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Abstract

Due to the current and foreseeable shifts towards carbon dioxide neutral energy pro-
duction, which will likely result in balancing fluctuating renewable energy generation
by transforming power-to-gas-to-power as well as building a large-scale hydrogen
transport infrastructure, the trading and transport operations of gas will become more
dynamic, volatile, and hence also less predictable. Therefore, computer-aided support
in terms of rapid simulation and control optimization will further broaden its impor-
tance for gas network dispatching. In this paper, we aim to contribute and openly
publish two new mathematical models for regulators, also referred to as control valves,
which together with compressors make up the most complex and involved types of

The work for this article has been conducted in the Research Campus MODAL funded by the German
Federal Ministry of Education and Research (BMBF) (fund numbers 05M14ZAM and 05M20ZBM).
Furthermore the authors thank the Deutsche Forschungsgemeinschaft for their support within Project B10
and Project C02 in the Sonderforschungsbereich / Transregio 154 Mathematical Modelling, Simulation
and Optimization using the Example of Gas Networks.

B Felix Hennings
hennings @zib.de
https://ror.org/03v4gjf40

Milena Petkovic
petkovic@zib.de
https://ror.org/02eva5865

Tom Streubel
streubel @math.hu-berlin.de
https://ror.org/01hcx6992

Chair of Software and Algorithms for Discrete Optimization, Technische Universitit Berlin,
StraBe des 17. Juni 135, 10623 Berlin, Germany

Applied Algorithmic Intelligence Methods Department, Zuse Institute Berlin, Takustrae 7,
14195 Berlin, Germany

Department of Mathematics, Humboldt Universitit zu Berlin, Unter den Linden 6, 10117 Berlin,
Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-023-09812-0&domain=pdf
http://orcid.org/0000-0001-6742-1983
http://orcid.org/0000-0003-1632-4846
http://orcid.org/0000-0003-4917-7977

492 F.Hennings et al.

active elements in gas network infrastructures. They provide direct control over gas
networks but are in turn controlled via target values, also known as set-point values,
themselves. Our models incorporate up to six dynamical target values to define desired
transient states for the elements’ local vicinity within the network. That is, each pair
of every two target values defines a bounding box for the inlet pressure, outlet pressure
as well as the passing mass flow of gas. In the proposed models, those target values
are prioritized differently and are constantly in competition with each other, which
can only be resolved dynamically at run-time of either a simulation or optimization
process. Besides careful derivation, we compare simulation and optimization results
with predictions of the widely adopted commercial simulation tool SIMONE, serving
as our substitute for actual real-world transport operations.

Keywords Transient gas network control - Set-point value control - Dynamic
simulation - Mixed-integer optimization - Industry ready - Modeling self-adjusting
active elements

1 Introduction

The physical and technical properties of gas transport in networks have been studied
for many decades already. They have gotten increasing attention in the last years since
countries worldwide attempt a turnaround in their national energy policies towards
carbon dioxide neutral means of energy production. Reasons for this are the potential
usage of gas networks as flexible energy storage for balancing the highly volatile
generation of renewable energy sources (Federal Ministry for Economic Affairs and
Energy 2021) or the prospect of shifting to hydrogen transport in the future (European
Commission 2020). In both cases, controlling the network is expected to become more
dynamic and complex, either due to the increasing variability of supply and demand
or the gas properties of hydrogen compared to natural gas (Hoppmann-Baum et al.
2020). To make the task of operating gas networks manageable, the decision-making is
split into multiples levels. It ranges from the complete view on the network featuring
only abstract representations of the technical elements to detailed but local control
decisions, for example, the degree of openness of a single pressure regulator or the
rotational speed of a gas compressor (Stelter 1988). The decisions on the different
levels are usually connected via the concept of set-point values or target values. These
represent a control requirement determined in the full network view, which then serves
as an objective for the local operation of the actual machinery.

Controlling an element with set-points is a well-known concept in the commu-
nity of automated control systems. The difference between the measured (actual)
and the desired (target) value of an observed process variable is the basis for error-
controlled regulation with negative feedback (closed-loop) in automatic control (Porter
and Khaki-Sedigh 1988). Proportional-Integral-Derivative (PID) control is the most
common feedback control algorithm in engineering systems. In process industries,
most of the control loops (= 95%) are of PID type (Astrom and Murray 2008). The
advanced control methods including model based control techniques (model predic-
tive control (Camacho and Alba 2007; Darby and Nikolaou 2012; Haber et al. 2014)
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or multivariable control (Skogestad and Postlethwaite 2005)), intelligent control tech-
niques (fuzzy control (Nguyen et al. 2019) or neural network based control (Meireles
et al. 2003)), and adaptive control (Astrijm and Kumar 2014), are often used as a
high level control procedures for designing high performance controllers that can be
applied to high-order and multivariable processes, typically nonlinear and subject to
constraints.

When looking at work regarding the simulation or optimization of mid-to-high
pressure gas transport networks, the usage of set-points to control active elements has
a long history as well. In (Mallinson et al. 1993), the authors present the optimization
problem of finding a stationary control for the British gas network. The control of
the compressors is defined as the corresponding set-point for the gas pressure after
compression, also called the outlet or outgoing pressure of the element. The same
holds for (Rachford and Carter 2000), who examine a transient optimization problem
on a gunbarrel network, given a desired final state of the network. In a second paper,
the same authors extended the model to prepare for not one but multiple possible
future scenarios in a robust way (Carter and Rachford 2003). In recent years, more
set-point or target value models have been used. In their description of a stationary
gas network control optimization problem, (Pfetsch et al. 2015; Schmidt et al. 2015;
Koch et al. 2015) introduced a model for a regulator without remote access having a
fixed set-point for the outgoing pressure. However, depending on whether the actual
state value exceeds the set-point, matches it, or falls below it, the regulator is closed,
active, or fully open. In the last case, it acts as a bypass. Finally, there are also models
including a multitude of different set-point or target values. In (Pambour et al. 2016),
a model used for gas network simulation was introduced, in which regulators and
compressors are given a set-point either for the inlet pressure, the outlet pressure, the
flow, or the ratio of both the in- and outlet pressure. Alternatively, they can be chosen
to be closed or in bypass mode. The simulation model of (Benner et al. 2019) features
two different modes for each compressor and regulator. These either try to keep the
inlet or the outlet pressure at a given target value.

In this article, we introduce a more elaborate description of the desired control
of active elements. It features up to six different target value restrictions that are
simultaneously active and compete with each other, which surpasses the current state-
of-the-art in the literature, where only one set-point value is considered at a time. An
element in our model can react to changing conditions in the surrounding network
without the need to change the target value objective manually. In the example of
a regulator, it is able to autonomously switch between holding the inlet pressure,
holding the flow, or even closing the element. This model captures the behavior of
complex elements used in real-world networks and industry-standard simulators to
precisely express the desired control given dynamically changing conditions in the
corresponding part of the network.

The description can, in general, be applied to regulators and compressors. However,
we focus on regulators here, i.e., the elements reducing the pressure in flow direction
by reducing the element’s throughput. In literature, there exist several models for
regulators. For example, (Huck 2018) models an idealized regulator by demanding
that the pressure difference between its outlet and inlet pressure must be positive and
inside a given interval. In (Benner et al. 2019), the regulator is described as a resistor
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with variable diameter. Hence, it is given a degree of openness ranging between 0 and
1. This allows them to include the edge case of a fully closed regulator, in which the
two pressures are decoupled and the flow is zero. The model presented in (Pfetsch et al.
2015; Schmidt et al. 2015; Koch et al. 2015) distinguishes two types of regulators:
Those with and without remote access. The ones without remote access are controlled
as already described above using the outlet pressure target value. When having remote
access, the regulators can either be closed or again keep their pressure difference inside
agiven interval. Another and precursor to one of our models presented here is presented
in (Hennings et al. 2021). Within there, the authors consider three different modes for
aregulator: The regulator is either closed, active, or open. A closed regulator is defined
as for the other models, an open one does assume the inlet and outlet pressures to be
equal, while an active regulator allows for arbitrary pressure reduction. In addition, the
regulator features a check valve or flap trap, which prevents flow against the regulator’s
orientation.

We present two models for regulators using the target value control: one model
suitable for dynamic simulation and one for discrete optimization problems. While
for the simulation model a set of target values over time is given, the optimization
model determines target values that induce the desired element behavior while chang-
ing as little as possible. Both models go beyond a one-at-a-time-target-point-value
paradigm by introducing up to 6 competing target values at any given point in time.
Subsequently, we provide a regulator instance that pushes the envelope for any target
value incorporating regulator model, on which we base 2 different numerical experi-
ments. Within these experiments, we first compare each of the proposed models with
simulations from the industrial simulator SIMONE (LIWACOM Informationstechnik
GmbH 2022), and we then second demonstrate a framework pipeline, in which we
connect both models to predict-then-verify a set of intervention-minimizing set-point
values on top of the first experiment. The premise of our work is that SIMONE is an
established and certified simulator from and for the industry. We therefore assume it to
be sufficiently accurate to real-world gas transport operations. Even more, complete
data sets of pressures and flows of entire gas networks, such as national grids, can
only exist as a result of so-called reconstructions from sporadic measurements within
the network (Graham et al. 1996). Such a reconstruction mode is provided, e.g., by
SIMONE. Hence, we compare our results versus SIMONE not in the role of another
simulator but as a representative of reality. As a consequence, the simulations done by
SIMONE are not our competition but instead our reference benchmarks.

Even though this paper deals with the control of active elements in gas networks,
the presented models can easily be applied to other engineering applications featuring
automated control systems in which errors of multiple process variables affect the
same actuator. For these cases, it provides templates for modeling the corresponding
behavior in a simulation or an optimization context.

The rest of the paper is structured as follows: In Sect. 2, we introduce the funda-
mental gas flow dynamic in pipes and our representation of a gas network as a directed
graph. Based on this, we describe our new regulator model based on the 6 different tar-
get values in Sect. 3. In the following two sections, we first introduce a corresponding
model suitable for the transient simulation of regulators given the target value settings
for a future time horizon. Afterwards, we describe a discrete optimization model that

@ Springer



On the numerical treatment of interlaced target values... 495

can determine the control of a regulator in terms of the target values in a transient
context. In Sect. 6, we present two experiments on a minimal gas network and com-
pare the performance of the two models against each other as well as a commercial
simulation software. We conclude with the outlook in Sect. 7.

2 Models for gas flow in pipe networks

Mathematical models of various so-called active elements, such as regulators, com-
pressors, or valves, manipulate the passing gas flow by blocking, resisting, or
enhancing it. However, the response to their actions is determined in the surrounding
pipes that provide the volume for the gas to be. Hence, we need to model the behavior
of the gas in pipes in terms of pressures p, mass-flows g, and their interaction. We use
a version of the isothermal Euler equations, which we introduce and describe in the
following subsection.

2.1 Isothermal Euler equations
A simplified or friction dominated version of the one-dimensional set of isothermal

Euler equations for the description of the behavior of fluids within perfectly cylindrical
pipes of length L € R~ in m and diameter D € R~ in m is given by

. 22(p) }
=— 0,9, 1
P [Z(p) —p-0pz(p) oo (1)
qlql g p
X -G =Adp+ Exz(p)— + ShK )’ (1b)

with x € {0, 1} being a time constant model switch. These particular versions are
referred to as ISO2 if x = 1, or as ISO3 if x = 0 according to (Domschke et al.
2021) and can be derived by a time scaling approach presented by (Brouwer et al.
2011). According to empirical observations in (Hennings 2021), we use the ISO3 case
exclusively here, where x = 0.

The intrinsic quantities of the equations are p = p(x, t) for the pressure, g =
q(x, t) for the mass flow, p(x, t) for the density, and v(x, ) for the velocity and are
parameterized along the longitudinal axisby x € £2 = [0, L] as well as being averaged
across the cross-sectional area A = JTJTDZ as enclosed by the pipe. Furthermore and
throughout, let p(x, ) = 9;p(x, t) and likewise for g (x, t) be the time derivatives.
Also, let Ry be the specific gas constant, T be the time-constant temperature, x =
R,T/A as shorthand, g ~ 9.81m/s” the gravity constant, and 8h = (h, — h¢)/L
as secant slope defined by the heights A, on the left and /, right end of the pipe.
Furthermore, let z(p) = zo +z1p + - - - + 2, p" be a polynomial model or truncated
Virial expansion for the gas factor for real gases (Onnes 1902), and A be the friction
coefficient of the Darcy-Weisbach equation (Brown 2003). The latter is an empirical
model of pressure loss due to friction with the pipe wall.

For the determination of coefficients of the polynomial real gas factor model z(p),
we make use of the linear AGA formula (SIMONE Research Group and LIWACOM
Informationstechnik GmbH 2021; Domschke et al. 2021) of the American Gas Associ-
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ation, being accurate up to pressures p < 70 bar, the quadratic formula of Papay (Papay
1968; Saleh 2002) for pressures p < 150 bar, or the constant model zp = 2 /(RsT) as
suggested by (Domschke et al. 2021), where c is the speed of sound within the given
gas mixture.

To approximate the friction factor A, we use the Nikuradse formula (Nikuradse
1950), which is given by

» = [2logy (r/B.71D))] > )

It is an explicit simplification of the otherwise implicit Colebrook-White (Colebrook
and White 1937; Brown 2003) formula. Here r is the roughness of the pipe wall surface
and is usually provided in millimeters mm.

Two important identities that have already been utilized for the ultimate derivation
of (1) are

p=R;-T-p-z(p) and g=A-p-v, 3)

where the first one is referred to as the state equation for real gases (Menon 2005). We
call (1) the pipe equations. More in-depth details on Euler equations in the context of
fluid transport can be found, e.g., in (Osiadacz 1996; Domschke et al. 2021; Benner
et al. 2019).

Alternatively, in (Hennings 2018), a linearization of the pipe Eq. (1) has been
proposed, which has the benefit of avoiding divisions by small pressure values. There
it was observed that the Eq. (3) yield the identity |v| = z(p) - « - |¢|/ p, which can be
fixed on predetermined or forecast velocities |v|, such that

0= Adup+ —— gl + S L. (1b”)
2D Kk z(p)

Provided we use a constant model for the real gas factor, then Eqs. (1a) and (1b”)
together yield a linearized model of the pipe equations.

2.2 Gas networks as graph structures from a macroscopic perspective

We have just established the system of pipe Eq. (1), but we are interested in gas
networks as a whole and in solving online tasks. In this context, online means to utilize
simulation or optimization to formulate control and operation recommendations as a
guiding as well as continuous process live at operation time. Thus, the overall problem
results in potentially large systems that must be solved repeatedly in a very limited time
frame. For this reason, we have to take a macroscopic viewpoint regarding modeling
the network and its building blocks. Hence, we consider gas networks as directed
graphs G = (N, A) over some time horizon [y, T] C R of interest. The set of nodes
N is finite || < oo, and the set of arcs A € N x A is a collection of ordered tuples
of nodes.

Nodes represent the intersection points of all the arcs. Each node n € A serves as
a boundary to all of its adjacent arcs and hence intertwines and connects them by the
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so-called flow balance equation, which is a Kirchhoff typed law

g0+ Y quL.= Y qa0.1). “
acAyln] acAyln]

Here Ay[n] is the set of all arcs (i.e., ordered tuples) a € A whose first node is n and
A, [n] likewise is the set of all arcs a € A whose second node is n, i.e.

ac An] & ImeN:a=nm)eA,
acAn] & ImeN :a=@m,n) € A

Furthermore, q(") is the gas inflow or outflow to the network, and therefore q(”) =0
for most nodes. However, if n is an entry or exit, a time-dependent piecewise constant
or piecewise linear flow-profile q(”) : [to, T] € R — R is assumed to be provided.
A second kind of Kirchhoff law hosted at nodes mediates boundary pressures from
adjacent arcs in the following sense

Va € Alnl: pa(0,1) = p™ (1),  Vae Anl: pa(L,t) = p™ (@), (5

where p (1) is the so-called node pressure. Hence, this Kirchhoff law forces adjacent
boundary pressures to coalesce at all times and associates the mutual value to be the
pressure of the node.

Arcs represent mostly pipes but may also stand for other network elements such as
active elements, like valves, regulators, and compressors. For each arc a = (ny, n,) €
A, the flow g (x, t) = q,(x, t) and pressure p(x, t) = p,(x, t) on both its ends are of
particular interest and, therefore, are abbreviated by g, (t) = ¢ (0, 1), q,(t) = q(L, t),
pe(t) = p(0,1), and p,(t) = p(L,t). Correspondingly, the same holds true for the
time derivatives, such that p,(r) = p(0,1), p,(t) = p(L,1), ge(t) = ¢(0, 1), and
qr(t) = g(L,t). On top and for the sake of readability we often omit the argument
t from our notions py = p(t), pr = pr(t), q¢ = qe(t), gr = qr(t), pe = pe(t),
Pr = pr(t), qe = qe(t), gr = qr(t) within larger formulas.

2.3 On spatial discretizations of the pipe equations

The literature offers quite a variety of potential spatial discretizations for the pipe
Eq. (1). We pick two schemes for our presentation and numerical experiments follow-
ing in Sect. 6 below. The first discretization in our listing originates as discretization
for pipes in water networks (Huck et al. 2014) and also has been studied in-depth in
(Huck 2018) for gas networks in advance. We refer to it as left-right-discretization

. 2(pr) qr — qu
Pr = — K ’ (63)
z(pr) — pr- apz(pr) L
pr—Dpe A qelqel g Dt
0=A + —«z(pe) + &= . (6b)
L 20 P Z K z(pe)
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The second scheme, or implicit-box-scheme, has been analyzed within (Kolb et al.
2010). It is a combined spatial and time discretization scheme. In (Streubel 2022) it
was observed that it can be derived in two stages by discretizing in space first and
applying the time discretization subsequently. Executing the first stage only leads to
the following system of differential equations

. 22(pe) 22(pr) qr — qu
Dr+ pe=— K ,  (Ta)
z(pe) — pe - 3pz(pe)  z(pr) — pr - 9pz(pr) L
DPr — Pt A qelqel qrlgr|
0=A — -
I + D~ [z(pe) 0 + z(pr) P
8 Pe Pr
K [z(pe) z(pr)

relying on the trapezoidal quadrature method along the spatial dimension. Hence, we
refer to (7) as the trapezoidal-discretized pipe equation.

3 Towards the regulator: a target value model

Regulators can down-regulate or halt the passing gas flow, and thereby indirectly
exercise control of their surrounding neighborhood, and ultimately down the network.
They can also mediate and exchange gas between areas operated at different pressure
levels. Their operation is controlled by target values. In this section, we provide a
detailed explanation of the underlying target value logic and establish notions as well
as terminology. The logic is based on the interactions between pipes and regulators,
which we can express in the following diagram of expected principal reactions of the
left pressure p, and right pressure p, when facing changes of the regulator’s flow g:

q /" ~ pe N pr (8a)
g~ ~  pe/ " pr\ - (8b)

In other words a sudden rise in flow either causes a drop of the left pressure or a rise
of the right pressure or both. Likewise a drop of flow either causes a rise of the left
pressure or a drop of the right pressure or both. This relationship is deduced from the
pipe equations in Sect. A.1 of the “Appendix”.

3.1 Regulators controlling the gas flow

The task of regulators in gas networks is to reduce the pressure along their ori-
entation along their orientation, which they achieve by using the connection to the
neighboring pipes established by (8) and decreasing the passing gas flow. This flow
decrease is accomplished by reducing the regulator’s opening degree o < [0, 1],
which can be interpreted as changing the diameter of the regulator, assuming its cross-
sectional area is cylindrical, see (Fiigenschuh et al. 2015). If a regulator is fully opened
at o = 1, it does not reduce the flow and p;, = p, holds. At o = 0, a regulator is fully
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Fig.1 Visualization of a
regulator controlling the right
pressure; picture created by
(Kuphaldt 2019), published
under CC BY 4.0 (https://
creativecommons.org/licenses/
by/4.0/)

N Pressure-
Incoming gas » regulated gas

closed, which disconnects the network. Hence, ¢ = 0 and the pressures are decoupled.
Values in between induce artificial resistance to reduce the flow and therefore create
a pressure decreases in flow direction as derived in Section A.l, i.e., p¢ > p,. A
schematic visualization of the principle operation of a regulator is depicted in Fig. 1.
It originates from (Kuphaldt 2019), where more insights on various technical details
and further information on other gas network elements are provided, too.

3.2 Target value control

For gas network operators, i.e., dispatchers, adjusting the opening degree of single
elements by hand is far too involved and would require continuous observation. Instead,
regulators have automated systems fed by desired ranges for the 3 local intrinsic
quantities py, pr, gm. The 6 defining bounds for these ranges p¢, pe¢, pr»> Prs 4 »
"q" are called target values (and sometimes also referred to as?et-pointTalues). An
overview of the 6 types of target values and their consequential influence is listed in
Table 1.

If a target value imposed bound is violated by the state values (we then also refer to
the target value as being violated), the element adjusts according to Table 1 to prevent
or reduce the violation as much as possible, using the relation of the opening degree to
the three quantities. To resolve conflicts of multiple violated target values demanding
opposing changes, the target value types are prioritized by ¢(7) for the target values t

Table 1 Overview of all types of target values sorted by priority from high at the top to low at the bottom

Target value Symbol Priority ¢ Implied bounds Change if violated
Maximal right pressure or 4 Pr > pr Closing
Minimal left pressure e 4 P =D Closing
Maximal left pressure Do 3 e > pe Opening
Minimal right pressure Pr. 3 Pr = pr Opening
Maximal flow q 2 q >q Closing
Minimal flow 4q 1 q=q Opening

We also listed the implied bound on the corresponding quantity of the regulator as well as the direction of
change of the regulator’s opening degree, which is triggered if the target value is violated
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from top to bottom. In general, pressure target values and those reducing the opening
degree and thereby the flow have higher priorities. Some target values may share their
priority value, but only if they influence the element’s control in the same way.

Note that it is possible to force the regulator to be fully opened or fully closed by
using certain target value combinations, for example, by setting

pe = pr =0, Ppr="p, =g ="q =oc forthe open mode or

—

pe = pe =00, pr="pr=¢q ="q =0 forthe closed mode.

[

The Regulator’s Check Valve A regulator contains a built-in element that prevents
flow against its orientation, i.e., ¢ > 0. This element is called a check valve or flap
trap and automatically closes the regulator in case the right pressure rises above the
left one, i.e. py < p,. This action has a higher priority than all the target values and
therefore happens independently of these. If the regulator is not closed by the check
valve, py > p, holds.

Infinite Minimal Flow Target Value For most elements, the lowest priority target value
g is fixed to oo, which effectively is the same as choosing g = q’ < 00, in which case

we may also denote gger = q = "q . Regulators were actually 00 # q < 'q are called
“flow band regulators” or 51mply “band regulators”. They keep their current degree of
openness and do not react to changes in the flow as long ¢ stays within ¢ < g <'q’
and provided that all other target values are satisfied. This behavior wouldTncrease the
overall complexity of the models used for the simulation and optimization of target
values tremendously and is out of this paper’s scope.

Target Value Existence Not all target values are always in use. This has to be taken into
account by the models described below, for example by prohibiting their violation by
setting maximal target values to oo and minimal target values to 0.

However, we assume that the fixed target value ¢ = oo always exists and, in
addition, at least one of the closing target values. Furthermore, we expect the existence
of 'g" in case either "py  or p, exists. As a consequence, for each existing not-fixed
target value, there also exists a target value of opposing direction as well as lower
priority.

3.3 Target values for compressors

In addition to regulators, also active compressors are controlled by target values.
While compressors increase the pressure in flow direction, they influence their flow
throughput to achieve these local pressure changes similar to regulators. For the two
most common types of compressors, the flow changes are realized by controlling the
compressor’s rotational speed, see (Fiigenschuh et al. 2015; Schmidt et al. 2017) for
a more detailed explanation. Due to the similarities, the target value description for
compressors is very close to the one of regulators. However, it is out of this paper’s
scope.
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4 Modeling regulators for dynamic simulations

We follow (Streubel 2022) for the derivation of regulator models for the dynamical
simulation. Consider the following ordinary differential equation

X() = afc(t) —x(¢)], where x(f9) = xo. )

Assuming that c(f) = 0 is the constant zero function, the corresponding solution
would be x(¢) = exp(ty — 1)* - x9 and be convergent to c(t) = 0 for t — oo. On the
other hand if ¢(¢) is some continuous but not necessarily smooth function, we still can
find an explicit expression by adding a correction term to the solution formula

t

x(t) = exp(to — )% - xo + a/ exp(s — )% - c(s) ds.

fo

This more general solution is a leaky or lazy smoothing of c¢(¢), because in the limit

X/ = 0, we find x(¢) = c(¢). Hence, the behaviour of x () is best described as
chasing or constantly steering towards ¢ (). This means we can utilize (9) as a starting
point for modeling regulators in the following way: Assume x (t) = ¢(¢) within (9) to
be the flow through a regulator, then the function c(¢) can be interpreted as a controller.
That means by raising or lowering the values of c(¢) over time we can guide the flow
and hence regulate it up or down.

Let us again substitute x (1) = g (¢) but also c(f) = gse With the target value for the
flow and so (9) turns into

q = algset — ql. (10)

Here and for the remainder of this section we will assume gset = ¢ = ¢

Most regulators do not allow reversed flow and are of courseﬁqon-compressing.
Check valves can be modeled via ¢ = o max(0, —g), where ¢ = 0 whenever g \ 0.
The non-compressing behavior can be expressed via ¢ = « min(pg — p,, 0) such that
g = 0 once p; \( p, to avoid further contribution into the right pressure according to
the behavioral tendencies introduced in (8). Both features combined with (10) provide

g = amax(—q, min(p¢ — pr, gset — 4)), (1)

which is a nesting of max-min-comparisons that represent logical and/or conjunctions.
This nesting is necessary and represents the prioritization of the already integrated fea-
tures. In a similar manner to the non-reversed flow and the non-compressing behaviour,
we find independent modelings for each of the remaining target values

g = amin(0, oy —pr), ¢ =amin(0, p, = pr),
G = amin(0, 7’ —pe), g = amin(0, pe = pe).
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Finally, we combine all single-aspect models within the nesting of (11) and end up
with the full regulator model

¢ = amax(—q, min(p; — max(pe, pr),
min('p,, pe) — pr, (12)
max(gset — 4, Pe = Pe’s Pr.—Pr))).

Two possible modifications of (12) are

pr+4q — pr = amax(—q, min(pg — max( pe . pr),
min(p;’, pe) = pr. (12.)
max(gset — 4, pe = Pes Pr.—pr))),

or the limit system g /« %0

0 = max(—q, min(p, — max(pe, pr),
min(p,, pe) — pr, (12.ii)
max(gset — 4, Pe — Pe’s Pr.—Pr)))-

5 Modeling regulators for discrete optimization

To be able to optimize over the regulator’s target values in the context of time-
discretized transient gas network operation, we aim for a model suitable for discrete
optimization solvers. Our objective is to minimize the number of changes in the tar-
get values such that the control decisions induced by them are feasible to fulfill the
demands of the network, which are usually given at the entries and exits. A low number
of target values leads to a more stable control of the network, which is preferable for
the network operators and reduces strain on the technical elements (Hennings et al.
2021).
For improved readability, we use indicator constraints of the form

y=b — aTx§a0 y,be{O,l},x,aeRi,aoeR
stating that the constraint aTx < qq for a set of variables x = {x1,...,x;}1s active

if the binary variable y attains the value b. If x is bounded, these can be reformulated
using linear constraints, see for example (Bonami et al. 2015).

5.1 A basic regulator model

We use the following model describing the general behavior of a regulator a = (¢, r)
from the literature, see for example (Koch et al. 2015; Hennings et al. 2021):
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pe, pr € R0, qa€ R operation point variables

[0} .
m, mg?, m<, mE*'e (0,1} mode variables

m +mgd +m& +m& =1 (13a)

mad +md =1 — p;<p, (13b)
mC+mP +md =1 — pi=p, (13c)
md+md=1 - ¢, <0 (13d)
0=<4qa (13e)

The model features the mode variables my® for an open regulator, mgl for a closed
regulator, and mi° for an active regulator with opening degree in (0, 1), which has also
been used in (Hennings et al. 2021). We add the mode mS*®! for a regulator closed
by the internal check valve in case of py < p,. In this case, the target values do
not influence the regulator according to Sect.3.2. Note that the open mode is often
replaced by a “bypass” mode in the literature, representing a bypassing network path
that also allows flow in the backwards direction, which is not included in our regulator
model.

5.2 Stable-pushing target value combinations

In preparation for the model construction, we determine for each target value the cases
in which its implied bound has to be obeyed. While in reality, the adjustments of active
elements caused by violated target values happen with a certain delay, we make the
following assumption for our target value model:

Assumption 1 The control of each active element, i.e., the opening degree adjustment
for regulators, reacts to changing target values or operation point conditions imme-
diately and with perfect precision according to the given list of target value priorities
@. Hence, we can assume the control is always fully adjusted to the given network
situation and target values.

This assumption is fundamental for the following classification and is mainly motivated
by the fact that the larger size of time steps used in discrete optimization problems
in comparison to simulation approaches prohibits an appropriate modeling of delayed
element reactions. Note that this is equivalent to the simulation model (12.ii) assuming
a — 0o. Moreover, we observe the following:

Observation 1 Since g always exists and is violated, there always is at least one
violated target value. From these target values, we call the one with the highest priority
¢ the pushing target value.

Note that there might be multiple violated target values of highest priority. However,
these always have the same direction, i.e., either opening or closing altogether, see
Table 1.

Having these two building blocks, the following theorem can be deduced, which
is the fundamental building block for enumerating all the possible compositions of
target value states of a regulator.
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Theorem 1 [Stable and pushing target values] If p; > p, for a regulator a, i.e., it is
not closed due to its check valve, one of the following statements holds:

(1) There is at least one target value t, called the stable target value, with higher
priority than the pushing target value as well as opposing direction in terms of
change in case of violation, such that t is equal to its corresponding operation
point quantity.

(2) The regulator a is fully open, i.e., in open mode, and the pushing target value is
an opening target value.

(3) The regulator a is fully closed, i.e., in closed mode, and the pushing target value
is a closing target value.

Proof Observation 1 states the existence of the pushing target value as a violated target
value of highest priority at any given point in time. According to the description given
in Sect. 3.2, the regulator tries to adjust the opening degree to reduce the corresponding
violation. However, according to Assumption 1, the opening degree is already perfectly
adjusted and therefore does not change. The two possible reasons are:

(a) The regulator cannot adjust the opening degree in the desired direction since it is
already fully opened or closed.

(b) There is some higher priority target value that would be violated if the opening
degree would be changed by any amount in the desired direction due to the induced
operation point changes.

For case (a), either statement (2) or (3) holds, depending on the direction of the pushing
target value’s opening degree change. For case (b), the higher priority target value
has to have the opposite opening degree change direction compared to the pushing
target value. Furthermore, the current target value must be equal to the corresponding
operation point quantity since any change in the opening degree, no matter how small,
would cause a violation. Hence, statement (1) is true. O

Note that while the situations of (2) and (3) are coupled to a specific regulator mode,
this is not the case for (1), where the two opposing target values may fix the opening
degree at a position that just happens to be fully open or fully closed.

Using Theorem 1, we are able to compile a complete list of possible configurations
in terms of combinations of stable and pushing target values, which cover all possible
states of a fully adjusted regulator according to Assumption 1. This list of stable-
pushing target value combinations is displayed in Table 2. Each row represents either
a possible stable-pushing target value combination with opposite directions or a single
pushing target value without a stable target value counterpart. Since the pushing target
value is, by definition, the highest priority target value that is violated, all bounds
implied by target values having a higher priority have to be satisfied. On the other
side, all constraints of target values with priority lower than or equal to the pushing
target value are irrelevant for that stable-pushing combination. Note that in the case
of non-existing target value types, the corresponding rows with non-existing stable or

@ Springer



On the numerical treatment of interlaced target values... 505

Table 2 The table shows all possible stable-pushing target value combinations, one for each line

Mode  Stable Pushing Do e Dr q q
any B e p min x £
any Dr Pr p min * * *
any Dr q D min  max min max

any Dy Do max P * * *
any Do Dr max D * * *
D

any De q max max min max

any ﬁ ? max min D min *
any Dr q max min max P *
any ? q max min max min q

closed — p;r * * * * *
closed - Pe % * * * *
closed - T max min max min *
open - De max min * * *
open - Dr max min * * *
open — Z max min max min max

In addition to the possible regulator modes, the stable target value, and the pushing target value, it shows the
status of the bound for each target value encoded by the color of the cell: Blue stands for satisfied bounds,
red for violated bounds, and orange for tight bounds in which the target value is equal to the operation point
value. The text in the cells describes the necessary target value choice for each combination: The stable
target value is marked by the quantity symbol combined with a “*”. For the violated and satisfied target
values, the two possible values are “min” and “max”. The value “min” encodes a target value that needs to
be smaller than the state value, while “max” represents a target value that needs to be larger than the state
value. The cells without coloring and filled with an asterisk do not have any relevant condition for the given
row since the pushing target value has the same or a higher priority ¢

pushing target values, as well as the columns of the missing target value types, would
be removed.

To prepare for the formulation of our mixed-integer programming model, we make
one adjustment to the contents of Table 2: We only allow the usage of the active mode
for all target value combinations featuring a stable target value. This is possible since
the feasible region of both the open and the closed mode is contained in the one of
the active mode according to the above-presented regulator model (13). As a result,
we can assume that the regulator is in active mode if and only if it has a stable target
value. All the open and closed mode cases with stable target value are covered by a
corresponding operation point from the active mode showing the exact same behavior.

5.3 A mixed-integer linear formulation

Based on the characterization derived in the previous section, we now present our
mixed-integer linear programming (MILP) target value model for single regulator
a = (¢, r) at time ¢. As the model extends the basic regulator model (13), we only
state the additional variables and constraints. First, we introduce some sets:
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r = A{pe,pe, pr.pPr>q,9} All target values
Iy T % o All target values existing
for regulator a
®* = {(pr,pe), (pr, pr. ), (prs q ), All stable-pushing target value

(pe, pe), (pe, pr),(pe, q), combinations for active
Cpe'a)s (pr>a), (4 q)}

e = (=P, (=, pe). (—, 7))} All stable-pushing target value
% combinations for closed

O°P = (-, p),(—, pr),(—, q)} All stable-pushing target value
T - combinations for open

O All existing combinations

for active for regulator a
Now, we can specify the new variables as

Tvai € [Ty g Tra| ¥ € I, target values
Oy.a, € {0, 1} Vy € ®, stable-pushing target value combinations
8x.ar € 10,1} Vx € I, indicator for target values changes

The t variables represent the target values chosen by the model. They can be set inside
the variable bounds z, , and 7, , for each target value x. These are given for each
individual regulator a and can considerably restrict the feasible operating range of
the regulator. If, for example, the minimal left pressure target value p, has a lower
bound value of 40 bar, then the regulator has to operate at a left presﬁe value of at
least 40 bar in active mode and open mode, since according to Table 2, the target value
pe can only be violated for the closed mode or if the regulator is closed due to the
check valve. The variables 6 represents the stable-pushing target value combination
chosen for each regulator a. Finally, the § variables indicate a change in the target
value variables T between the values of the previous and the current time point.

For the following set of constraints, we introduce the function o mapping from a
given type of target value to the corresponding point of operation:

pey forx € {pe. pe}
01(x) ==y pry forx €{p,.pr}
qa; forx €{q.q}

In addition, we use ¢ as a function from target value types to the priorities given
in Table 1 above. Also, we introduce the parameter &, which represents a relative
tolerance used in the equality constraint of the stable target value. As explained at
the beginning of Sect. 5.2, the adjustment of the regulator’s control to changing target
values or operating point conditions happens with a certain delay in reality. Hence,
there usually is an offset between the used target values and the current operation
point. To better reflect this behavior and prevent too many target value changes caused
by minor adjustments of the stable target value, we introduced the relative & value.
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The constraints for our target value model are then given as

M, = Z 0y.ar Vx € {ac, by, cl} (14a)
yEOF

Z Gy,a,t =1 — —goi(x) < Tx,a,t — 01(x) < €04(x)

y=(x,v)€0,
Vx eI, (14b)

Z brai=1 — Ty,a,r = 04(X) %fxE{%,é,é}
Trar < 0i(x) ifx € {pe’, P q}

y=(u,x)€0,
Vx eIy, (14¢)
T < ifx € , ,
Y =1 o e SO0 b P d)
=96, Tvar Z 0:(x) ifx € {pe,"prs g}
(x#u) A (9(x)>p(v))

Vx e I, (14d)
(Sx,a,t =0 — Tx,a,t = Tx,a,t—1 Vx eIy (14e)

Equation (14a) ensures the choice of exactly one stable-pushing target value com-
bination fitting to the current mode. Note that for the check-valve-closed mode, no
combination is chosen. Constraints (14b), (14c), and (14d) establish the consequences
of the choice of a stable-pushing target value combination and are based on the illus-
tration of Table 2. Structure-wise these constraints collect for a given target value type
T all stable-pushing target value combinations in which this type of target value is
the stable one for (14b), is violated for (14c), or is satisfied for (14d). If one of these
combinations is chosen, the corresponding relations between the target value and the
corresponding operation point are enforced. Finally, constraint (14e) defines the target
value change variables, forcing the actual target value variable 7y ,; to keep their
value if the change variable does not indicate a change, i.e., is zero.
As objective function, we minimize the number of target value changes:

min Z Z Sx.a.t-

a,t xely,

Note that (Pfetsch et al. 2015; Schmidt et al. 2015; Koch et al. 2015) introduced
a model for regulators without remote access that have a set-point control for the
maximum right pressure with value p*. Depending on whether the right pressure is

@ Springer



508 F.Hennings et al.

larger than, equal to, or less than p*', the mode is closed, active, or open, respectively.
In addition, these regulators also feature a check valve behavior, which in their case
allows flow against the regulator’s orientation (bypass instead of open mode). Except
for the reverse flow possibility, the described behavior can as well be achieved with
our formulation, for example, by setting T = pt T e = 0,and 7 pr= 0o. The
target value p, is always satisfied and p, is always violated. Hence, the regulator
is either in active mode and has a stable?, with p, equal to the set-point value, or
"pr is violated, leading to a closed regulator, or p, is below “p,” and satisfied, leading
to the open mode. This shows that our optimization model covers regulators with and
without remote access, as introduced in the mentioned literature.

6 Numerical evaluation

To show and verify the accuracy of our models, we present in this section two exper-
iments using the target value control on a single regulator. It is embedded in a simple
path network between two pipes, each with L = 10km, D = 0.9 m, r = 0.012 mm,
see Fig.2.

For both scenarios, we determine the solution using the dynamic simulation model
presented in Sect.4 as well as the optimization model presented in Sect. 5. Both solu-
tions need to be validated in comparison with a reference solution embodying or
substituting the real-world network. Such a reference solution is determined using the
SIMONE simulator, which has established itself as a de facto standard due to its wide
use in industry. We therefore refer to solutions computed with SIMONE as industry
simulations. In other words we attempt to get close to SIMONE results.

The initial steady state of the scenarios features a flow of 10 kg/s on all arcs as well
as inflow at the entry and outflow at the exit. The pressure ranges from 50 bar at nj,
t0 49.992 bar at n4y, the regulator is fully open, the constant gas temperature is set to
283.15 K, and the gas is, for the sake of simplicity, assumed to be pure methane.

The simulation has been programmed in python using the numpy (Harris et al.
2020) and scipy (Virtanen et al. 2020) libraries, i.e., all models, their derivatives
but also the necessary solver for differential algebraic equations, for which we have
implemented the well-known implicit Euler method. As pipe model, we use the left-
right-discretization (6) of the ISO 3 model, equipped with the linear AGA formula for
the real gas factor. Note that we chose o« = 1000 for the simulation model.

For the optimization, we take the linearized pipe model (1b”) discretized with
the implicit box scheme. Furthermore, we use a constant real gas factor z, which is
determined for each node by using the formula of Padpay and computed from the initial
state. The linearized model is not reliable in the case of volatile flow conditions but

Nin Ty Ny Nout
O . O—[=——"0 . O

Fig. 2 Benchmark network, consisting of one regulator arc = and two pipes —*— surrounding the
regulator
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works fine for the following scenarios featuring similar flows for most of the time. As
a benefit, the resulting overall model is linear, which enables us to use a MILP solver
for the optimization, in our case GUROBI in version 9.1.1 (Gurobi Optimization 2020),
which was accessed via Pyomo (Hartetal. 2011, 2017). Furthermore, we picked ¢ = 0
for the optimization model.

All computations have been executed on a desktop computer using an Intel Core
i5-10310U processor and 16 GB of RAM.

6.1 First scenario

The first scenario’s goal is to verify that both our models are able to accurately produce
arealistic target value behavior. As test instance, we use a set of target values obtained
from our project partner, the gas network operator Open Grid Europe GmbH (OGE).
These target values should lead to different opening degree and throughput changes of
the regulator while assuming a steady inflow and outflow at the boundaries of 10kg/s
over the whole time horizon of 12 h. This scenario is a stress test, which represents an
example of the gas flow within large transport pipelines in the mid-to-high pressure
range of 30 bar to 100 bar. It has been designed to provoke relevant interferences from
the regulator involving almost each available target value. An overview of the different
switching actions of the target values is provided in Table 3.

For the optimization, the simulation, as well as the reference industry simulation, we
use a rather typical time discretization of 3 min. By typical we mean that we have come

I;a):clieﬁidﬁl;)};eggegr?t(;}rail(;lgsurope v Time as hb:mm Value

GmbH (OGE) in our benchmark e 00:00 48.0 bar

scenario —
or 00:00 55.0 bar
2 00:00 100.0 bar
pr. 00:00 40.0 bar
q 00:00 9.0kg/s
q 01:00 15.0kg/s
q 02:00 6.0kg/s
q 02:30 10.0kg/s
or 03:30 47.0 bar
or 04:30 55.0 bar
pe. 05:00 55.0 bar
pe. 05:30 53.0 bar
pr. 06:30 46.0 bar
q 06:30 6.0kg/s
pr. 07:00 46.5 bar
br. 07:30 47.5 bar

Each row represents a target value change of the given type of target
value to the given value at the given time. The time is specified as hours
and minutes past the initial state
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across this particular time resolution frequently in data and various discussions with
representatives from the transporting industry. So we go along with it and treat it as a
mandatory time resolution within our experiments. Note that while for the optimization
its time discretization is fully determined by this initial choice, the simulators do take
it as a baseline and may dynamically vary the time steps’ length internally to add time
points in between the mandatory ones. Also note that the target values are fixed for
the optimization here, which effectively transforms the problem into a plain feasibility
problem, where any feasible solution of the problem has the same nodal pressure and
arc flow values. Both simulation runs as well as the optimization run finished in less
than 10s.

The differences between the three solutions are shown in Fig.3, where we com-
pare the simulated solution (SIM) with the one computed by the industry simulator
(IND) in Fig. 3a, the optimized solution (OPT) with the one computed by the indus-
try simulator (IND) in Fig. 3b, and the optimized solution (OPT) with the simulated
solution (SIM) in Fig. 3c. The displayed relative accumulated errors are defined as the
integrated difference over time divided by the time-integrated reference solution, i.e.,
let SOL, REF € {SIM, OPT, IND}, SOL # REF and y € {p¢, pr, q}, then

/& SOL[yl(s) — REF[y](s)ds

relative accumulated error[y](?) = -
fto REF[y](s)ds

The development of the left and right pressure values and target values of the regulator,
as well as the development of the flow values and target values, are given in the
appendix in Figs. 6, 7, and 8. There, we also give a detailed description of the interaction
of the different target values with the three quantities and explain the resulting changes
of the regulator’s opening degree.

All three solutions are very similar to each other in terms of the development of the
regulator’s operation point over time. Hence both derived models, the simulation model
and the optimization model, catch the regulator’s behavior compared to the industrial
simulation. From Figs. 3, we are able to obtain the following maximal relative error
values and relative error values at the end of the time horizon for the pressure, where
we always choose the bigger of the two errors given for the left and right pressure, as
well as the flow.

Max p error Max g error  End p error  End ¢ error

SIM vs IND 0.07 % 1.57 % 0.06 % 0.08 %
OPT vs IND 0.14 % 1.68 % 0.06 % 0.38%
OPT vs SIM 0.10 % 1.59 % 0.05 % 0.30%

We observe that the differences in the pressures are, in general, smaller than those
in the flows. This is due to the fact that each of the three methods has a different
internal implementation of the reaction of the regulator’s opening degree to changing
target values conditions. Hence, even though the time discretization is the same for all
approaches, the flow values are different in the unstable periods shortly after a target
value change leading to a new violation. However, these differences only occur for
brief periods of time. We also note that the differences between the two simulation
procedures are, in general, smaller than those between the optimization and one of the

@ Springer



On the numerical treatment of interlaced target values... 511

S
g —pL
o 10 =—PR
£ o5 — FLOW
a
Z 0.0
~ -05
S -10
% -15
= 0 1 2 3 4 5 6 7 8 9 10 1 12
o . .
ut.l Time since start [h]

(a) SIM vs IND
S
g —PL
£ 15 PR
IS — FLOW
[a)
z 10
=
= 05
o
D 0O
£
= 0 1 2 3 4 5 6 7 8 9 10 1 12
o . -
LE Time since start [h]

(b) OPT vs IND
S
g —PL
o 15 —FPR
£ 10 — FLOW
=
= o5
=~ 00 7
8 o5 V
o>
o -10
= 0 1 2 3 4 5 6 7 8 9 10 1 12
o . =
5 Time since start [h]

(c) OPT vs SIM

Fig. 3 Comparison of the simulated solution (SIM), the optimized solution (OPT), and the solution of
the industry simulator (IND) for the first scenario with predefined target values based on Table 3. The
figures show the difference between two of these solutions, where the second solution acts as a reference
solution: On the top is the difference between SIM and IND, then the difference between OPT and IND, and
finally, the difference between OPT and SIM. The differences are displayed for each of the three quantities
integrated over time and normalized by the quantity integral of the reference solution. Figures created with
(Plotly Technologies Inc. 2015)
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simulation runs. This is no surprise, as we assume an idealized target value behavior
for the optimization model, see Assumption 1. However, we are glad to see how close
the solution of the idealized model is to both simulations.

6.2 Second scenario

In the second scenario, we tested both models in a different setup. Here, we determine
the regulator’s target values using the optimization model and verify them using the
simulation model. Since this task is quite demanding in a volatile environment, even for
only a single regulator, we discretized the time horizon for the optimization model into
steps of 15 min, leading to 48 time steps in total, whereas both the simulations continue
to solve with the baseline resolution of 3 min as established in the first scenario.

To ensure and provoke the necessity of target value adjustments, we prescribed not
only the inflow at the entry and outflow at the exit but also the pressure values over
time at both nodes. These pressure values were obtained by solving the optimization
model of the first scenario using a time step resolution of 15 min. This enables us to
compare the number of target value changes between the OPT solutions of scenarios
1 and 2 and provide an estimate of the optimization potential.

There is a fundamental difference in the interpretation of value updates of target
values between the optimization and the simulation model. A simulation starts with the
control adjustment at some point in time, let it be ¢, and proceeds to adjust thereafter.
In contrast to this and due to Assumption 1, the optimization model assumes the
adjustment to be finished at #. Hence, it basically assumes that the target values have
been changed at some point within the 15 min time step preceding time 7. To better
synchronize the behaviour in both models, we offset each time point # where the
optimization model has determined a change of target values to r+ — A,/2 before
passing to the simulation processes. Here A, corresponds to the time resolution of
the optimization model, i.e., A; = 15 min. This reduces the maximum possible error
between the used and the actual change time. Note that we further round 7.5 min up to
the next integer value of 8 min, because our data interface can only process full minutes.
While all the simulation runs finishes after couples of seconds, the optimization process
requires up to 11h to finish, i.e., to confirm optimality. The corresponding optimal
solution is found in under 6s.

The target values determined by the optimization are listed in Table 4. The differ-
ences between the three solutions are shown in Fig.4, where we again compare two
out of the three solutions using the above-defined relative accumulated error measure
in each of the visualizations.

When comparing the listed target value changes in Tables 3 and 4, we observe that
only 8 target value changes were needed to achieve the regulator control instead of
the previous 11 changes. In the optimized solution, the redundant changes of "p,” at
04:30 and of 'g" at 06:30 are removed, as they do not affect the regulator’s control but
increase the objective function value. In addition, the control change at 07:30, which
was a consequence of changing p, at 05:30 and p, at 07:30, could be realized by
a single change of "p, at 07:30. Similar to this last case, some of the other control
changes are now triggered by different target value changes. One example would be
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Fig. 4 Comparison of the simulated solution (SIM), the optimized solution (OPT), and the solution of
the industry simulator (IND) for the second scenario with optimized target values based on Table 3. The
figures show the difference between two of these solutions, where the second solution acts as a reference
solution: On the top is the difference between SIM and IND, then the difference between OPT and IND, and
finally, the difference between OPT and SIM. The differences are displayed for each of the three quantities
integrated over time and normalized by the quantity integral of the reference solution. Figures created with
(Plotly Technologies Inc. 2015)
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Table 4, The target va@ue‘s . TV Time as hh:mm Value

determined by the optimization

model. Each row represents a OPT SIM

target value change of the given

type of target value to the given ~ P¢, 00:00 00:00 48.0 bar

value at the given time o 00:00 00:00 55.0 bar
pe 00:00 00:00 100.0 bar
pr 00:00 00:00 40.0 bar
q 00:00 00:00 9.0kg/s
q 01:00 00:52 13.0kg/s
q 02:00 01:52 6.0kg/s
pr, 02:30 02:22 48.5 bar
Pr 03:30 03:22 47.0 bar
Pr 05:00 04:52 45.0 bar
Pr 06:30 06:22 46.0 bar
or 07:00 06:52 46.5 bar
or 07:30 07:22 47.0 bar

The time is specified as hours and minutes past the initial state. The
OPT time is the one determined by the optimization, and the SIM time
is the one communicated to both simulation processes

the change at 05:00, which was previously caused by setting p,y to 55 bar and is now
triggered by setting "p,” to 45 bar. We again refer to the apperix for a visualization
of the development of the left and right pressure values and target values, as well as
the development of the flow values and target values in Figs. 9, 10, and 11.

When looking at the solutions over time, the development is again quite similar,
which can also be observed from the table below. It shows the maximal relative error
and the relative error at the end of the time horizon for the pressure values, where we
always choose the bigger of the two errors given for the left and right pressure, as well
as the flow values.

Max p error Max g error  End p error  End ¢ error

SIM vs IND 0.07 % 1.26 % 0.06 % 0.04 %
OPT vs IND 0.16 % 5.92% 0.11% 0.35%
OPT vs SIM 0.23% 5.95% 0.17% 0.31%

The error values of the comparison between our simulation and the one of the industry
software are consistent with those of the first scenario. This is not surprising, as only
the simulated instance changes while the general setup for both stays the same. When
comparing one of the two and the optimized solution, we clearly see the difference to
the values of the first scenario. Especially the maximum flow error, but also the maximal
and overall errors in the pressure have increased significantly. This is an expected
change, as the optimization now uses a more coarse discretization. Nevertheless, the
pressure differences are still very small in general and not too far away from the values
of either simulation. Regarding the errors in the flow, the main difference occurs in
the very first minutes of the scenario. Since the initial target values are violated, the
control adjusts immediately, which happens during the first time step for all of the three
approaches. Due to the different time discretizations, the adjustment is 5 times faster
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for the simulations than for the optimization. However, the final error regarding the
flow values is surprisingly small and consistent to the values of the first scenario. We
summarize that both simulations yield very similar results, while the solution of the
target value optimization may produce different values during the times of adjusting
the control to new target values, but gives very similar results regarding the stabilized
control situations.

7 Outlook

In this article, we introduced models for regulators in gas networks and embedded
target values for their control. The target values form a system of 6 simultaneously
active and hence competing set-points, which enables the regulating element to react
to changing conditions in the surrounding network without the need of continuous
human observation or manual interactions. Our description lives up to expectations
and needs compared to features found in industry-standard simulators.

To capture the behavior of target value controlled regulators, we introduced two
different models. The first one is a model suitable for dynamic or transient simulation.
Here, the target values are assumed to be piecewise linear functions, and their compet-
ing logic is encoded in terms of nested max — min-comparisons. A second model was
designed to be used in discrete optimization problems and determines an optimized
set of target values changing as little as possible while enabling the demanded net-
work control. It is based on a characterization of the target value behavior as a set of
specific element states, the stable-pushing target value combinations. These assume
a regulator reacting to changes in its environment or of its target values immediately
and perfectly precise. Depending on the chosen combination, different constraints are
active that relate the target values to the values of the element’s point of operation.

Both models have been evaluated in comparison to a commercial simulator, actively
used in industry. We showed that the behavior of our simulation model matches the
expectations in that the simulated solutions stick close in terms of the resulting pressure
and flow values. The relatively higher differences in the flow values are short-lived
and their integral equaling the total amount of transported gas is negligible. These
differences in the flow values represent slightly different timings and adjustment speeds
of regulator actions. Possible strategies to address this could be the introduction of
delay or slope limiter. However, this is more a question of technical specification rather
than mathematical consideration. For the optimization model, we could show that it
works very well when using the same time discretization as for the simulation together
with already fixed target values. Here, the differences to both simulated results are just
slightly larger than both simulations among each other, even though we used a model
based on more simplifying assumptions. In a more realistic scenario, in which the
target values are subject to optimization, we need to use fewer and larger time steps.
As a result, the relative differences to the simulated results have increased. However,
they still stay very close and bounded, especially the components representing the
pressures. This indicates that the optimization model is able to reproduce the target
value behavior reasonably well.
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There are multiple paths to pursue for future research. Firstly, we could replace or
add other kinds of target values, e.g., bounding values for the ratio or difference of in-
and outlet pressures. Secondly, the regulator model for simulation could be converted
into a model for band regulator if 4q = 'q" by replacing (10) with

¢ = a[min(0, ¢’ —¢) + max(0, ¢ —q)],

just before adding the remaining target value mechanisms. Thirdly, we may apply
our techniques to embed target-value-based controls into compressor unit, group, and
station modeling. In that regard, we have already discussed it briefly in Sect. 3.3, but
it would need to be elaborated and established further in full detail. Furthermore,
the optimization model can probably be improved to enhance the performance when
combined with state-of-the-art optimization frameworks. While the model captures the
target value behavior very well already, it is quite challenging to solve for one single
element. The overall goal is to make it usable in a transient gas network operation
model using multiple regulators and hundreds of other network elements. Finally, the
concept of a target-value-based element control can be applied to active elements in
other flow networks. As an example, we mention pumps in water networks, which
from a macroscopic viewpoint similarly control their network as compressors do for
gas networks.
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Appendix
A.1: On the relations of flows and pressures

Both regulators and compressors do manipulate the passing gas flow. Due to the gas
dynamic modeled within neighboring pipes, the pressures will react and change as a
consequence. Thus, from their direct influence on gas flow, active elements also have
an indirect but immediate influence on pressures. Elaborating on this thought, either
discretization as introduced in Sect. 2.3 does approximate pressures and flows linearly
along a pipe, i.e.,
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qr — q¢
L) ~g+x— s 9~ L2
q(x,t) ~ qp 2 q 2
Pr — Dt

p(x, 1) ~ pg+x

Thus, we find a common precursor as space continuous system of differential equa-
tions with algebraic constraints derived from the friction dominated variant of the
isothermal Euler equations (1) as

qg

p(x, 1) = =B (p(x, t))K (15a)

pr—pe . (p(x. ))q(x,t)lq(x,t)l g rx, 1)

0=A = )
L 2D p(x,t) Kk z(p(x, 1))

(15b)

where we refer to B;(p(x, 1)) = [22(p(x, 1)) /[z(p(x, 1)) — p(x, 1) - Ipz(p(x,1))]]
as bracket term. Now provided that B;(p) > 0, we can conclude for (15a) that net-
positive inflows imply positive time derivatives of pressures, i.e.,

g9 >qr = p=>0, (16a)
and likewise the other way around
G<q = p<0, (16b)

for net-positive outflows. Furthermore, B,(p) > 0 is indeed true if and only if z(p) >
pIpz(p), which is generally true for any constant and linear model of the real gas
factor and also true for the quadratic formula of Pdpay on its recommended operational
range. Hence, we could take control over local pressures in a predictable manner by
manipulating the exchanged flow between two serial pipes. This is the fundamental
mechanism on which we base our regulator modelings.

Thus in the sense of this paper, we consider a regulator (sometimes also referred to
as control valve) RG to be a sub-network in itself, involving 1 entry pipe szg followed
by a so-called atomic regulator RGatomic followed by 1 more exit pipe P,Rg. Figure 5
depicts the described sub-network configuration.

Now the atomic regulator centering between both hidden pipes is allowed to change
the flow g by increasing or decreasing its resistance. In other words, it exploits our
observations in (16) which roughly translate into the following diagram of expected
principal reactions

9/ =~ peNPr S

AN T 4 A
i.e., a sudden rise in flow either causes a drop of the left pressure or a rise of the right
pressure or both. Likewise a drop of flow either causes a rise of the left pressure or a

drop of the right pressure or both.
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Fig.5 Depiction of the hidden sub-network structure (above in the picture) behind a regulator or sometimes
control valve RG (below in the picture), including an atomic regulator RG zomic as well as two internal

pipes Pgag and P,R g

A.2: Development of operation point values in the numeric evaluation

In the following, we give a description of the solutions of the first scenario presented in
Sect. 6.1. The development of the values is given for the left pressure values in Fig. 6,
for the right pressure values in Fig.7, and for the flow values in Fig. 8. As the target
values and quantity developments are very similar for the simulated solution (SIM),
the optimized solution (OPT), and the solution of the industry simulator (IND), we
only give a single description which applies to all three of them.

At the initial start, all the pressure target values are fulfilled, but ‘¢ = 9kg/s
is violated. Hence, the regulator closes until ¢ = "g’, which causes an over-time-
increasing pressure imbalance between the left and right pressure. At 01:00, g’ is set
to 15 kg/s. Hence, the regulator fully opens again, the pressures equalize, and we go
back to the initial steady state. Next, ‘g is set to 6 kg/s for 30 min and then goes to
10 kg/s. The regulator enforces corresponding values of g, which first creates a pressure
imbalance by reducing the flow and then stabilizes this imbalance. At 3:30, we start
using the pressure target values by setting "p, to 47.0 bar, which is violated. Since p,”
has the highest priority, the regulator closes until p, = 47.0bar and then keeps this
value, i.e., ¢ = 10kg/s is established again. After setting back "p,, the situation does
not change since "¢ still enforces ¢ = 10kg/s. Now, py = 55.0bar is set, which again
is violated and of high priority. Therefore, we further increase the pressure imbalance
until reaching py = 55.0 bar and keep this situation stable, even though p, is reduced
to 53 bar again shortly after. The next new setting is p, to 46.0bar at 06:30, which
is a violation of the target value. Since p; and p,” are currently fulfilled, this forces
the regulator to open until p, = 46.0 bar is reached. Here, we stabilize the flow at
g = 10kg/s again. The reduction of '¢" to 6 kg/s does not change this since p, is
of higher priority than 'g". As final changes, we first set p, to 46.5bar and then to
47.5 bar. The first change shifts the stable situation to p, = 46.5 bar. However, we do
not reach p, = 47.5 bar afterwards since this would violate p, = 53 bar. Hence, we
stabilize at p; = 53.0 bar and keep this situation until the end of the time horizon.

The development of the values for the second scenario presented in Sect.6.2 is
given for the left pressure values in Fig. 9, for the right pressure values in Fig. 10, and
for the flow values in Fig. 11.
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