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Abstract
We present a novel numerical method for calculating optimal design in topology opti-
mization problems for 3D linear elastic structures. The algorithm is based on necessary
conditions of optimality for problem which was obtained by relaxing the original one
via the homogenization method in the sense of operators (G- or H-convergence), and
can be implemented for self-adjoint problems. The method relies on recently obtained
explicit expressions for the lower Hashin–Shtrikman bound on complementary energy
and information on the microstructure that saturates the bound. We tested the algo-
rithm on two benchmark examples, namely the cantilever and the bridge problem. The
algorithm provides the solution in a first few iterations and the true composites appear
in the optimal design. We also implement a penalization procedure to obtain classical
design with slight increase of the cost functional.

Keywords Composite materials · Optimal design · Optimality criteria method ·
Energy bounds · Penalization · Homogenization

Mathematics Subject Classification 49M05 · 49J20 · 74Q05 · 74B05 · 74A40

1 Introduction

Shape or structural optimization consists in arranging given materials such that
obtained body satisfies some optimality criteria, which is mathematically usually
expressed as minimization of some (integral) functional under some (PDE) constrains.
This type of problem has a long history and has been studied by many different methods
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(for beginning we refer to books (Allaire 2002; Bendsøe 1995; Bendsøe and Sigmund
2003; Milton 2002; Querin et al. 2017; Rozvany 1989; Save and Prager 1985) and
reference therein). To be more specific, in this paper we are interested in finding the
best way of mixing two elastic materials yielding the most rigid structure and under a
volume constraint on the stiff material.

We shall start by setting the problem more precisely (we follow notation from
Allaire’s book (Allaire 2002), and we refer to it for clarification of statements from
this introductory section): the governing equation that describes underlying physics is
the stationary linearized elasticity system in three space dimensions. We chose to write
it in the direct tensor form, which paired with the homogeneous Dirichlet boundary
condition reads

{−div (Ae(u)) = f in �

u = 0 on ∂�.
(1)

Here, an open and bounded set � ⊆ R3 represents an elastic medium, ∂� its boundary,
and the displacement u : � → R3 is uniquely determined by the force density
f : � → R3. The strain matrix e(u) is connected with the displacement via so called
strain–displacement equation e(u) = 1

2 (∇u + ∇u�), while the stress matrix σ is, by
the Hooke’s constitutive law, given as σ = Ae(u).

Elastic properties of a material are described by the fourth order stiffness tensor
A, whose elements are indexed by four indices A = [ai jkl ], and satisfy symmetries:
ai jkl = akli j = a jikl = ai jlk , for i, j, k, l = 1, 2, 3. The space of such fourth order

tensors we denote by Sym4, and if we denote by Sym the space of all 3×3 symmetric
matrices, then such fourth order tensors can be seen as symmetric linear operators
acting on Sym. Clearly, in general non-homogeneous situation the stiffness is a tensor
function A : � → Sym4, for which we assume that it is positive definite and coercive,
i.e. that there exist 0 < α < β such that for any symmetric matrix ξ it satisfies (almost
everywhere on �)

Aξ : ξ ≥ α|ξ |2 and A−1ξ : ξ ≥ 1

β
|ξ |2, (2)

where : stands for the matrix inner product. Note that the second inequality in (2) also
implies that A is bounded by β.

Under such assumptions on the stiffness tensor, and if we assume that the force
density f is square integrable, then the well-possednes of (1) follows from the classical
theory for elliptic boundary-value problems.

Let us now introduce the structural optimization framework: we shall assume that
the domain � is filled with two well-ordered isotropic elastic phases

Ai = 2μi I4 +
(

κi − 2μi

3

)
I2 ⊗ I2, i = 1, 2,

which satisfy inequalities (2). Here, I4 and I2 stand for identity tensor and matrix,
respectively, while the assumption on well-orderedness of phases implies inequalities
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0 < μ1 ≤ μ2 for shear moduli and 0 < κ1 ≤ κ2 for bulk moduli. Therefore, the
overall stiffness tensor is given as

A(x) = χ(x)A1 + (1 − χ(x))A2, x ∈ �,

whereχ ∈ L∞(�; {0, 1}) is a characteristic function of the part of the domain occupied
by A1. Note that this function completely describes the tensor A and rearrangement
of given two materials, and thus we call it a (classical) design. The restriction on
the amount of materials can be expressed as

∫
�

χ dx = q, where q ∈ 〈0, |�|〉 is in
advance prescribed volume of the material A1. The quality of a design is typically
measured through a function of the form

J (χ) =
∫

�

[χ(x)g1(x, u(x)) + (1 − χ(x))g2(x, u(x))] dx,

where g1, g2 are some function that are regular enough, and u is the corresponding
displacement, i.e. the solution of (1).

Finally, as we seek for an optimal design, our problems read: for given A1,A2, f, g1
and g2 solve

⎧⎨
⎩

J (χ) −→ min,

χ ∈ L∞(�; {0, 1}),
∫

�

χ dx = q.
(3)

Unfortunately, usually there is no solution for the above minimization problem (if
it exists, we call it classical), so we need an appropriate relaxation. There is a number
of different approaches and methods that tackle with problem (3), but probably the
most successful approach for dealing with typical ill-posedness of such optimization
problem is the homogenization method. Its application in optimal design begins with
works of Murat and Tartar (1978, 1985) and Tartar (1975), Cherkaev, Lurie and their
collaborators (Gibianski and Cherkaev 1997; Lurie 1970; Lurie et al. 1982; Lurie
and Cherkaev 1986), Raitums (1978), and Kohn and Strang (1986). Actually, early
homogenization results by Tartar (1975) and Murat and Tartar (1978) were motivated
by optimal design problems in conductivity (see also Burazin et al. 2018; Burazin
and Crnjac 2020), but this approach can also be adapted to the elasticity setting
(Francfort and Murat 1986; Tartar 1986; Zhikov et al. 1994). The method became
extremely popular in its over-simplified version, called SIMP (Solid Isotropic Mate-
rial with Penalisation) (Bendsøe and Sigmund 2003), which takes into account only
isotropic materials and retains only the notion of material density. However, the matur-
ing of additive manufacturing technologies, which are now able to build finely graded
microstructures (sometimes called lattice materials), drastically changes the picture
and one can see a resurrection of the homogenization method for such applications
(Allaire et al. 2019; Groen and Sigmund 2018; Geoffroy-Donders et al. 2020). Indeed,
when dealing with topology optimization problems where true composite materials
with optimal (possibly non isotropic) microstructures appear, the homogenization is
the right technique to be used, as anisotropy is a feature which is absent from SIMP.
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To be more specific, a relaxation of the original optimal design problem by the
homogenization method consists in introducing generalized designs as composite
materials, achieved by mixing original materials on a fine scale. Thus, a general-
ized design in this method is a couple (θ,A), where θ represents a local fraction of
the first phase in a mixture, while A is a homogenized elasticity tensor which contains
information on how the materials are mixed.

After introducing a Lagrange multiplier in order to handle the volume constraint
of the first phase, the relaxed problem in this method reads

⎧⎨
⎩

J (θ,A) :=
∫

�

[θ(x)g1(x, u(x)) + (1 − θ)(x))g2(x, u(x))] dx + l
∫

�

θ(x) dx −→ min,

(θ,A) ∈ A,

(4)

where

A = {(θ,A) ∈ L∞(�; [0, 1] × Sym4) : A ∈ G(θ) a.e. on �},

andG(θ) is the set of all possible homogenized elasticity tensors which can be obtained
by mixing phases with the prescribed local fraction θ ∈ [0, 1]. Under appropriate
assumptions on g1 and g2 (e.g. if they are Carathéodory functions which satisfy some
specific growth condition (Allaire 2002)) this is indeed a proper relaxation of the
problem (3).

Remark 1 An important class of two-phase elastic composites are laminated compos-
ites (Francfort and Murat 1986; Allaire 2002), where the phases are stacked in layers
orthogonal to some given direction. For the isotropic phasesA1 andA2, and unit vector
e ∈ R3, the homogenized tensor A, obtained by simple lamination of phases A1 and
A2 in proportions θ and (1 − θ), and in the direction e (called a simple laminate), is
given with

θ(A − A2)
−1 = (A1 − A2)

−1 + (1 − θ) f2(e), (5)

where f2(e) is a symmetric positive semidefinite fourth order tensor defined by the
quadratic form

f2(e)ξ : ξ = 1

μ2

(
|ξe|2 − (ξe · e)2

)
+ 1

2μ2 + λ2
(ξe · e)2, ξ ∈ Sym, (6)

with λ2 = κ2 − 2μ2

3
being the Lamé coefficient.

If we repeat this lamination process, with different choices for θ and e, we get a
whole family of laminated materials from phases A1 and A2. Explicit formulae for ela-
siticity tensor of such composites are known (Francfort and Murat 1986) for sequential
laminates, where at each stage of lamination, the previous laminate is laminated again
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with the same pure phase. For example, if we laminate p ∈ N times with the phase
A2 in directions e1, . . . , ep, the obtained composite is determined by the formula

θ(A − A2)
−1 = (A1 − A2)

−1 + (1 − θ)

p∑
i=1

mi f2(ei ), (7)

where mi ≥ 0, i = 1, . . . , p and
∑p

i=1 mi = 1, while f2 is given by (6). We call it a
rank-p sequential laminate, with core A1 and matrix A2, in proportions θ and (1 − θ),
respectively, with the lamination directions ei , i = 1, . . . , p. From the lamination
parameters m1, . . . ,mp and density θ one can get proportions θ1, . . . , θp of the first
phase in each lamination step from the system

(1 − θ)mi = (1 − θi )

i−1∏
j=1

θ j , i = 1, . . . , p.

As analytical solutions of (4) are achievable only in some specific situations (Murat
and Tartar 1978; Vrdoljak 2016; Burazin and Vrdoljak 2019; Burazin 2018; Casado-
Diaz 2015), such problems are usually solved numerically, and advantage of the
homogenization method is that corresponding schemes find a global minimizer in
most instances (see Allaire 2002 and references therein). However, the applicability
of the method in the elasticity setting is restricted by the lack of knowledge of the
G-closure set G(θ) (Murat and Tartar 1978; Tartar 1985; Lurie and Cherkaev 1984) to
some specific but important cases (e.g., for self-adjoint problems (Allaire et al. 1997;
Allaire and Kohn 1993c; Kohn and Strang 1986; Gibianski and Cherkaev 1997; Lurie
et al. 1982; Lurie and Cherkaev 1986; Burazin et al. 2021), or for eigenfrequency
optimization (Allaire et al. 2001; Bendsøe and Diaz 1994; Casado-Diaz 2022)). For
such problems the relaxation can be performed over sequential laminates instead of
G(θ) (Avellaneda 1987, see also Kohn and Lipton 1988; Milton and Kohn 1988) and
the necessary conditions of optimality in this case are easily derived. However, even
in these cases it is crucial to have Hashin-Shtrikman energy bounds explicitly cal-
culated, as such bounds naturally appear in optimality conditions for those structural
optimization problems. They are given as bounds on the elastic energy written in terms
of strain (primal energy), Aξ : ξ , or as bounds on the elastic energy written in terms of
stress (complementary energy), A−1σ : σ . For example, and to be specific, the lower
Hashin-Shtrikman bound on the complementary energy is given by

f c−(θ, σ ) := min
A∈G(θ)

A−1σ : σ . (8)

Explicit calculation of these bounds was done for 2D linearized elasticity (Allaire and
Kohn 1993a, b), while in the three-dimensional case the computation was formally
done only when one material is replaced by the void (Gibianski and Cherkaev 1997,
1987; Allaire and Kohn 1993c; Allaire 2002).

The recent result Burazin et al. (xxxx) on explicit calculation of Hashin-Shtrikman
energy bounds for three-dimensional elastic composite made of two isotropic materi-
als, which was an open problem for decades due to its technical complexity, paves the
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way for new applications of the homogenization method in optimal design problems.
In this paper we shall derive a numerical method suitable for solving compliance
minimization problems in 3D linearized elasticity setting (for 2D case see Burazin
et al. 2021). It is based on necessary conditions of optimality, which state that optimal
stiffness tensor saturates lower Hashin-Shtrikman energy bound on complementary
energy, while optimal volume fraction minimizes a perturbation of this bound by a
linear function in θ . Therefore, explicit information on this bound is crucial for the
method. We demonstrate our method on some benchmark examples, namely the can-
tilever and the bridge problem. As expected, a true composite design appears to be
optimal. Thus we also perform a penalization procedure which gives us (mostly) the
classical design, with slight increase of the energy functional. As a mid-step we also
calculate the derivative of f c− with respect to θ .

The rest of the paper is organized as follows: in the second section we recall the
necessary conditions of optimality for compliance minimization problems in 3D lin-
earized elasticity, and propose an algorithm for finding approximate solution based
on optimality criteria method. In the third section we give explicit lower Hashin-
Shtrikman bound on the complementary energy in three space dimensions together
with optimal microstructure that saturates the bound Burazin et al. (xxxx) and calcu-
late the derivative of the bound with respect to θ . In the fourth section we demonstrate
our method on some benchmark examples. We finish the paper with some concluding
remarks.

2 Complianceminimization

In the rest of the paper we restrict ourselves to the compliance minimization, i.e. in
functional J we take g1 = g2 = f · u and therefore strive to minimize the quantity∫
�
f · u dx, which represents the work done by the load. Then the functional in (4)

takes the form

J (θ,A) =
∫

�

f(x) · u(x) dx + l
∫

�

θ(x) dx, (9)

where u solves (1). By minimizing (9), one would like to find the most rigid struc-
ture made of two elastic materials in the presence of the Lagrange multiplier term.
The compliance functional can itself be written as a minimization problem using the
principle of minimal complementary energy, yielding the expression

J (θ,A) = min
σ∈L2(�;Sym)
−divσ=f in �

∫
�

A−1σ : σ dx + l
∫

�

θ dx, (10)

where the above minimum is uniquely achieved by σ = Ae(u). The relaxed problem
(4) now can be considered as a double minimization in (θ,A) and in σ :

min
(θ,A)∈A

J (θ,A) = min
(θ,A)∈A

min
σ∈L2(�;Sym)
−divσ=f in �

∫
�

(A−1σ : σ + lθ) dx,
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and since the order of minimization is irrelevant, we obtain

min
(θ,A)∈A

J (θ,A) = min
σ∈L2(�;Sym)
−divσ=f in �

min
(θ,A)∈A

∫
�

(A−1σ : σ + lθ) dx. (11)

This representation is suitable for deriving the necessary conditions of optimality
(Allaire 2002,Theorem 4.1.9).

Necessary conditions of optimality. If (θ∗,A∗) is a minimizer of the objective func-
tion (9), and if σ ∗ is the unique corresponding minimizer in (10), then σ ∗ = A∗e(u∗),
where u∗ is the state function for (θ∗,A∗). Furthermore, A∗ satisfies, almost every-
where in �,

A∗−1σ ∗ : σ ∗ = f c−(θ∗, σ ∗), (12)

while θ∗ is the unique minimizer of the convex minimization problem

min
0≤θ≤1

( f c−(θ, σ ∗) + lθ), a.e. on �. (13)

��
From above conditions of optimality we can deduce that in the case of compliance

minimization, one does not need the knowledge on the entire G(θ) in order to find an
optimal pair (θ∗,A∗). Indeed, it suffices to know the lower Hashin-Shtrikman bound
on the complementary energy and a microstructure that saturates this bound, i.e. a
minimizer in (8). If this would be the case, then we could easily derive an algorithm
for finding an approximate optimal design by using an optimality criteria method and
the necessary conditions of optimality. The algorithm is stated below.

Algorithm 1 Take some initial θ0 and A0. For k ≥ 0:

(1) Calculate uk , the solution of

{−div (Ake(uk)) = f in �

uk = 0 on ∂�.
(14)

and define σ k := Ake(uk).
(2) For x ∈ �, take θk+1(x) as a zero of the function

θ �→ ∂ f c−
∂θ

(θ, σ k(x)) + l, (15)

and if a zero doesn’t exist, take 0 (or 1) if the function is positive (or negative) on
[0, 1].
Take Ak+1(x) to be a minimizer in the definition of f c−(θk+1(x), σ k(x)).

Remark 2 Since the function f c− is C1 function with the respect to θ (Allaire 2002), a
minimizer in the convex problem (13) coincides with a zero of the function (15).
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1186 K. Burazin, I. Crnjac

Remark 3 Algorithm 1 coincides with the alternate direction algorithm (Allaire et al.
1997), which amounts to minimizing (11) iteratively and separately in σ and (θ,A).

Remark 4 The above necessary conditions of optimality are also valid if we pair the
governing equation with mixed boundary condition, i.e. consider the problem

⎧⎨
⎩

−div (Ae(u)) = f in �

u = 0 on 
D

Ae(u)n = g on 
N ,

(16)

instead of (1), with 
D of positive surface measure and 
D ∪ 
N = ∂�. In this case
the compliance functional is

∫
�

f · u dx +
∫


N

g · u dS = min
σ∈L2(�;Sym)
−divσ=f in �

σn=g on 
N

∫
�

A−1σ : σ dx, (17)

so by adding the Lagrange term l
∫
�

θ dx equality (11) analogously holds, as well as
the corresponding necessary conditions of optimality.

3 Hashin–Shtrikman energy bounds

In order to implement Algorithm 1 we shall need an explicit calculation of the lower
Hashin–Shtrikman bound on the complementary energy (8). More precisely, we need
derivative of f c− with respect to θ for calculating the next iteration of local material
fraction of the first phase in the mixture, and the corresponding microstructure that
saturates the bound for iterations of the stiffness tensor.

We present here the lower bound on the complementary energy (Allaire and Kohn
1993a).
Lower bound on the complementary energy. For a symmetric matrix σ and θ ∈
[0, 1] it holds

f c−(θ, σ ) = A−1
2 σ : σ

+θ max
η∈Sym

[
2σ : η − (A−1

1 − A−1
2 )−1η : η − (1 − θ)gc(η)

]
,

(18)

where gc(η) is a nonlocal term given by

gc(η) = max
e∈S2

(
A2η : η − 1

μ2
|A2ηe|2 + μ2 + λ2

μ2(2μ2 + λ2)
((A2η)e · e)2

)
, (19)

Furthermore, the minimum in definition (8) is achieved by a rank-3 sequential lami-
nate with the lamination directions given by the extremal vectors in the definition of
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Application of explicit energy bounds in optimization… 1187

the nonlocal term gc(η). In particular, lamination directions of the optimal rank-3
sequential laminate for the lower bound are also eigendirections of σ . �

Deriving the Hashin-Shtrikman bounds in such form is a classical matter: it goes
back to the original work of Hashin and Shtrikman (1962, 1963), while modern expo-
sitions may be found in Allaire and Kohn 1993a, Milton 1990, or in Gibianski and
Cherkaev 1997, Gibianski and Cherkaev 1987 where the translation method is used,
instead of the Hashin-Shtrikman variational principle. However, in order to derive an
explicit expression for the lower complementary bound, one needs to solve the max-
imization problem in (18). For the two-dimensional case, this was done in (Allaire
and Kohn 1993b; Burazin et al. 2021) for the mixture of two isotropic phases, while
the three-dimensional case remained open for three decades, until it was recently
calculated in Burazin et al. (xxxx). For similar results in shape optimization and con-
ductivity setting see Gibianski and Cherkaev (1997), Gibianski and Cherkaev (1987),
Allaire and Kohn (1993c), Allaire (1994), Allaire (2002), Bendsøe (1995), Rozvany
(1989), Save and Prager (1985), Burazin et al. (2018), Vrdoljak (2010), Burazin and
Crnjac (2020). In the sequel we shall present the explicit expresion for f c−, as derived
in Burazin et al. (xxxx), and here, additionally, we provide information on the deriva-
tive of f c− with respect to θ , which is necessary for implementation of our numerical
algorithm.
Explicit lower Hashin–Shtrikman bound on the complementary energy. Let θ ∈
[0, 1] and let us introduce numbers δμ = μ2 − μ1, δκ = κ2 − κ1, γ2 = 3κ2 + 4μ2,
ζ = μ2 − θδμ, ϑ = κ2 − θδκ , ρ = κ1μ2 − κ2μ1, and linear functions

n(x, y, z) = 6(1 − θ)ζμ2δκz + κ1ζγ2(z − y) − 2(1 − θ)μ2ρ(x − y),

o(x, y, z) = 6(1 − θ)μ2δκ(x − y − z) + κ1γ2(2x − y − z),

p(x, y, z) = 6(1 − θ)δκδμζ(3κ2 + μ2)z − 2ζρ(3κ2 + μ2)(x + y + z)

+ 3ζ(3κ1κ2δμ + 4μ1μ2δκ)(y + z) + 6ζρμ2z − 6μ1μ2ρ(x − y),

q(x, y, z) = −2(1 − θ)δκδμ(3κ2 + μ2)(γ2(x − z) + 3μ2(−x + y + z))

+ γ2(−2μ1δκ(3κ2(x − z) + μ2(x + y + z)) + κ1μ2δμ(z − y)).

In three dimensional, well-ordered case, let σ be a symmetric matrix with eigenvalues
σ1, σ2 and σ3 and corresponding orthonormal eigenvectors e1, e2 and e3. Then, the
lower Hashin-Shtrikman bound on complementary energy can be expressed explicitly
by exactly one of the following five cases. In each case (except the case D) one is free
to take any choice (i, j, k) ∈ {(3, 2, 1), (2, 1, 3), (1, 3, 2)}.
A. If

n(σi , σ j , σk)p(σi , σ j , σk) <0

n(σ j , σi , σk)p(σ j , σi , σk) <0,

then

f c−(θ, σ ) = A−1
2 σ : σ + θ

9κ2μ2ζ(3κ1κ2ζ + 4μ1μ2ϑ)
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1188 K. Burazin, I. Crnjac

(
9δμκ2μ2ζ(κ1 + 3(1 − θ)δκ)σ 2

k + ζ(3κ1κ2δμ(3κ2 + μ2)

+μ1μ1δκγ2)(σi + σ j + σk)
2 + 9μ1μ2κ2δμϑ(σ j − σi )

2

−9κ1κ2δμζ
(
3κ2σ jσi + (3κ2 + 2μ2)σk(σ j + σi )

))
,

and

∂ f c−(θ, σ )

∂θ
= −θ2δμ(3δμκ1κ2 + 4μ1μ2δκ) + μ2

2κ2(3κ1 + 4μ1)

9κ2μ2ζ 2(3κ1κ2ζ + 4μ1μ2ϑ)2(
9δμκ2μ2ζ(κ1 + 3(1 − θ)δκ)σ 2

k + ζ(3κ1κ2δμ(3κ2 + μ2)

+μ1μ1δκγ2)(σi + σ j + σk)
2 + 9μ1μ2κ2δμϑ(σ j − σi )

2

−9κ1κ2δμζ
(
3κ2σ jσi + (3κ2 + 2μ2)σk(σ j + σi )

))

+ θδμ

9κ2μ2ζ(3κ1κ2ζ + 4μ1μ2ϑ)(
− 9κ2μ2(δμκ1 + 3μ1δκ + 6(1 − θ)δμδκ)σ 2

k − (3κ1κ2δμ(3κ2

+μ2) + μ1μ1δκγ2)(σi + σ j + σk)
2 − 9μ1μ2κ2δκ(σ j − σi )

2

+9κ1κ2δμ
(
3κ2σ jσi + (3κ2 + 2μ2)σk(σ j + σi )

))
.

This bound is achieved by a simple laminate with the lamination direction ek .
B. If

n(σi , σ j , σk)

n(σi , σ j , σk) + n(σi , σk, σ j )
≥ 0

n(σi , σk, σ j )

n(σi , σ j , σk) + n(σi , σk, σ j )
≥ 0

o(σi , σ j , σk)(q(σ j , σi , σk) + q(σk, σi , σ j )

− 6(1 − θ)δκδμμ2(−9κ2σi + (3κ2 + μ2)(σi + σ j + σk)) < 0,

then

f c−(θ, σ ) = A−1
2 σ : σ + θ

36κ2μ2(3ζ(κ1κ2 + μ2ϑ) + μ1μ2ϑ)(
27(1 − −θ)μ2κ2δκδμ(−σi + σ j + σk)

2

+ γ2
(
μ2δκ(3ζ + μ1)(σi + σ j + σk)

2

+ 3κ1κ2δμ(2σi − σ j − σk)
2)),
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Application of explicit energy bounds in optimization… 1189

while

∂ f c−(θ, σ )

∂θ
= μ2(κ2(3κ1 + μ1 + 3μ2) − 3θ2δκδμ)

36κ2μ2(3ζ(κ1κ2 + μ2ϑ) + μ1μ2ϑ)2(
27(1 − θ)μ2κ2δκδμ(−σi + σ j + σk)

2 + γ2
(
μ2δκ(3ζ

+ μ1)(σi + σ j + σk)
2 + 3κ1κ2δμ(2σi − σ j − σk)

2))

+ θ

36κ2μ2(3ζ(κ1κ2 + μ2ϑ) + μ1μ2ϑ)

(
− 27μ2κ2δκδμ(−σi

+ σ j + σk)
2 − 3γ2μ2δκδμ(σi + σ j + σk)

2
)

.

This bound can be achieved by the rank-2 sequential laminate with the lamination
directions e j and ek , and lamination parameters

m j = n(σi , σ j , σk)

n(σi , σ j , σk) + n(σi , σk, σ j )
and mk = n(σi , σk, σ j )

n(σi , σ j , σk) + n(σi , σk, σ j )
.

C. If

p(σi , σ j , σk)

σk − σ j
≥ 0

p(σi , σk, σ j )

σ j − σk
≥ 0

q(σi , σ j , σk)q(σi , σk, σ j ) > 0,

then

f c−(θ, σ ) = A−1
2 σ : σ + θδμ

9κ2μ2(ζ(3κ2 + μ2) + 3μ1μ2)((
μ2(σi + σ j + σk) + 3κ2(−σi + σ j + σk)

)2

+ 9κ2
2

(
σi (σ j + σk) − 3σ jσk

)
+ 3κ2μ2

(
4σ 2

i + σi (σ j + σk) − 12σ jσk
)

+ μ2(−4μ1δκ + κ1δμ)

4θδκδμ(3κ2 + μ2) − 4κ2μ2(3δκ + δμ)

(
3κ2(2σi − σ j − σk) + 2μ2(σi + σ j + σk)

)2
)

,
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and

∂ f c−(θ, σ )

∂θ
= δμμ2(3κ2 + μ2 + 3μ1)

9κ2μ2(ζ(3κ2 + μ2) + 3μ1μ2)2

((
μ2(σi + σ j + σk)+

+ 3κ2(−σi + σ j + σk)
)2 + 9κ2

2

(
σi (σ j + σk) − 3σ jσk

)
+ 3κ2μ2

(
4σ 2

i + σi (σ j + σk) − 12σ jσk
)

+ μ2(−4μ1δκ + κ1δμ)

4θδκδμ(3κ2 + μ2) − 4κ2μ2(3δκ + δμ)

(
3κ2(2σi − σ j − σk) + 2μ2(σi + σ j + σk)

)2
)

− 4θδκδμ2(3κ2 + μ2)(μ2(−4μ1δκ + κ1δμ))

9κ2μ2(ζ(3κ2 + μ2) + 3μ1μ2)(4θδκδμ(3κ2 + μ2) − 4κ2μ2(3δκ + δμ))2(
3κ2(2σi − σ j − σk) + 2μ2(σi + σ j + σk)

)2
.

This bound can be achieved by the rank-2 sequential laminate with the lamination
directions e j and ek , and lamination parameters

m j = p(σi , σ j , σk)

6(1 − θ)δμ(3κ2δκζ + μ2δμϑ)(σk − σ j )

and mk = p(σi , σk, σ j )

6(1 − θ)δμ(3κ2δκζ + μ2δμϑ)(σ j − σk)
.

D. If

−o(σ1, σ2, σ3)

σ1 + σ2 + σ3
≥0

−o(σ2, σ1, σ3)

σ1 + σ2 + σ3
≥0

−o(σ3, σ2, σ1)

σ1 + σ2 + σ3
≥0,

then

f c−(θ, σ ) = A−1
2 σ : σ + θ

δκγ2(σ1 + σ2 + σ3)
2

9κ2(4μ2(1 − θ)δκ + κ1γ2)
,

while

∂ f c−(θ, σ )

∂θ
= δκγ2(4μ2δκ + κ1γ2)(σ1 + σ2 + σ3)

2

9κ2(4μ2(1 − θ)δκ + κ1γ2)2 .
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In this case, the bound can be achieved by the rank-3 sequential laminate with the
lamination directions e1, e2 and e3, and lamination parameters

m1 = −o(σ1, σ2, σ3)

6(1 − θ)δκμ2(σ1 + σ2 + σ3)
, m2 = −o(σ2, σ1, σ3)

6(1 − θ)δκμ2(σ1 + σ2 + σ3)
,

and m3 = −o(σ3, σ2, σ1)

6(1 − θ)δκμ2(σ1 + σ2 + σ3)
.

E. If

1

9κ2σi − (3κ2 + μ2)(σi + σ j + σk)

(
q(σ j , σi , σk) + q(σk, σi , σ j )

− 6(1 − θ)δκδμμ2
( − 9κ2σi + (3κ2 + μ2)(σi + σ j + σk)

)) ≥ 0

q(σ j , σi , σk)

−9κ2σi + (3κ2 + μ2)(σi + σ j + σk)
≥ 0

q(σk, σi , σ j )

−9κ2σi + (3κ2 + μ2)(σi + σ j + σk)
≥ 0,

then

f c−(θ, σ ) = A−1
2 σ : σ

+ θδκδμγ2
(
3κ2(−2σi + σ j + σk) + μ2(σi + σ j + σk)

)2

9κ2μ2
(
4(1 − θ)δκδμ(3κ2 + μ2)2 + γ2(12κ2μ1δκ + μ2κ1δμ)

)

and

∂ f c−(θ, σ )

∂θ
= δκδμγ2

(
4δκδμ(3κ2 + μ2)

2 + γ2(12κ2μ1δκ + μ2κ1δμ)
)

9κ2μ2
(
4(1 − θ)δκδμ(3κ2 + μ2)2 + γ2(12κ2μ1δκ + μ2κ1δμ)

)2

(
3κ2(−2σi + σ j + σk) + μ2(σi + σ j + σk)

)2
.

In this case, the bound can be achieved by the rank-3 sequential laminate with the
lamination directions ei , e j and ek , and lamination parameters

mi = 1

6(1 − θ)δκδμμ2
(
9κ2σi − (3κ2 + μ2)(σi + σ j + σk)

)
(
q(σ j , σi , σk)

+ q(σk , σi , σ j ) − 6(1 − θ)δκδμμ2
( − 9κ2σi + (3κ2 + μ2)(σi + σ j + σk)

))
,

m j = q(σ j , σi , σk)

6(1 − θ)δκδμμ2
( − 9κ2σi + (3κ2 + μ2)(σi + σ j + σk)

)
and mk = q(σk , σi , σ j )

6(1 − θ)δκδμμ2
( − 9κ2σi + (3κ2 + μ2)(σi + σ j + σk)

) .
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Remark 5 Above expresions for f c− might look overly complicated and not very ele-
gant, but this is mostly due to the large number of parameters. Namely, in each of the
above cases f c− is a quadratic function with respect to σi and a rational function with
respect to θ , with numerator being of the most degree 3, and denominator of the most
degree 2 (case A; note that ζ and ϑ that appear in expressions for f c− depend linearly

on θ ). Thus, the calculation of the derivative
∂ f c−
∂θ

is just some technical manipulation,
while finding its zero in the second step of the algorithm reduces to solving quadratic
or quartic equation, depending on the case.

All expressions that we derived were additionally checked by symbolic computation
in Wolfram’s Mathematica. In degenerate case, when one material is void, our bounds
coincide with those in Allaire (2002) (see Burazin et al. (xxxx) for more).

4 Numerical examples

In this section we shall apply the optimality criteria algorithm 1, and calculate optimal
structure for some benchmark examples. The state equation is solved by the finite
element method in the deal.II library (Bangerth et al. xxxx) using Lagrange elements
on a mesh with a total of 262 144 cells. Moreover, a design (θ,A) is discretized
on a (possibly different Casado-Díaz et al. 2011) mesh, by piecewise constant ele-
ments. For numerical integration we used Gaussian quadrature of order two, and the
Lagrange multiplier l is adjusted in each step in order to satisfy the volume constraint∫
�

θ(x) dx = q. We present two structural optimization problems where two given
materials are arranged to minimize the compliance functional. In both examples one
material correspond to steel, and we take the other one to be ten times weaker, i.e.
we take isotropic phases A1 and A2 with shear moduli μ1 = 7.93, μ2 = 79.3, and
bulk moduli κ1 = 16, κ2 = 160. We illustrate the result of the 20th iteration of the
algorithm, although a similar design is reached already by its first few iterations. In
addition, we provide a penalized solution, where, instead of updating density θk with
the true optimal density θk+1, we use value

θ pen = 1

2

(
1 − cos(π θk+1)

)
. (20)

In this way, θ pen is closer to 0 or 1 than θk+1, since 0 < θk+1 < 1
2 implies θ pen < θk+1,

while 1
2 < θk+1 < 1 implies θ pen > θk+1. Therefore, in a few more iterations of the

algorithm, optimal penalized design will be very close to the classical one.
Finally, we should mention that we parallelized the numerical code and ran it on

computer with multiple cores in order to reduce time of its execution. This particularly
refers to the first step of the algorithm, i.e. to solving the state equation.

4.1 The cantilever problem

Let us take domain � = [0, 10] × [0, 5] × [0, 15] and consider the compliance
minimization
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∫
�

f · u dx +
∫


N

g · u dS −→ min,

where u is the solution of the linearized elasticity system with mixed boundary con-
ditions,

⎧⎨
⎩

−div (Ae(u)) = f in �

u = 0 on 
D

Ae(u)n = g on 
N .

(21)

The boundary part 
D corresponds to the left side of the domain (where z = 0; see
Fig. 1), while 
N corresponds to the rest of the boundary. We take f = 0, while a unit
force in the x-direction is applied at the small circle in the middle of the right side,
more precisely, g = [

1 0 0
]� on the circle B ((5, 2.5), 0.2) in the plane z = 15, and

zero elsewhere. The overall proportion of the first (weaker) phase is set to 60%. For
the initial design we take θ0 = 0.6 and a simple laminate A0 with e1 = [

1 0 0
]� as

the lamination direction.
A numerical solution of this optimal design problem is presented in Fig. 1 (see

also Fig. 3a–c). For the better representation of the solution, the part of the domain
occupied with the phase A1 is omitted as well as the upper front half in the figure (the
design is symmetrical with respect to the mid-planes x = 5 and y = 2.5). The black
part of the domain corresponds to the phase A2, while the gray tones correspond to
composite materials. A part of the domain {z = 15, x ∈ [6.25, 6.55], y ∈ [2.55, 2.8]}
is extracted in the figure in order to take a closer look at the structure. In this particular
part of the domain the design consists of the pure phase A2 and simple laminates in
almost the same lamination directions. As can be seen, the differences in ratio θ in
those cells are more pronounced. For example, the proportion of the weaker material
in the first cell is 0.25 and the lamination direction is e = [−0.22 − 0.13 − 0.97]�,
which is also presented at the figure.

Composite materials that constitute optimal design in this example are either simple
laminates or rank-2 laminates. Positions of these composites are shown in Fig. 2. Due
to symmetry of the design, simple laminates are omitted in the upper half of the domain
in order to see where the rank-2 laminates appear. A lighter shade of the gray color
represents simple laminates, while rank-2 laminates are represented by the darker one.

After 20 iterations of the algoritm, an additional 10 iterations were made with
penalty function (20) in order to recover a classical design. In Fig. 3 we presented
parts of the domain for optimal and penalized design in which the proportion of the
first material is less than or equal to some θ ∈ [0, 1]. Note that they are different for
the optimal design due to usage of composites, while they are all almost the same for
the penalized design (which is expected since here the proportion takes mainly the
values zero and one).

The convergence history is presented in Fig. 4. As convergence criterion we used the
L2 norm of the difference θk+1 − θk volume fractions from two consecutive iteration.
During the penalization process, objective function increases for approximately 9.8%.
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Fig. 1 Numerical solution for the cantilever problem

Fig. 2 Composite materials in the numerical solution for the cantilever problem

Note that the bump in the convergence history in the twentieth iteration corresponds
to the beginning of the penalization process.

4.2 The bridge problem

For the second example we take a cuboid [0, 2] × [0, 4] × [0, 1] as domain �, filled
with phases A1 and A2, and with a volume constraint of 90% for the first material. We
consider the compliance minimization
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Fig. 4 The convergence history for the cantilever problem. a Cost functional J , b E = ‖θk − θk+1‖2
L2 in

terms of the iteration number k

J (θ,A) =
∫

�

f · u dx +
∫


N

g · u dS −→ min,

where the function u is the solution of the linearized elasticity system with mixed
boundary conditions

⎧⎨
⎩

−div (Ae(u)) = f in �

u = 0 on 
D

Ae(u)n = g on 
N .

The boundary part 
D = {(x, y, z) ∈ ∂� : z = 0∧ (y ≤ 0.1∨ y ≥ 3.9)} corresponds
to the lower-left and lower-right corner of the domain where the bridge is supported,
while 
N represents the rest of the boundary. We take f = 0, while g = [

0 0 −1
]�

on the circle B((1, 2), 0.5) in the plane z = 1 and zero on the rest of the 
N . For
the initial design we take θ0 = 0.9 and a simple laminate A0 with e1 = [

1 0 0
]� as

the lamination direction. The numerical solution is shown in Fig. 5 (see also Fig. 7a–
c). Similarly as in the previous example, the part of the domain occupied with the
phase A1 is omitted and a quarter of the domain is cutted in order to represent the
interior of the domain (the design is symmetrical with respect to the mid-planes x = 1
and y = 2). The black part of the domain corresponds to the phase A2, while the
gray tones correspond to composite materials. On the extracted part of the domain
{x = 2, y ∈ [3.85, 4], z ∈ [0, 0.05]}, a pure phasesA1 andA2 occur, as well as simple
and rank-2 laminates. For example, in the rank-2 laminate, the overall proportion of
material A1 is 0.46, lamination parameters are m1 = 0.85 and m2 = 0.15, while
directions of laminations are presented at the figure and equal e1 = [−0.15 0.8 0.56]�
and e2 = [−0.95 0.04 − 0.3]�.

Composites that form the optimal design in this example are either simple or rank-2
laminates. Their position within the domain is shown in Fig. 6. A lighter shade of the
gray color represents simple laminates, and the darker one represents rank-2 laminates.
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Fig. 5 Numerical solution for the bridge problem

Fig. 6 Composite materials in the numerical solution for the bridge problem

Again, simple laminates on the right side of the domain are omitted to show where
rank-2 laminates are located.

In order to reveal a classical design, penalization method described in the beginning
of the section was executed. An additional 10 iterations were made with penalty
function (20) after 20 iterations of the algoritm. Parts of the domain for optimal and
penalized design in which the proportion of the first material is less than or equal to
some θ ∈ [0, 1] is presented in Fig. 7. Since composite materials are used to obtain the
optimal design, presented parts differ from each other here, while for the penalized
design they are all almost the same.

The convergence history is presented in Fig. 8. Objective function for the bridge
problem increases for approximately 2% upon penalization. Again, the bump in the
convergence history in the twentieth iteration corresponds to the beginning of the
penalization process.

5 Concluding remarks and further perspectives

We have presented a novel numerical method for solving compliance minimization
problems in 3D linearized elasticity setting, over a set of designs obtained by mixing
two isotropic materials in prescribed proportions. As such problem typically has no
solution we have useed a relaxation by the homogenization method which results with
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Fig. 8 The convergence history for the bridge problem. a Cost functional J . b E = ‖θk − θk+1‖2
L2 in

terms of the iteration number k

well-posed problem, with cost of introducing the composite materials. The necessary
conditions of optimality for relaxed problem state that optimal stiffness tensor saturates
the lower Hashin-Shtrikman energy bound on the complementary energy, while the
optimal volume fraction minimizes a perturbation of this bound by a linear function in
θ . We have exploited a recent explicit calculation of this bound in 3D elasticity setting
(Burazin et al. xxxx), computed its derivative with respect to the volume fraction θ ,
and implemented an optimality criteria algorithm for computing approximate optimal
design.

We have demonstrated our method on some benchmark examples, namely the can-
tilever and the bridge problem. Results look reasonable, with symmetries appearing
where we anticipated them. Moreover, the convergence seems indifferent to the initial
design, behaves well on mesh refinement, and the algorithm provides the solution in
a first few iterations. As expected, a true composite materials appear in the optimal
design, in form of either a simple or second-order laminate. This is a known feature of
the problem that some well established methods like SIMP can not exhibit. However,
if one is more interested in classical designs, we have performed a simple penalization
procedure which derives it, with some increase in the cost functional.

Finally, the method could be adjusted for some other self-adjoint problems, like
the eigenfrequency optimization. Additionally, there are interesting problems, such as
when mixing structural and responsive material in order to design structural actuator
(Akerson et al. 2022), when objective function can be represented as a function of
compliances of different states corresponding to the various stiffnesses of responsive
material. In such problems the homogenization method can be used for relaxing the
problem and provide numerical solution (Akerson et al. 2022), and we expect that our
approach might provide good results in this setting, as well.
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