary constraints.

xid ∈ {0, 1}, ∀i ∈ A, ∀d ∈ D. (23)

The formulations of most constraints are self-explanatory, except the constraints
(11)–(12) to control overstock. We now give a further explanation with mathematical
justification.

Proposition 1 Constraints (11)–(12) correctly represent the formulation of overstock.

Proof Recall the definition of overstock in a stockyard, that is the ore which exceeds
the maximum level of live stock. Therefore, overstock can be formulated as

zδnd = max
{
0, znd − zmax

nd

}
,

which can be rewritten as

zδnd =
{
0, if znd ≤ zmax

nd ;
znd − zmax

nd , if znd > zmax
nd .

(24)

Clearly, the overstock zδnd is non-negative andwithin the corresponding upper bound
zomax
n , which is shown in constraint (11).
If znd ≤ zmax

nd , then constraint (12) is redundant, since zδnd cannot be negative.
Besides, we aim to minimize overstock in the objective function (1), thus the value
of zδnd should be as small as possible, which follows that the optimal value satisfying
constraint (11) must be 0.

On the contrary, if znd > zmax
nd , from constraints (11)–(12), we have znd − zmax

nd ≤
zδnd ≤ zomax

nd , then the optimal value (minimization) of zδnd must be znd − zmax
nd , which

completes the proof. ��
Formally, the completeMILPmodel involved in this paper can be stated as follows:

choose the decision variables xid , ymnd , znd and zδnd tomaximize the objective function
(1) subject to constrains (2)–(23).

4 Solution strategies

The proposed time-indexedMILPmodel is challenging to solve for large scale industry
instances. To speed up the process, we designed an algorithm which is a combina-
tion of Benders decomposition (Benders 1962) and Lagrangian relaxation (Held and

123



Long-termmaintenance optimization for integrated…

Fixed plan

Optimality cut

Master problem for searching
a candidate feasible/optimal plan
to determine start time of each
maintenance operation

Subproblem for validating the
quality of the current plan by cal-
culating system throughput and
stock levels

Iterative procedure for
checking if the termination
criterion is satisfied or not

Fig. 8 A schematic overview of the decomposition approach

Karp 1971; Fisher 2004). We call this the Benders Lagrangian Decomposition (BLD)
method. In this section, we present the proposed decomposition approach in detail and
give pseudocode for the entire algorithm.

Recalling that in our long-term maintenance planning problem, we have two types
of decisions to make: (i) scheduling decisions which determine the start time of each
maintenance operation, and (ii) continuous decisions which provide the value of prod-
uct flow along each edge connecting two adjacent nodes and inventory level of each
storage unit. There are independent sets of constraints to control the feasible solu-
tion space of these two types of variables. Linking constraints (15) connect these two
types of variables and establish the relationship between the maintenance schedule
and product flow. Such a special structure makes it possible to apply partitioning
approaches to effectively solve the model. In addition, note that the objective function
only depends on continuous variables. Therefore, we can allocate all binary variables
into the so-called master problem for searching for a feasible maintenance schedule
and check how this fixed schedule affects product flow and stock in the subproblem.
We then derive appropriate cuts that will be added to the master problem to obtain
a better schedule in a subsequent iteration. Instead of solving the classical dual of
the subproblem, we price out only the linking constraints in the subproblem objec-
tive function and make use of the corresponding Lagrangian relaxation to generate
optimality cuts. The process repeats until the optimal schedule is achieved. Figure8
illustrates the scheme for iteratively searching for the optimal solution. Readers can
refer to Geoffrion (1972), Sahinidis and Grossmann (1991), Song and Cheng (2022)
for a convergence analysis and more applications. In the following, we discuss the
procedure in detail mathematically.

We denote the entire model by the following simplified formulation:

max
x,s

{cTs : x ∈ X , As + Bx ≤ b, s ∈ S} = max
x∈X

{
max
s∈S {cTs : As ≤ b − Bx}

}
, (25)

where x = xid , s = (ymnd , znd , zδnd) are decision variables, constraints As + Bx ≤ b
represent linking constraints (15) that connect integer variables and continuous vari-
ables, X , S are feasible regions defined by time (resource) constraints ((2)–(6), (20))
and all remaining constraints. The inner maximization problem is a subproblemwhose
purpose is to get the maximum throughput and minimum overstock for a given main-
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tenance schedule x . Let θ(x) denote the optimal objective value of the subproblem.
The original model is then equivalent to:

max
x,θ

{θ : x ∈ X , θ ≤ θ(x)}, (26)

where θ ∈ R is a continuous variable. Note that, since there exists capacity limits for
flow and stock, we have

θ ≤ θ(x) =
∑

d∈D

∑

n∈N−
e

yned −
∑

d∈D

∑

n∈P

αnz
δ
nd ≤

∑

d∈D

∑

n∈N−
e

yned ≤
∑

d∈D

∑

n∈N−
e

ymax
ned .

(27)

We impose a bound on θ and define the initial master problem (IMP) as follows:

(IMP) : max
xid ,θ

θ

s.t . constraints : (2) − (6), (20)

θ ≤
∑

d∈D

∑

n∈N−
e

ymax
ned

xid ∈ {0, 1},

(28)

from which we can obtain a feasible schedule determining start times for all mainte-
nance operations.

Once a schedule x̄id is obtained, we then solve the following subproblem:

(SP(x̄id)) : max
ymnd ,znd ,zδnd

∑

d∈D

∑

n∈N−
e

yned −
∑

d∈D

∑

n∈P

αnz
δ
nd

s.t . ymnd ≤ ymax
mnd(1 − ρn

d∑

t=max{1,d−di+1}
x̄i t ),

∀i ∈ A, ∀n ∈ Ni , ∀m ∈ N−
n , ∀d ∈ D

constraints : (7)−(14), (16)−(19), (21)−(23).

(29)

Note that problem SP(x̄id ) is a linear continuous programming problem with
ymnd , znd , zδnd . θ(x̄id) provides a lower bound of the original problem, as all binary
variables x̄id have a fixed value. It is obvious that, no matter how maintenance is
scheduled, we always have {ymnd = 0, zn0, zδn0} in the feasible region of problem
(SP). On the other hand, refer to (27), θ(x̄id) has a bound. Hence, the subproblem is
feasible and bounded. Only optimality cuts will be generated and added to the master
problem for finding a better schedule.

Nowweexplain how toderive optimality cutswith respect to xid from the incumbent
subproblem. We employ Lagrangian relaxation on the subproblem by pricing out
linking constraints (15) into the objective function with a non-negative multiplier μ,
and the Lagrangian dual problem is:
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(LDP) : min
μ

max
ymnd ,znd ,zδnd

{ ∑

d∈D

∑

n∈N−
e

yned −
∑

d∈D

∑

n∈P

αnz
δ
nd

− μT
(
ymnd − ymax

mnd

(
1 − ρn

d∑

t=max{1,d−di+1}
x̄i t

))}
.

(30)

Then, we can derive an optimality cut:

θ ≤
∑

d∈D

∑

n∈N−
e

y∗
ned −

∑

d∈D

∑

n∈P

αnz
δ∗
nd − (μ∗)T

(
y∗
mnd − ymax

mnd

(
1 − ρn

d∑

t=max{1,d−di+1}
xit

))
,

(31)

where y∗
mnd , z

δ∗
nd , μ

∗ are optimal solutions of problem (LDP). The type of cut (31) will
be added to problem (IMP) and the updated master problem has the following form:

(MP) : max
xid ,θ

θ

s.t . constraints : (2)−(6), (20)

θ ≤
∑

d∈D

∑

n∈N−
e

y∗
ned −

∑

d∈D

∑

n∈P

αnz
δ∗
nd

− (μ∗)T
(
y∗
mnd − ymax

mnd

(
1 − ρn

d∑

t=max{1,d−di+1}
xit

))

θ ≤
∑

d∈D

∑

n∈N−
e

ymax
ned

xid ∈ {0, 1}.

(32)

In the new master problem, we can look for another schedule xid and update θ that
is an upper bound of the original problem. The procedure repeats until the stopping
criterion is satisfied. In our case, since the subproblem is solved by continuous lin-
ear programming, we can update multipliers by obtaining the optimal dual variables
associated with linking constraints in the subproblems. The pseudocode is described
more precisely in Algorithm 1.

5 Computational results and discussion

To validate the mathematical formulation proposed in Sect. 3, we implemented the
MILP model in Python, using the optimization solver CPLEX v12.10 with up to 8
threads. All computations were conducted on a HP laptop with an Intel Core i7-
8565U CPU running at 1.80 GHz and 16G of RAM. Our test problem is based on
realistic data provided by an integrated iron ore mining company inWestern Australia.
Our testing process was split into three parts. In the first part, we tested the model on
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Algorithm 1: BLD Algorithm for Maintenance Planning Problem
1 Set U ← +∞, L ← −∞, k ← 0
2 while U 
= L and k < kmax do
3 Solve MP(k) (IMP at the beginning)
4 if MP(k) infeasible then
5 Algorithm stops and return “the problem is infeasible"
6 else
7 Obtain optimal solution (x̄kid , θ̄k )
8 end if
9 Update the upper bound: U ← min{U , θ̄k}

10 Solve LDP(k) with fixed x̄kid
11 Obtain optimal solution ykmnd , zδknd and the multipliers μk

12 Update the lower bound: L ← max

{
L,

∑
d∈D

∑
n∈N−

e
ykned − ∑

d∈D
∑

n∈P αn zδknd

}

13 Add optimality cut

θ ≤ ∑
d∈D

∑
n∈N−

e
ykned − ∑

d∈D
∑

n∈P αn zδknd − (μk )T
(
ykmnd − ymax

mnd

(
1 − ρn

∑d
t=max{1,d−di+1} xit

))

to MP(k) to obtain MP(k+1)
14 k ← k + 1
15 end while

a real case study. In the second part, we performed sensitivity analysis by running the
model with adjusted parameters to gain practical insights such as how gaps between
major shutdowns affect throughput, and the key factors affecting overstock. In the
third part, we generated 10 random scenarios to test the computational performance
further and provided a comparison between CPLEX and BLD in terms of objective
values at certain running times.

5.1 Problem set-up and case study

Our aim is to determine an optimal long-term maintenance plan for all assets in the
iron ore mining operation in Fig. 2 and provide an upper limit of throughput.

Note that some simplifications can be made in Fig. 2. First, since the red assets are
maintained while their corresponding subsystems are shut down, we do not require
determining separate times for these assets, and hence they can be omitted for the
purpose of optimization. Second, the two groups of five parallel assets in subsystem
2 are always maintained one by one in the same modular shutdown. Hence, we can
replace each of these groups with a “super-node" that requires modular shutdowns.
Based on this, we have a simplified version of the system as shown in Fig. 9, in which
all nodes are labelled by integers.

Compared with the previous version, all red assets are omitted, except nodes 12
and 13 in subsystem 3 to connect the processing plant and the port. Nodes 4 and 5
represent the two groups of five parallel assets in subsystem 2. The symbols have the
same meaning as in Fig. 2.

5.1.1 Data set for case study

In the case study, we consider a 1-year time horizon, which is divided into time periods
of 1day (365 periods in total). Each subsystem requires 4 major shutdowns per year
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Fig. 9 A simplified diagram for the example iron ore mining operation

Table 4 Number of modular shutdowns required for each asset in Fig. 9

Asset

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modular shutdowns 8 8 8 4 4 1 1 1 8 8 8 – – 4 4

and the number of modular shutdowns required for each blue and green asset is given
in Table 4. In total there are 91 maintenance operations required in the simplified
network.

Recalling Table 2, the input data can be categorised into three groups: data for
maintenance operations, data for product flow and data for storage. Note that all
data is provided by our iron ore industry partner, except the penalty parameter αn on
overstock. We set the penalty parameter on overstock for all storage units to be 1, i.e.,
αn = 1,∀n ∈ P . In what follows, we present the rest of the data in detail.

For a maintenance operation i , the data set defines the duration di , the resource
requirement ri and the potential time window Di . Note that in the case study, we only
have restrictions on the time windows for major shutdowns as they must be scheduled
during certain seasons, but allow modular shutdowns to occur at any time over the
whole time horizon. For a pair of operations (i, j), the minimum and maximum gaps
(Gmin

i j and Gmax
i j ) are defined by the following business rules.

• Consecutivemaintenance operations for the same asset (subsystem)must bewithin
plus or minus 3 days of the maintenance frequency.

• The blue “super-assets" 4 and 5 are always maintained at the same time, and red
assets 12 and 13 should be maintained at the same time as the major shutdowns of
subsystem 3.

• Modular shutdowns of green asset 14 at the port must start at least 7 days before
the corresponding modular shutdowns for asset 15.
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1 day
b+i = −1

b−i = 14

14 days

7 days

operation i

for asset 6

21 days
operation for asset 5

potential start times for asset 5

︸ ︷︷ ︸

potential end times for asset 5

︸ ︷︷ ︸

Fig. 10 Parameters b−
i , b+

i are chosen so that asset 6 operations occur during the modular shutdowns of
asset 5

• The subsystem shutdowns occur consecutively with precisely 1-day gap between
each.

There are two additional business rules that require the inputs a−
i , a

+
i , λmax

i , b−
i ,

b+
i and λmin

i as follows.
(1) Themodular shutdowns of green assets 6, 7 and 8must occur during themodular

shutdowns of asset 5. To enforce this, for each operation i corresponding to assets 6, 7
and 8, we let the set Bi contain all the operations for asset 5, and choose the parameters
b−
i , b

+
i and λmin

i as follows:

b−
i = 14, b+

i = −1, λmin
i = 1.

Since the duration of i is 7 days and the duration of asset 5’s modular shutdowns are
21 days, these constraints ensure that the maintenance for i can be completed during
the modular shutdown of asset 5 as shown in Fig. 10.

(2) Each modular shutdown of asset 5 only allows at most one of assets 6, 7 and 8
to be maintained along with it. To achieve this, for each operation i corresponding to
asset 5, we let the set Ai contain all the operations for assets 6, 7 and 8, and choose
the parameters a−

i , a
+
i and λmax

i as follows:

a−
i = 0, a+

i = di − 1, λmax
i = 1,

where di is the duration of operation i .
The maximum flow capacities ymax

mnd , y
max
n were determined from historical data.

Flow distribution percentages are listed in Table 5. The first six columns in Table 5
report the values of the parameters βn,m . The last two columns show the flow distri-
bution percentages β

g
n from node 4 to group {9, 10, 11} and from node 5 to group

{6, 7, 8}. With assets 4, 5, 14 and 15, there is redundancy, so maintenance operations
on these assets do not completely stop product flow. The impact factor data for these
nodes are

ρ4 = ρ5 = 0.1, ρ14 = ρ15 = 0.05.
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Table 5 Flow distribution percentages

n m
5 17 18 19 21 22 {6, 7, 8} {9, 10, 11}

4 30% – 25% 35% – – – 10%

5 – – – 20% – – 80% –

6 – 80% – 20% – – – –

7 – 80% – 20% – - – –

8 – 80% – 20% – - – –

9 – – 80% 20% – - – –

10 – – 80% 20% – - – –

11 – – 80% 20% – - – –

14 – – – – 13% 87% – –

The maximum flow capacities ymax
mnd , y

max
n were determined from historical data. Flow

distribution percentages are listed in Table 5
For all other nodes, the flow impact factor ρn = 1, meaning that flow completely

stops during maintenance operations for these nodes.
For all storage units n ∈ P (the triangles in Fig. 9), the maximum and minimum

stock capacities zmax
nd , zmin

nd were obtained fromhistorical data.Note that,we assume the
tailings (node 17) capacity is unlimited because this part is irrelevant to our model and
its capacity is not a bottleneck in practice. The initial stock levels zn0 at the beginning
of the time horizon were estimated based on historical data and the quantities were
chosen as

z17,0 = 0 kt, z16,0 = z18,0 = z19,0 = 300 kt, z20,0 = z21,0 = 500 kt.

5.1.2 Results for case study

Although the simplified network in Fig. 9 has far fewer variables and constraints than
the full network in Fig. 2, it still involves 33,215 binary variables, 18,250 continuous
variables and 666,311 constraints. This is a large number of variables, especially
binary variables, which makes the model hard to solve in a short time. We first solved
the model using the default CPLEX, which found the first feasible solution in about
1h and obtained another slightly better solution with increased throughput after 2h
of computation. To accelerate the computation, we applied the Benders Lagrangian
decomposition (BLD) algorithm (see Sect. 4). The numerical results show that the
proposed algorithm outperforms the default Branch and Cut method in CPLEX. Our
algorithmcan achieve a feasible schedule faster, and succeed infindingbetter schedules
with more throughput than the default CPLEX. See Fig. 11 for a visualization of the
detailed comparison after 2h of computation.

AGantt chart for the optimised schedule using the BLDmethod is given in Fig. 12a.
The vertical axis denotes all assets and subsystems, and the horizontal axis denotes
the time horizon. Pink bars represent major shutdowns, and the other coloured bars
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Fig. 11 A comparison of the annual throughput improvement of CPLEX and the proposed BLD method in
2h of computation

represent other shutdown operations with the same colours as in Fig. 9. The plan in
Fig. 12a indicates which units need to be maintained on which days.

Ideally, maintenance on assets within the same subsystem should be performed in
the same time interval, so that they can be taken back online at the same time to reduce
production loss outside this time interval. However, sometimes this is impossible
due to lack of resources. Our model is designed to find the best sequence of shut-
downs, taking into account the trade-off between maintenance and throughput. The
model minimizes disruptions to throughput and chooses the maintenance schedule
that increases throughput by as much as possible. To give a comparison, we recorded
the first feasible solution from BLD method. This solution yields a throughput value
of 62,358 kt and is shown in Fig. 12b. As we can see, compared with the plan with
throughput 62,683 kt in Fig. 12a, both of them satisfy all maintenance requirements,
but the timings and sequence of maintenance operations are different. That is, dif-
ferent combinations of maintenance operations will lead to different throughput. The
purpose here is to remove maintenance as a bottleneck to production by finding the
best shutdown plan that maximises potential throughput. Note that the maximized
throughput is a relative quantity to optimize the maintenance plan rather than actual
production. Forecasting real production will involve more uncertainties (e.g. extreme
weather factors, unplanned downtime on assets, etc.) and will need another more
complex optimization model, which is beyond the scope of this paper.

Asset n must be maintained at a frequency fn . However, this does not mean that
the maintenance must be performed exactly on the due date and it is allowed to be
advanced or delayed if it is of benefit to do so. For example, for a pair of adjacent
maintenance operations (i, j) on the same asset n, operation j is considered to be
advanced if the start time of j is less than the sum of start time of i and maintenance
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Fig. 12 Maintenance plans for the integrated mining system based on Fig. 9

frequency fn . More generally:

∑

d∈D
dx jd −

( ∑

d∈D
dxid + fn

)
⎧
⎪⎨

⎪⎩

< 0, maintenance operation j is advanced,

= 0, maintenance operation j is on time,

> 0, maintenance operation j is delayed.

(33)

Note that, there are limits on the extent to which maintenance can be advanced or
delayed, since parameters Gmin

i j and Gmax
i j restrict the maximum number of days that

maintenance j can be brought forward and backward respectively. Table 6 reports the
maintenance deviations over the whole time horizon. In this problem, most of main-
tenance operations are taken in advance or delayed, which is reasonable because the
dynamic stock status needs to be adjusted to respect storage capabilities and overstock
avoidance. Furthermore, about 80% of maintenance activities are brought forward
instead of being delayed. This is consistent with practical requirements, as frequen-
cies are determined by experienced maintenance schedulers, and it is undesirable to
delay maintenance too much due to safety risk and system reliability considerations.
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Table 6 Maintenance operation deviations over the whole time horizon

Operations advanced Operations delayed Operations on time

Total Average Percentage Total Average Percentage Total Average Percentage

58 2.7 days 80.5% 12 2.3 days 16.7% 2 0 days 2.7%

5.2 Sensitivity analysis

In this section, we discuss the sensitivity of the shutdown plan with respect to sub-
system shutdown gaps, overstock penalty and individual product limits. All scenarios
were run with a 1h time limit, using the same network as the case study.

5.2.1 Sensitivity to the gap between subsystem shutdowns

To analyse how the gap between differentmajor shutdowns affects final throughput, we
performed simulations inwhich the values of parametersGmin

i j andGmax
i j were changed

for the consecutive major shutdowns: subsystem 1 and subsystem 2, subsystem 2 and
subsystem 3, and subsystem 3 and subsystem 4. The baseline is a gap of 1 day as used
in the previous section. The scenarios were generated either by having a constant gap
(0, 3, 5, or 7 days) between each pair of consecutive shutdowns, or by changing one
gap to be 7 days and keeping the other gaps to the baseline value of 1 day. The first
two columns of Table7 show the different combinations of gap values, with changes
to the baseline shown in bold.

Numerical results in Table 7 show that the gap between the major shutdowns has
a significant impact on system throughput and the throughput decreases as the gap
between major shutdowns increases. The last two columns give the throughput values
and the percentage change compared with the baseline throughput. For example, when
the gap increases from 1 to 3 days, the throughput decreases by about 2 million tons,
which is a significant amount for this mining operation. The effects on throughput can
potentially be alleviated by changing the capacities of storage units such as buffers.
The results show that major shutdowns of different subsystems should overlap as
much as possible to reduce the loss from process interruptions. Furthermore, we can
observe that increasing the gap to 3 days for all pairs of consecutive major shutdowns
leads to more reduction on the throughput, compared with changing the gap to 7 days
for only one pair of consecutive major shutdowns. This suggests that we should avoid
increasing the gaps between all consecutive major shutdowns to reduce the production
loss.

5.2.2 Sensitivity to overstock penalty

In practice, managing inventory at optimal operational levels is crucial. Changing
the penalty imposed on overstock through the coefficient αn will change the optimal
maintenance strategy. In this section, we present results for different values of α =
αn,∀n ∈ P (all stockyards have the same overstock penalty).
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Table 7 Effect of major shutdown gap length on throughput

Subsystem pair Gap (days) Throughput (kt) Throughput change (%)

(1, 2), (2, 3), (3, 4) 1, 1, 1 62,281.3 0 (baseline)

(1, 2), (2, 3), (3, 4) 0, 0, 0 63,571.0 +2.07

(1, 2), (2, 3), (3, 4) 3, 3, 3 59,922.0 −3.79

(1, 2), (2, 3), (3, 4) 5, 5, 5 57,462.4 −7.74

(1, 2), (2, 3), (3, 4) 7, 7, 7 56,427.7 −9.40

(1, 2), (2, 3), (3, 4) 7, 1, 1 60,148.8 −3.42

(1, 2), (2, 3), (3, 4) 1, 7, 1 60,443.4 −2.95

(1, 2), (2, 3), (3, 4) 1, 1 ,7 61,489.8 −1.27

The throughput change is calculated relative to the baseline throughput when all gaps are 1day. Bold
numbers indicate there exists changes to the baseline gaps

Table 8 Numerical results for different overstock penalties

α Overstock (kt)

Total Node 16 Node 17 Node 18 Node 19 Node 20 Node 21

5 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

1.5 53.4 0 0 0 53.4[1] 0 0

1 83.3 0 0 0 83.3[1] 0 0

0.5 162.1 90[2] 0 0 72.1[2] 0 0

0.1 784.6 635.7[18] 0 20.0[2] 129.0[6] 0 0

0.01 10,888.8 8152.5[107] 0 1420.2[13] 1316.1[11] 0 0

The values in square brackets represent the number of days with overstock, and the values next to the
brackets represent the amount of overstock in each storage unit over the time horizon

The numerical results are summarized in Table 8. From the first two columns, we
can see that the total overstock increases as the penalty value α decreases. Note that
there is no overstock when α ≥ 2. For a further comparison, in the other columns, we
record the total amount of overstock in each storage unit (node 16 to node 21) across
the time horizon, and the number of time periods when there is overstock (number of
days in square brackets). Note that node 17’s capacity is unlimited, and thus there is
no overstock in node 17 no matter what value α takes. Although we do have stock
capacity limits for nodes 20 and 21 in the port, there is no overstock in all test scenarios,
which implies that the current capacity for nodes 20 and 21 is sufficient to cater for
dynamic stock levels. The nodes 16, 18 and 19 produce overstock easily, implying
that the capacity of such stockyards needs to be adjusted to improve the flow rate. To
further explore the trade-off between throughput and overstock, we need to take into
account the actual cost of regaining overstock in terms of personnel and equipment
time, to define better values for the parameter α. We did not have access to this data,
but it is something to explore in future work.
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5.2.3 Sensitivity to individual product limits

In practice, the split between lump and fines product is around 35–65% based on
historical data. Accordingly, the case study included limits on the lump and fines
production of 70kt and 130kt shipped per day. This gives consistent lump and fines
product breakdown every day. However, since there are stockyards acting as buffers
in the port, it is possible to vary this ratio to have a more flexible shipping schedule
to increase throughput and satisfy additional market demand. In this sensitivity study,
we remove the individual limits for lump and fines product, but keep the overall limit
of 200 kt of product to the ships every day to assess how moving different ratios of
lump and fines on different days can increase throughput.

Figure13 shows a comparison of the results with and without the specific daily
product limits. The lines in Fig. 13a, b depict the final lump, fines and total product
flows. It can be observed that without the individual product limits, the final flows are
more variable. Specifically, when individual limits are imposed, the daily total product
loaded onto the ships never reaches the maximum value of 200 kt, represented by the
orange dashed line in Fig. 13. On the other hand, when only the total limitation of
200 kt is maintained without individual limits, the total amount reaches the maximum
capacity on 172 days, which accounts for approximately half of the entire time horizon.
This implies we can get more throughput when imposing more flexible product limits.

5.3 Random scenarios

To test the computational performance of BLD method (recall Sect. 4) further, we ran
simulations for 10 additional random problem scenarios.

5.3.1 Data set for random scenarios

We considered the same network as in the case study. Therefore, all data inputs for
maintenance operations except for duration are kept the same. For each maintenance
operation i , we generated the new duration data by randomly choosing an integer uni-
formly in the interval bounded by 60% and 140% of the original duration di (rounded
down and up to the nearest integer).

For the flow data, we kept the flow distribution percentages the same as the case
study, but randomly chose the flowbottleneck limits ymax

n (integers) from the following
ranges:

ymax
16 ∈ [230, 350], ymax

18 = ymax
19 ∈ [180, 300], ymax

20 = ymax
21 ∈ [180, 300],

ymax
22 ∈ [180, 300].

Themaximumflowcapacities ymax
mnd were defined by the product of flowbottleneck lim-

its ymax
n and flow distributions βn,m, β

g
n . The flow impact factors for assets 4, 5, 14, 15

were randomly selected from the range (0, 1), i.e.,

ρ4, ρ5, ρ14, ρ15 ∈ (0, 1).
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Fig. 13 A comparison of final product flows associated with and without individual product limits. The
green line represents the fines product, the red line represents the lump product and the blue line represents
the total product flow. The orange dashed line represents the maximum flow (200 kt)

Table 9 The specific ranges for
generating random stock data

Node zn,0 (kt) zmax
nd (kt) zmin

nd (kt) zomax
nd (kt)

16 [50, 400] [400, 500] [50, 100] [100, 200]

17 [50, 400] – [50, 100] [400, 600]

18 [50, 400] [400, 500] [50, 100] [400, 600]

19 [50, 400] [400, 500] [50, 100] [400, 600]

20 [50, 700] [700, 900] [50, 100] [700, 900]

21 [50, 700] [700, 900] [50, 100] [700, 900]

For other nodes, the flow impact factor is 1, the same as the case study. Note that all
non-integer random numbers are rounded to 2 decimal places.

The stock data were generated by selecting random integers from the corresponding
range in Table 9. Note that, since we assume the tailing storage (node 17) has unlimited
capacity, we set the maximum stock zmax

17,d to be a sufficiently large number 1 × 108

(kt).
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Fig. 14 The performance of CPLEX and the proposed BLD method for 5 random scenarios in 2h of
computation. The five scenarios are differentiated by five line styles. The green, red colours represent the
results from BLD and CPLEX respectively

5.3.2 Results for random scenarios

We ran simulations for each scenario using the CPLEX and BLD methods. The time
limit was set as 2h for all scenarios. Since we consider the same network as the case
study, each random problem involves the same number of variables and constraints.

Table 10 provides a comparison of objective values at certain times (300s, 600s,
1000s, 3000s, 5000s, 7200s). In all of the random scenarios, CPLEX failed to find
a feasible solution within about 1h, but BLD method could always yield a feasible
solution in a few hundred seconds. When applying BLD method, the final objective
values after 2h computation are larger than the results from CPLEX alone. Note that,
in the fourth scenario, both CPLEX and BLD can obtain the optimal solution within
2h of computation. However, by using BLD, such a solution can be achieved earlier
at 680s, instead of 4000s. Additionally, in the ninth scenario, CPLEX cannot find
a feasible solution after 2h, while BLD can obtain a solution after 221s. To better
understand the performance of our method, the first five scenarios are visualized in
Fig. 14.

To evaluate the quality of the feasible solutions generated by the BLD method, we
calculated two gaps as shown in the last two columns of Table 10. Gap1 is the original
gap obtained from the BLD method, while Gap2 is the gap obtained when we use the
upper bound from CPLEX. Numerical results in Table 10 show that Gap2 is better
than Gap1 and less than 10% on average. This means that the feasible solutions from
BLD method are of high quality. The noticeable difference between Gap1 and Gap2
suggests that there is room for strengthening the optimality cuts in the BLD method.
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6 Conclusions and future perspectives

In this paper, we investigated a long-term maintenance planning optimization prob-
lem for an integrated mining system and developed a MILP model to obtain optimal
timings of all maintenance operations. There are two optimization criteria: the maxi-
mization of the total throughput and minimization of overstock quantity. The model
includes various practical constraints to represent the inter-relationships between dif-
ferent maintenance operations and the inter-relationships between maintenance and
production. These include non-conflicting conditions, alignment of related mainte-
nance activities, inventory management and resource limitations. Our computational
tests show that the proposed algorithm working in conjunction with CPLEX yields
better solutions in faster time than CPLEX alone. The proposed model can be used
as a tool to simulate different scenarios from several perspectives, such as changing
maintenance requirements, flow impacts, storage capacities and initial conditions.

Additional work remains and the research in this paper can be extended in several
directions as described below.

1. This work only considered one process plant and one port terminal. More com-
plex systems with multiple process plants or several independent port terminals
can be explored using similar strategies. For example, if there are two process
plants feeding one port terminal, we need to coordinate the maintenance for all of
them, considering a common resource pool and stock capacities, to minimize the
disruptions caused by shutdowns. Efficient coordination and strategic planning are
essential to ensure a smooth flow of products and maximize the throughput. With a
more complex network, we suspect that more advanced algorithms will be required
to deal with the dimensionality challenge.

2. Bringing in demand considerations such as ship arrival times will be an important
extension, since the current model maximizes throughput without any regard for
when ships are coming to take the product away. Aligning production with demand
and adapting to variable flow rates will make the problem more realistic. To do so,
one needs to take into account shipping schedules andmeet demand at the specified
times rather than just maximise overall throughput.

3. In the case study, we imposed the overstock penalty αn to be 1 for all storage units.
The sensitivity analysis shows that these penalty parameters are critical to control
overstock. To better quantify the penalty, one can consider the cost of regaining
overstock in terms of personnel and equipment time, and define better values for
the parameters αn for each storage unit.

4. Our model only involves separate products. However, in practice, blending of dif-
ferent products from different production lines will occur. In such cases, a more
complex model considering blending constraints is required (Boland et al. 2016).

5. The model will be more powerful if the objective considers economic trade-offs
(see Amaran et al. (2015)). Postponing maintenance helps to defer spending that
can unlock capital for investment elsewhere. However, this may increase the risk of
potential throughput loss due to degradation and unplanned maintenance. There-
fore, an economic objective involving production revenue, maintenance costs,
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material costs, inventory holding costs and expenses related to the recovery of
overstock would provide a more comprehensive assessment of a maintenance plan.

6. More strategies can be applied to improve the current decomposition method to
solve the model. Although we can obtain good feasible solutions (the lower bound)
faster than CPLEX alone, which is important for industry use, the upper bound can
be improved as shown in Table 10. This can be achieved by developing strategies
to tighten the optimality cuts. For example, in each iteration, instead of considering
one subproblem, one can construct p smaller parallel subproblems and generate p
corresponding optimality cuts. In this case, the continuous variable θ in the master
problem would be replaced by p continuous variables. Another way is to solve the
relaxed continuous master problem and/or apply the branch and bound procedure
to alleviate the burden of repeatedly solving the integer master problem (Huang
and Dinavahi 2019; Rahmaniani et al. 2020).
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