
Optimization and Engineering (2024) 25:575–603
https://doi.org/10.1007/s11081-023-09808-w

SOFTWARE ART ICLE

Developing an efficient coupled function-based topology
optimization code for designing lightweight compliant
structures using the BESO algorithm

Mohsen Teimouri1 ·Masoud Asgari1

Received: 15 February 2023 / Revised: 2 May 2023 / Accepted: 3 May 2023 /
Published online: 17 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this article, an engineering computational method is developed for implementing
theBi-directional Evolutionary Structural Optimization algorithmby creating an inter-
face betweenMATLAB andABAQUS software packages. This interface is a topology
optimization (TO) package developed for maximizing the stiffness of 2D structures
subjected to a volume constraint. A source code (the main function), including four
dependent functions, is generated as the optimization engine. It covers the optimiza-
tion main algorithm loop and its pre-loop requirements. The dependent functions
are responsible for checking background finite element analyses (FEA) in ABAQUS,
obtaining necessary parameters from FEA results, conducting the sensitivity analy-
sis and the filtering scheme, and finally, defining an updated design area for a new
optimization loop. At the end of the source code, the optimality criterion is checked
and results are displayed when it is satisfied. The user can define the geometry of the
design area, mesh size, and boundary conditions in the ABAQUS CAE environment
while no finite element codes are needed to be written. This package is developed for
quadratic plane stress elements in general static problems. To validate and verify its
performance, different benchmark strain energy problems are solved as examples, and
results are compared to previous well-known research efforts. This TO package can be
developed for frequency, non-linear, multi-material, and periodic problems by updat-
ing its sensitivity analysis section. Its 3D version can be also achieved by modifying
the elemental and nodal matrices for increased degrees of freedom.

Keywords Topology optimization · FEM · MATLAB code · ABAQUS · BESO
method · Educational software

B Masoud Asgari
asgari@kntu.ac.ir

1 Research Laboratory of Passive Safety Systems, Faculty of Mechanical Engineering, K. N. Toosi
University of Technology, P. O. Box, Tehran 19395-1999, Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-023-09808-w&domain=pdf

576 M. Teimouri, M. Asgari

List of symbols

C Compliance or strain energy
F Global load vector
K Global stiffness matrix
U Displacement vector
Ne The total number of elements in the design space
x j Design variable
Vj jTh element volume
ER Evolutionary ratio.
V0 Final structure volume
xmin Minimum element density
E1 Solid material’s Young modulus
p Penalization parameter
K 1

J Stiffness matrix of the solid material
ue Elemental displacement vector
αe Elemental sensitivity number
w Weight function
rej Central distance between elements e and j
rmin Filtering radius

1 Introduction

Michell’s (1904) work on the layout optimization of trusses can be considered the first
investigation of topology optimization (TO). Before the emergence of modern TO
algorithms, many efforts have been made concerning material distribution optimiza-
tion in 2D and 3D design areas (Bendsøe et al. 1994, 1995; Asgari 2015, 2016). Since
then and mainly over the past decades, with the emergence of various methods includ-
ing density-based methods (Bendsøe 1989; Zhou and Rozvany 1991), evolutionary
procedures (Xie and Steven 1992, 1993), bubble method (Eschenauer et al. 1994),
topological derivative (Sokolowski and Zochowski 1999), level-set methods (Sethian
andWiegmann 2000; Allaire et al. 2002;Wang et al. 2003; Xia et al. 2006, 2011, 2012,
2014; Luo et al. 2008; Xia and Shi 2016a, 2016b) and phase-field method (Bourdin
and Chambolle 2003), TO has gone under serious changes and developments in both
academic and industrial disciplines. The single-material minimum compliance prob-
lem subjected to a volume constraint is the most considered design case in this area.
However, its borders have gone beyond single material static problems, and novel sub-
jects including non-homogenous and multi-material cases (Banh et al. 2023, 2021a,
2021b; Ngoc et al. 2022; Doan and Lee 2017), non-linear studies (Meng 2022), fuzzy
and probabilistic-based TO models (Meng et al. 2020, 2021), etc. have been studied
by researchers.

The evolutionary structural optimization (ESO)method proposed byXie andSteven
(1992, 1993), is a heuristic TO method based on the simple concept that a structure’s

123

Developing an efficient coupled function-based topology… 577

topology is optimal when low-stress areas are gradually removed from. This sim-
ple concept behind the ESO method makes it a user-friendly one for researchers and
students. Its extended version, known as the bi-directional evolutionary structural opti-
mization (BESO) method, was developed by Querin et al. (1998, 2000a, 2000b). In
this method, adding elements to highly stressed areas became possible as well as their
removal from low-stress regions. The next prominent development in the ESOmethod
was presented by Huang andXie (2007a) which was an improved version of the BESO
method. This update has shown a promising performance in a wide range of structural
design studies including stiffness and frequency optimizations (Teimouri and Asgari
2019, 2020; Huang et al. 2010), nonlinear material and large deformation problems
(Huang and Xie 2007b, 2008a), energy absorption (Huang et al. 2007), multiple mate-
rials (Huang and Xie 2009), multiple constraints (Huang and Xie 2010a), periodic
structures (Huang and Xie 2008b), hybrid structures (Dong et al. 2020; Teimouri
et al. 2021), and so on (Huang and Xie 2010a). Apart from being very easy to under-
stand and implement (at least for the compliance minimization case), the primary
motivation for the evolutionary approaches seems to be that mathematically based or
continuous variable approaches “involve some complex calculus operations andmath-
ematical programming” (Li et al. 1999). They contain “mathematical methods of some
complexity” (Zhao et al. 1998), whereas the evolutionary approach “takes advantage
of powerful computing technology and intuitive concepts of evolution processes in
nature” (Li et al. 1999). Through years of development, the current form of BESO
has become a gradient-based mathematical optimization method with convergent and
mesh-independent algorithms (Zuo and Xie 2015).

Implementation of theTOalgorithms in different engineering problems has been the
subject of many studies, and researchers, either academic or industrial have published
several codes and programming tools for this purpose. Meanwhile, these codes have
been helpful for new users to understand the underlying idea of structural topology
optimization (Zhu et al. 2021). In the review and educational articles of (Zhu et al.
2020, 2021), these optimization programs are discussed in detail. In Table 1 (Han et al.
2021), educational computer programs for continuum topology optimization problems
are gathered from different articles.

Most of the presented codes are written by solving the simple mean compliance
problem; one can easily apply them to solve different compliance problems. Among
other published codes for different algorithms, there have been several efforts to imple-
ment the ESO and BESOmethods including soft-kill and SERA for 2D problems, and
PYTHON3D for 3D problems. In a comprehensive review of the BESO method on
advanced structures and materials, MATLAB codes esoL and esoX can be referred to
Xia et al. (2018). The BESOmethod, with its discrete nature, can overcome numerical
instabilities such as checkerboarding, mesh dependency, and intermediate material
densities. Yongsheng Han’s article (Han et al. 2021) introduces an efficient 137-line
MATLAB code for geometrically nonlinear compliance topology optimization prob-
lems using the BESO method. These codes have also smoothed the way for many
commercial TO software packages like TOSCA, n-Topology, Altair Inspire, and so
on, which have been used by researchers in many articles (Teimouri and Asgari 2021).
Among the published programs, few of them have focused on using well-known FEM
packages in their optimization code. It seems that optimization codes equipped with

123

578 M. Teimouri, M. Asgari

Table 1 Educational computer programs for topology optimization (Dong et al. 2020)

Program Author References Environment Method Assumption

99-line Sigmund 2001 Sigmund 2001) MATLAB SIMP Linear

199-line Wang et al Gao et al. 2021) MATLAB LSM Linear

SOFT-KILL Huang and Xie
2010a, 2010b

Huang and Xie
2010a; Huang
and Xie 2010b)

MATLAB BESO Linear

dLSM Challis 2010 Challis 2010) MATLAB LSM Linear

88-line Andreassen
et al. 2011

Andreassen et al.
2011)

MATLAB SIMP Linear

PolyTop Talischi et al.
2012

Talischi et al.
2012)

MATLAB SIMP Linear

169-line 3D Liu and Tovar
2014

Liu and Tovar
2014)

MATLAB SIMP Linear

115-line Tavakoli and
Mohseni 2014

Tavakoli and
Mohseni 2014)

MATLAB SIMP Linear

PYTHON 3D Zuo and Xie
2015

Zuo and Xie
2015)

Python,
Abaqus

ESO Linear

topX Xia and
Breitkopf
2015

Xia and
Breitkopf
2015)

MATLAB BESO Linear

MMC188 Zhang et al.
2016

Zhang et al.
2016)

MATLAB MMC Linear

SERA Loyola et al.
2018

Ansola Loyola
et al. 2018)

MATLAB ESO Linear

FEniCS Laurain 2018 Laurain 2018) FEniCS LSM Linear

88-line Wei et al. 2018 Wei et al. 2018) MATLAB LSM Linear

esoL esoX Xia et al. 2018 Xia et al. 2018) MATLAB BESO Linear

185-line Laurain 2018 Laurain 2018) FEniCS LSM Linear

213-line Chen et al. 2019 Chen et al. 2019) MATLAB,
ANSYS

SIMP Nonlinear

AC# 3D Lagaros et al.
2019

Lagaros et al.
2019)

SAP2000 SIMP Linear

128-line Liang and
Cheng 2020

Liang and Cheng
2020)

MATLAB CDT Linear

108-line Kim et al. 2020 Salgarello et al.
2013)

FreeFEM LSM Linear

62-line Yaghmaei et al.
2020

Yaghmaei et al.
2020)

MATLAB LSM Linear

89-line Zhu et al. 2020b Zhu et al. 2021) FreeFEM SIMP Nonlinear

Top99neo Ferrari and
Sigmund 2020

Ferrari and
Sigmund 2020)

MATLAB SIMP Linear

Top3D125 Ferrari and
Sigmund 2020

Ferrari and
Sigmund 2020)

MATLAB SIMP Linear

Tobs101 Picelli et al.
2020

Picelli et al.
2021)

MATLAB TOBS Linear

123

Developing an efficient coupled function-based topology… 579

this feature can be more successful in solving versatile structural problems. Moreover,
higher calculation speed and more precise and valid outputs are expected while the
FEA part is done by an efficient powerful software like ANSYS or ABAQUS. This
feature makes the designer more convenient to focus on the code and optimization
process rather than solving a complicated FEM problem for a specific geometry or
mesh size.

Being aware of the above-mentioned research efforts’ pros and cons, and also
considering the FE modeling complexity of different published codes, this work is
aimed at developing amultipurpose efficient optimization software interface that could
be easily understood, used, and developed by students and researchers all around the
world.

In this work, a BESO-basedMATLAB-ABAQUS interface is presented for solving
2D compliance problems. This interface includesMATLAB functions generated based
on the BESO optimization steps, which are capable of reading the ABAQUS FEA
results file, exporting and analyzing its required data, updating the design area, and
finally, writing a new FE input file in each iteration.

In Sect. 2, the BESO procedure is briefly discussed. The detailed program lines
written in MATLAB are presented in Sect. 3. In Sect. 4, some examples are presented
and compared to other programs’ results to validate the presented software package.
Finally, conclusions are made in Sect. 5.

2 The BESO algorithm formulation implemented inMATLAB

2.1 Problem statement

The solid-void minimum compliance or maximum stiffness topology optimization
problem with a volume constraint is considered as follows:

Minimize : C = 1
2 F

TU (1a)

Subject to :
Ne∑

j=1
x j Vj ≤ V0 (1b)

F = KU (1c)

Design variable : x j = (0 or xmin)or 1 (1d)

where C is the total strain energy (the objective function), F and U are global load
and displacement vectors, K is the global stiffness matrix, x is elements’ densities
vector representing their presence or absence in the design space, Vj and V0 indicate
the jth element’s volume and the prescribed volume of the final structure respectively,
and Ne is the total number of elements in the design space.

123

580 M. Teimouri, M. Asgari

2.2 The BESO algorithm

Applying the material interpolation scheme of the SIMP method in the BESO algo-
rithm, a solid-void pattern will be assumed. This scheme is considered as follows:

E
(
x j

) = E1x
p
j (2a)

K =
Ne∑

j=1

x p
j K

1
j (2b)

In Eq. (2a), the elastic modulus of each element is defined as a function of the
element density and solid material’s Young modulus E1, and p is the penalization
parameter equal to 3. In Eq. (2b), the global stiffness matrix, K , depends on the jth
element density and the stiffness matrix of the solid material K 1

J .
The BESO method applies a gradient-based strategy in the sensitivity analysis

step to update the design domain. So, the design variables are updated based on the
elemental sensitivity number αe as follows:

αe = ∂C

∂xe
(3a)

αe = −px p−1
e uTe k1ue (3b)

In Eq. (3b), ue represents the elemental displacement vector.
To overcome the mesh-dependency and checker-boarding of the design domain, a

smoothing approach is applied to the sensitivity numbers of elements as follows:

α̂e =
∑

jw(rej)α j
∑

jw(rej)
(4a)

w
(
rej

) = max(0, rmin − rej) (4b)

where rej is the distance between elements e and j centroids, w indicates the weight
function of each element, and rmin is the filtering radius. To achieve convergent solu-
tions, the BESO method uses average elemental sensitivity numbers that bring the
history of the procedure into account (Eq. 5).

α̂e = α̂k
e + ̂

αk−1
e

2
(5)

For detailed information, one can refer to the book, “Evolutionary topology opti-
mization of continuum structures, Methods and Applications”, proposed by Huang
and Xie (2010b).

After modifying elemental sensitivity numbers (Eq. 5), they will be sorted. The
criterion used for elements addition/deletion in the BESO method is defined as the

123

Developing an efficient coupled function-based topology… 581

sensitivity numbers of solid elements (x j = 1) are always higher than those of soft
elements (x j = 0/xmin). So, depending on the elements removal approach (soft-kill
or hard-kill), those with lower sensitivity numbers will be removed or labeled with
xmin (Huang and Xie 2010b). The number of removed or xmin-labeled elements is
determined based on the volume constraint evolutionary ratio (ER) at each step k
(Eq. 6).

Vk+1 = Vk(1 ± ER)(k = 1, 2, 3, . . .) (6)

The add/remove procedure of elements and FEA continues in a repetitive loop
until the optimization constraint is reached and the objective function is converged.
Convergence of the objective function is calculated based on Eq. 7.

error =
∣
∣
∣
∑N

i=1 Ck−i+1 − ∑N
i=1 Ck−N−i+1

∣
∣
∣

∑N
i=1 Ck−i+1

≤ τ (7)

The iterative procedure of the main BESO method and its implemented version in
this article (the MATLAB-ABAQUS interface) is presented in Figs. 1 and 2.

Fig. 1 Flowchart of the BESO
algorithm (Huang and Xie
2010b)

123

582 M. Teimouri, M. Asgari

Fig. 2 Flowchart of the FEM-based BESO developed in the MATLAB-ABAQUS interface

3 MATLAB-ABAQUS interface implementation

In the following, the main optimization code (engine/source) and its functions will be
explained in detail. The source code (BESOm-file) consists of 6 sections that take the
user through the optimization process. These sections are presented from 3.1 to 3.6.

Before the main code, all texts from the Command Window are cleared; resulting
in a clear screen; and then, an arbitrary working directory is defined by the user (lines
1–5). All MATLAB files, FEA input and output files, and optimization results will
be created and saved in this directory. This directory will be called by the System
command in line 6.

All codes can be found in Appendix A.

3.1 Define a design domain (lines 7–8)

The MATLAB-ABAQUS TOP interface is developed for two-dimensional problems
with linear plane stress elements. The initial design domain, including geometry, load-
ing, boundary conditions, linear plane stress elements, quad meshes (CPS4R), and a
static analysis step need to be defined in the ABAQUS CAE environment. Then, a.inp
job file should be exported from the ABAQUS job module to the predefined directory
where MATLAB m-files exist. In this study, the exported input file is named Job-1. It
should be opened after creation by a text editing tool of Windows, and the following
texts should be added/replaced after the “** OUTPUT REQUESTS” section:

123

Developing an efficient coupled function-based topology… 583

** OUTPUT REQUESTS

** FIELD OUTPUT: F-Output-1

**

*Output, field

*Node Output

U,

*Element Output, directions=YES

S,

*Output, history, frequency=0

*EL PRINT, POSITION=CENTROIDAL, SUMMARY=YES

S,

ELSE,

COORD,

EVOL,

*End Step

These changes define the outputs, including nodal displacement and coordinates,
and elemental stress, strain energy, and volume values, that all are needed in a com-
pliance optimization problem. This file data will be needed to run the zeroth iteration
FEA (Sect. 3.3) on the initial design domain and extract the model parameters (ele-
mental and nodal data of the initial design domain (Sect. 3.4)), which will be required
in the sensitivity analysis.

As the optimization process begins, a dynamic ABAQUS input file, the same as the
initial design domain, will be needed to be called for creating the next iteration input
file (updated design domain). It should be noted that this file should include the deleted
or soft elements to result in an updated design area. So, a copy of the created.inp file
should be created in the same folder named Job-1tempwith the followingmodifications
made to it:

If a hard-kill approach is desired, the “*Elset, elset=sh_del_elm, instance=Part-1-1”
string, should be added right before the “*End Assembly” line:

*Elset, elset=sh_del_elm, instance=Part-1-1

*End Assembly

The above-mentioned line defines an element set named sh_del_elm that includes
the list of elements that should be deleted at each step. This elemental set will be
removed from the design area based on the following modifications to the file:

** Interaction: Remove_Elements

*Model Change, remove

sh_del_elm,

** OUTPUT REQUESTS

If a soft-kill approach is desired, instead of the permanent deletion of elements, their
initial material property should be replaced by a soft material’s property. For this
purpose, the following modifications in the Job-1temp file should be applied:

123

584 M. Teimouri, M. Asgari

Step 1: Soft elements (equivalent to deleted elements of the hard-kill procedure) should
be defined as an element set as follows:

*Nset, nset=Set-1, generate

 1, 9881, 1

*Elset, elset=Set-1, generate

 1, 9600, 1

*Elset, elset=sh_del_elm

Step 2: Mechanical properties of the soft material (Material-2), calculated based on
Eq. 2a, should be added after the “**MATERIALS” headline as follows:

** MATERIALS

**

*Material, name=Material-1

*Elastic

200000, 0.3

*Material, name=Material-2

*Elastic

2e-4, 0.3

Step 3: To assign the Material-2 properties to the soft elements (elset=sh_del_elm),
another section definition is needed in the ABAQUS Material property module. This
section is defined as follows:

** Section: Section-1

*Solid Section, elset=_I1, material=Material-1

1,

** Section: Section-2

*Solid Section, elset=sh_del_elm, material=Material-2

1,

After applying the above-mentionedmodifications, the dynamicABAQUS inputfile
is ready to be used during the optimization iterations. This.inp file will be summoned
and read line by line to write a new input file as an updated design area (Sect. 3.5.2).

It should be noted that to use any other type of element (like 3D cubic element
which is of more interest to researchers), the smoothing step of the BESO algorithm
needs to be modified for 3D elements and so, the sensitivity analysis. Consequently,
modifications based on a 3D element’s equation order and the number of nodes should
be applied to all necessary matrices’ sizes in the MATLAB functions.

3.2 Define the BESO parameters (lines 9–12)

In Sect. 2, the BESO initial parameters such as evolutionary ratio (ER), maximum
addition ratio (AR_Max), minimumfiltering radius (Rmin), volume fraction (Vol_Frc),

123

Developing an efficient coupled function-based topology… 585

minimum design variable (xmin), and penalization parameter (p) values are defined and
entered by the user (the last two are only defined in case of using a soft kill approach).
These parameters are constant during the optimization iterative process.

3.3 Zeroth iteration (lines 13–15)

In the third section, ABAQUS is called to run the first Finite Element (FE) simulation
(the zeroth iteration) on the initial design domain (Job-1.inp). For this purpose, the sys-
tem command is used to summon ABAQUS for running the predefined Job-1.inp file.
Its job output is named Iteration_0, and its data will be used in the optimization evo-
lutionary process initiation (5th section). A function is created named as LckChk.m
to check the appearance and disappearance of the ABAQUS.Lck file and freeze the
optimization process till the FEA is completed and results are extractable.

3.4 Obtaining FEMmodel parameters (line 17)

In the fourth section, using the second generated MATLAB function (ObtPar.m (98-
line)),model parameters includingnodal coordinates, elemental connectivity, elements
centroid coordinates, nodes in an element filtering radius, elements connected to a
node, number of elements (NmEl), and nodes (NmNd), initial volume (InitialVol),
and design area volume (DesVol) are extracted from the model input file (Job-1.inp).
Based on these data, the weight of nodes in an element filter radius (Nd_weight) and
elements’ weight connected to a node (El_weight) will be calculated. All these data
will be saved to BESO_Arrays.mat and will be called at each iteration to be used in
the sensitivity analysis (Eqs. 3, 4 and 5) and volume evolution formula (Eq. 6).

3.5 Beginning of the evolutionary process (lines 18–50)

In Sect. 5, the evolutionary procedure of the BESO method is implemented. Before
the initiation of the optimization loop, some definitions need to be made (lines 18–22).
Firstly, a zero matrix is created for saving elemental old (previous While loop) sensi-
tivity numbers, and three zero matrices are created for saving the index (number) of
dead (removed) and live elements. To count down the value of the current iteration,
the Iter variable is defined and set to zero. The error variable indicating the value of
the compliance convergence criteria is set to 1000.

The optimization iterative procedure is implemented in a While loop. To start the
first iteration, the FE results of the initial design domain analysis (Iteration_0.dat) are
saved to a variable named DatName (line 24). The Iter counter, which has been set to
zero, is updated to one in line 25. It should be noted that the updated value of the Iter
counter (e.g. one) indicates the new design domain that will be generated at the end
of the current loop based on previous iteration FEA results (e.g. 0). To conduct the
sensitivity analysis, these results, plus initial BESO and model parameters obtained in
Sects. 3.2, 3.3 and 3.4 are needed. For this purpose, a new function is defined named
as ElemUpd.m (line 26).

123

586 M. Teimouri, M. Asgari

3.5.1 Sensitivity analysis

TheElemUpd.m function (60-line) is responsible for conducting the sensitivity analy-
sis and sorting of the elements for addition/removal purposes. Elemental strain energy
values of the previous iteration (e.g. Iter 0) are needed to calculate new sensitivity num-
bers. The number of elements to be deleted will be determined based on the calculated
target volume for the ongoing iteration (e.g. Iter 1). Input values of this function are
the previous iteration’s FEA results (e.g. Iteration_0.dat), ER, NmEl, NmNd, Vol_Frc,
ElSen_old, Iter, and sh_del_elm_old. The outputs of this function will be the list of
live and dead/soft elements (sh_del_elm and sh_live_elm), compliance and current
volume values (Compl and Cur_Vol), volume adding ratio (AR_Cur), and updated
elemental sensitivity numbers (ElSen_new). In the following, this function’s sections
are presented in detail.

Section 1: Exporting sensitivity numbers (lines 2–24)

Four zero matrices are created as follows to save elemental and nodal strain energy
values (lines 2–5):

2-ElStat = zeros(NmEl,3);
3-RoughElSen = zeros(NmEl,1);
4-NdSen = zeros(NmNd,1);
5-ElSen = zeros(NmEl,1);

TheElStatmatrix is created to save the number of elements in the first column, their
state of being (0 or 1) in the second column, and their corresponding sensitivity number
in the third column. The RoughElSenmatrix is created to save non-smoothed elemen-
tal strain energy values. NdSen and ElSen are created to save nodal and smoothed
elemental strain energy values.

In line 6, the previous iteration FEA output file (e.g. Iteration_0.dat) is opened with
the fopen command, and it is read line by line with the fgetl command until it reaches
the “ELEMENT FOOT- ELSE” string where elemental strain energy data are
written after (line 7–18). To export these values from the.dat file in a matrix format,
the importdata command is used (line 19). Now, exported strain energy values are
summed to calculate the compliance value of the structure (line 23), and then saved
to the RoughElSen matrix (line 24).

Section 2: Smoothing sensitivity numbers (lines 25–37)

This section starts with calling BESO_Arrays.mat, which contains static saved data
from the ObtPar.m function (line 25). These data are used in lines 26–31 to calculate
smoothed sensitivity numbers (TheElSenmatrix) based on thefiltering schememethod
(Eq. 4 and Eq. 5). For Iter number 1, while it’s the first time that sensitivity analysis is
conducted, there is no need to stabilization, and the ElSen matrix is directly saved to
the ElStat(:,3)matrix (line 33). But for Iter numbers greater than one, the average total
amount of new and old sensitivity numbers, ElSen(:,1) and ElSen_old, is calculated
based on Eq. 5 and then saved to the ElStat(:,3) matrix (line 35 and 37).

Section 3: Determining target volume for the next iteration (lines 38–44)

123

Developing an efficient coupled function-based topology… 587

Equation 6 is implemented in lines 38–44. The term Cur_Vol is defined as the
current volume of the design domain based on the previous iteration.dat file data and
then used to calculate the target volume (TargVol) for the next iteration.

Section 4: Determining the Elements for ADD/DEL Process (lines 45–60)

To begin the add/del step, the sort command is used to treat the third column of
the ElStat matrix as a vector and sort elemental strain energy values in an ascending
format. The index of the elements (indicating the number of the elements) is also
considered when sorting them (lines 45–46). Then, counter i is defined as i = 1, and
the variable sum_vol is set to 0 (lines 47–48). Using a While loop, the number of
elements to be deleted from the design domain is counted using counter i until the
following inequality is not satisfied (lines 49–55):

49-sum_vol<(DesVol-TargVol)

After determining the number of elements to be deleted, two matrices named
sh_del_elm and sh_live_elm, are defined to save the elemental number of live and
dead/soft elements (lines 56–59). Finally, these matrices, alongside with compliance
value of the structure (Compl), current (Cur_Vol) and initial volume (InitialVol) val-
ues, and updated sensitivity numbers (ElSen_new) are extracted from theElemUpd.m
function to be used in the following lines of the evolutionary process (BESO.mWhile
loop):

26-
[sh_del_elm,sh_live_elm,Compl(Iter),Cur_Vol(Iter),ElSen_new,InitialVol]=ElemU
pd(DatName,ER,NmEl,NmNd,Vol_Frc,ElSen_old,Iter,sh_del_elm_old);

In lines 27–29, ElSen_new, sh_del_elm, and sh_live_elm matrices, extracted from
the previous iteration FE analysis, are saved as old values to be used in the next loop:

27-ElSen_old = ElSen_new;
28-sh_live_elm_old = sh_live_elm;
29-sh_del_elm_old = sh_del_elm;

3.5.2 Updating the design area by creating an input file for the next loop FEA (line
30)

As the list of live and dead/soft elements is extracted, the design domain can be updated
and saved as a new input file (iteration_1.inp) for the next iteration. In this regard, a
new function named InpUpd.m (20-line) is defined to create the new updated input
file (line 30). The input data for the InpUpd.m function are the iteration number, Job-
1temp file, and the list of dead/soft elements extracted from the ElemUpd.m function.
This function opens the temporary job file (Job-1temp) as a reading source, and a new
writable file named Iteration_1. The Job-1temp file is read line by line and written to
the Iteration_1 file, including the number of elements to be deleted or softly killed.

123

588 M. Teimouri, M. Asgari

3.5.3 New FEA on the updated design area (lines 31–32)

As the new input file is created based on the previous iteration results, a new FEA
should be conducted before the initiation of the new iteration. So, again the system
command (line 31) is used to summon ABAQUS and run the Iteration_1.inp file. The
FEA result report file (Iteration_1.dat) will be saved in the working directory, ready
to be called in the second iteration.

3.5.4 Convergence criterion check (lines 33–38)

At the end of this section, the convergence of the objective function is calculated based
on Eq. 7 (lines 33–38).

3.6 Exporting plots (lines 39–50)

As the convergence criterion is satisfied, the optimization While loop ends, and the
objective function and the volume constraint evolutions can be plotted. Section 6 (lines
39–50) is written for this purpose using the MATLAB plot command.

4 Results

In this section, samples for the maximum stiffness problem (minimum compliance)
using the MATLAB-ABAQUS TOP software package are presented. Using this soft-
ware interface, the optimummaterial distribution patterns for the sample problems are
obtained, and results are compared to the SIMP method results. Topology evolution
of the example problems along with the convergence of the objective function and
the volume constraint indicate the validity and efficient performance of the developed
MATLAB-ABAQUS TOP interface.

4.1 A short cantilever problem

A design domain of 80 mm in length, 55 mm in height, and 1 mm in thickness
(2D planar modeling space) is defined in the ABAQUS part module, as shown in
Fig. 3. A Young’s modulus of 100 GPa, and a Poisson’s ratio of 0.3 are defined in the
ABAQUS material module. A concentrated downward force of 100 N is applied for
a static analysis step. Then, the FE model is generated using linear quad plane-stress
(CPS4R) elements (mesh grid of 100 × 80). In the job module, a new job is defined
named Job-1 and an input file is generated using the Write Input option. A copy of
this file is created and renamed to Job-1temp, and changes are made to these files as
explained in Sect. 3.1.

The BESO parameters for the short cantilever problem are as presented in Table 2:
Running the interface for the above mentioned inputs, the optimization results are

achieved as indicated in Fig. 4 and 5.

123

Developing an efficient coupled function-based topology… 589

Fig. 3 The design domain,
loading, and boundary
conditions of a short cantilever

Table 2 The BESO parameters for the short cantilever problem

ER ARmax rmin τ xmin (Only soft-kill approach) p(Only soft-kill approach)

2% 5% 3 mm 0.01% 0.001 3

As can be seen in Fig. 4, while the volume fraction constraint reaches 0.5, the
mean compliance value converges to 1.88 (N.mm). Topology convergence occurs
after iteration 45 (Fig. 5). To verify the validity of the developed MATLAB-ABAQUS
TOP computer interface, the final topology is compared to the SIMP method result,
as depicted in Fig. 6.

It should be noted that in the SIMP method, a continuum design domain including
gray elements is achieved, resulting in a higher strain energy value. However, the
BESO approach is a discrete-based (0–1) method meaning that no gray elements are
allowed to remain in the design domain; so, resulting in a faster FEA process.

Fig. 4 Evolution histories of the objective function (strain energy) and the volume constraint

123

590 M. Teimouri, M. Asgari

Fig. 5 Evolution histories of the short cantilever topology: a iteration 15; b iteration 30; c iteration 45;
d iteration 65 (final)

Fig. 6 Comparing results of the SIMP a and the BESO b methods for the short cantilever problem

4.2 AnMBB beam problem

In this example, An MBB (Fig. 7) beam with a design domain of 240 mm in length,
40 mm in height, and 1 mm in thickness is defined in the ABAQUS part module.
A concentrated downward force of 100 N is applied for a static analysis step, and
a Young’s modulus of 200 GPa and a Poisson’s ratio of 0.3 are considered as the
material properties. The same FE modeling procedure is applied to discretize the

Fig. 7 The design domain,
loading, and boundary
conditions of an MBB beam

123

Developing an efficient coupled function-based topology… 591

Table 3 The BESO parameters for the MBB beam problem

ER ARmax rmin τ xmin (Only soft-kill approach) p(Only soft-kill approach)

5% 5% 6 mm 0.01% 0.001 3

Fig. 8 Evolution histories of a the mean compliance and b the volume fraction for the classic MBB beam

Fig. 9 Evolution histories of the MBB beam topology: a iteration 10, b iteration 20, c iteration 30, and
d iteration 40 (final)

design area into 240 × 40 CPS4R elements. Job-1 and its copy, Job-1temp, are also
created.

The BESO parameters for this case study are considered as indicated in Table 3.
Figure 8 indicates that as the volume fraction constraint reaches 0.5, the mean

compliance value converges to 2.55 (N.mm). The topology convergence, as shown in
Fig. 9, occurs after iteration 15. To verify the validity of the result, the final topology
is compared to the SIMP method result (Fig. 10).

4.3 A Bridge-type structure

This example, as indicated in Fig. 11, includes a rectangular design domain of 240mm
in length, 40 mm in height, and 1 mm in thickness. A uniformly-distributed load of

123

592 M. Teimouri, M. Asgari

Fig. 10 Comparing SIMP a and BESO b methods’ results for the MBB beam problem

Fig. 11 The design domain,
loading, and boundary
conditions of a bridge-type
structure

Table 4 The BESO parameters for the bridge-type structure

ER ARmax rmin τ xmin (Only soft-kill approach) p(Only soft-kill approach)

2% 5% 6 mm 0.1% 0.001 3

Fig. 12 Design area and
non-design area in the
bridge-type structure

100/240 N/mm is applied to the bottom deck of 240 mm × 1 mm, and its two corners
are constrained. The design area is discretized into 240 × 40 CPS4R elements.

The BESO parameters for the bridge-type structure are considered as indicated in
Table 4.

To stop the elements of the deck area from deletion, the design domain is divided
into two sub-domains of design and frozen areas, as shown in Fig. 12. In this regard,
elements of the frozen area are excluded from the list of sh_del_elm.

Running the interface for the above mentioned inputs, the optimization results are
achieved as as indicated in Figs. 13 and 14.

As can be seen in Figs. 13 and 14, convergence occurs after iteration 35 for the
objective function, the volume constraint, and the structure topology.

4.4 AMultiple-load case problem

In this example, a multiple-load case, which is one of the basic TO problems, is
considered. A rectangular design domain of 240 × 40 × 1 mm3, as shown in Fig. 15,
is loaded in two different points and its two corners are constrained. The design area
is discretized into 240 × 40 CPS4R elements .

123

Developing an efficient coupled function-based topology… 593

Fig. 13 Evolution histories of the
mean compliance and the
volume fraction for the
bridge-type structure

Fig. 14 Evolution histories of the bridge-type structure topology: a iteration 10, b iteration 20, c iteration
30, and d iteration 45 (final)

Fig. 15 Design domain, loading,
and boundary conditions for a
multiple-load case problem

The BESO parameters are considered as indicated in Table 5.
Running the interface for the above mentioned inputs, the optimization results are

achieved as illustrated in Figs. 16 and 17.

123

594 M. Teimouri, M. Asgari

Fig. 16 Evolution histories of the
mean compliance and the
volume fraction for the
multiple-load case problem

Fig. 17 Evolution histories of the multiple-load case problem’s topology: a iteration 10, b iteration 20,
c iteration 30, and d iteration 47 (final)

Table 5 The BESO parameters for the multiple-load case problem

ER ARmax rmin τ xmin (Only soft-kill approach) p(Only soft-kill approach)

5% 5% 6 mm 0.01% 0.001 3

123

Developing an efficient coupled function-based topology… 595

5 Conclusion

In this article, a BESO-based MATLAB-ABAQUS interface is presented for solving
2D compliance problems. In this regard, the BESO method, developed by Huang and
Xie (2010b), is implemented by defining different MATLAB functions. For the FEA
part, ABAQUS software is considered which is summoned by the optimization source
code when required. The format of the ABAQUS input and output files suitable for
the MATLAB optimization code is discussed in detail. The MATLAB functions, each
one being responsible for a step of the BESO method, are explained and all codes
for connecting MATLAB and ABAQUS are presented. Different examples of the
complianceproblemare solved and results are compared to theSIMPmethodoutputs to
validate and verify the developed interface. This code is presented for educational and
engineering practice purposes, which can be considered as a computer program asset
for students new to the topology optimization field. This work is aimed at developing a
multipurpose efficient optimization software interface that could be easily understood,
used, and developed by students and researchers all around theworld. UsingABAQUS
as the finite element solver, many issues arising from FEM codes are resolved. So,
geometry and loading are not considered design challenges anymore. This interface
has the potential to be developed for other topology optimization problems and 3D
geometries. All codes are presented in the Appendix section.

6 Supplementarymaterials

A folder named 2DBESO-MATLABAQUS, including MATLAB m-files and
ABAQUS input job files is presented for a sample problem (2DMMBBeam). Instruc-
tions for running the software package are given in a text file saved into the mentioned
folder.

Appendix

In this appendix, the 2D-BESOMATLAB functions developed for compliance topol-
ogy optimization problems are presented. All functions’ m-files should be saved in
one folder along with the ABAQUS job input files.

123

596 M. Teimouri, M. Asgari

BESO.m (Optimization engine (source code))
%% Setting the working directory of the program
1. clc;
2. clear all;
3. tic;
4. WorDir='Copy & paste the folder address where m-files and .inp files
exist';
5. AbqDir=['cd ' WorDir];
6. system(AbqDir); %Make WorDir ABAQUS working directory
%% 1- Define a design domain
7. InpName='Job-1';
8. InpBase='Job-1temp';
%% 2- Define the BESO parameters
9. ER=0.05;
10. AR_Max=0.05;
11. Rmin=6;
12. Vol_Frc=0.5;
%% 3- Zeroth iteration (Itration_0)
13. Itr0Cmd=['abq6142 job=Iteration_0 input=' InpName];
14. system(Itr0Cmd);
15. Iter=0;
16. LckChk(Iter)
%% 4- Obtaining FEM model parameter for element add/deletion process
17. [NmEl,NmNd]=ObtPar(InpName,Rmin);
%% 5- Beginning of the Evolutionary Process
18. ElSen_old=zeros(NmEl,1);
19. sh_del_elm=[];
20. sh_del_elm_old = [];
21. sh_live_elm_old = [];
22. error=1000;
23. while error>0.0001
24. DatName=['Iteration_' num2str(Iter) '.dat'];
25. Iter=Iter+1;
 %% 5-1 Sensitivity analysis (ElemUpd.m function)
26. [sh_del_elm,sh_live_elm,Compl(Iter),Cur_Vol(Iter),ElSen_new,InitialVol]

=ElemUpd(DatName,ER,NmEl,NmNd,Vol_Frc,ElSen_old,Iter,sh_del_elm_old);
27. ElSen_old = ElSen_new;
28. sh_live_elm_old = sh_live_elm;
29. sh_del_elm_old = sh_del_elm;

%% 5-2 Creating the input file for the next loop/Updating design domain
(InpUpd.m function)
30. InpUpd(Iter,InpBase,sh_del_elm)

%% 5-3 FEA on the new input file/New FEA
31. system(['abq6142 job=Iteration_' num2str(Iter) ' input=Iteration_'

num2str(Iter)]);
32. LckChk(Iter)

%% 5-4 Convergence criterion check
33. if Iter>11
34. error=abs(sum(Compl(Iter-5:Iter))-sum(Compl(Iter-10:Iter-

5)))/sum(Compl(Iter-5:Iter));
35. else
36. error=1000;
37. end
38. end
%% 6- Exporting Plots
39. iter=1:Iter;
40. plot(iter,Compl);
41. title('Compliance Evolution');
42. xlabel('Iteration');
43. ylabel('Compliance');
44. figure;
45. iter=1:Iter;
46. plot(iter,Cur_Vol/sum(InitialVol(:,2)));
47. xlabel('Iteration');
48. ylabel('Volume fraction');
49. title('Volume Fraction Evolution');
50. time=toc;

123

Developing an efficient coupled function-based topology… 597

1. ObtPar.m (Obtaining FEM model parameters)
1. function [NmEl,NmNd]=ObtPar(InpName,Rmin)

%% Nodal Coordinates
2. fid=fopen([InpName '.inp'],'r');
3. line_counter=1;
4. tline = fgetl(fid);
5. while ischar(tline)
6. tline = fgetl(fid);
7. line_counter=line_counter+1;
8. header=strfind(tline,'*Node');
9.
10. if ~isempty(header)
11. fclose('all');
12. break;
13. end
14. end
15. NodeData=importdata([InpName '.inp'],',',line_counter);
16. NodeCoord=NodeData.data(:,2:3);

%% Elemental Connectivity
17. fid=fopen([InpName '.inp'],'r');
18. line_counter=1;
19. tline = fgetl(fid);
20. while ischar(tline)
21. tline = fgetl(fid);
22. line_counter=line_counter+1;
23. header=strfind(tline,'*Element');
24. if ~isempty(header)
25. fclose('all');
26. break;
27. End
28. end
29. ElemData1=importdata([InpName '.inp'],',',line_counter);
30. Connectivity=ElemData1.data(:,2:5);

%% Element Centroid Coordinates
31. fid=fopen('Iteration_0.dat','r');
32. line_counter=1;
33. tline = fgetl(fid);
34. while ischar(tline)
35. tline = fgetl(fid);
36. line_counter=line_counter+1;
37. header=strfind(tline,'ELEMENT FOOT- COORD1 COORD2');
38. if ~isempty(header)
39. Header_Line=line_counter+2;
40. fclose('all');
41. break;
42. End
43. end
44. ElemData2=importdata('Iteration_0.dat',' ',Header_Line);
45. ElemCoord=ElemData2.data(:,2:3);

%% Nodes that are in an Element filter
46. seed=((NodeCoord(1,1)-NodeCoord(2,1))^2+(NodeCoord(1,2)-

NodeCoord(2,2))^2)^(0.5);
47. size=100;
48. ElemFilter=zeros(length(ElemCoord(:,1)),size);
49. for i=1:length(ElemCoord(:,1))
50. temp=(((NodeCoord(:,1)-ElemCoord(i,1)).^2+(NodeCoord(:,2)-

ElemCoord(i,2)).^2).^(0.5)<Rmin);
51. temp=(find(temp==1))';
52. ElemFilter(i,1:length(temp))=temp;
53. end

123

598 M. Teimouri, M. Asgari

%% Computing elements that are connected to a node
54. NodalConnect=zeros(length(NodeCoord(:,1)),4);
55. NmNd=length(NodeCoord(:,1));
56. NmEl=length(ElemCoord(:,1));
57. for i=1:length(ElemCoord(:,1))
58. for j=1:4
59. NodalConnect(Connectivity(i,j),j)=i;
60. End
61. end
62. Conncted_El=zeros(length(NodeCoord(:,1)),4);

63. for i=1:length(NodalConnect(:,1))
64.

Conncted_El(i,1:sum(NodalConnect(i,:)~=0))=NodalConnect(i,NodalConnect(i,:
)~=0);

65. End

%% Computing the weights of elements connected to a node
66. El_weight=zeros(length(NodeCoord(:,1)),4);
67. for i=1:length(Conncted_El(:,1))
68. M=sum(Conncted_El(i,:)~=0);
69. temp=Conncted_El(i,Conncted_El(i,:)~=0);
70. if M==1
71. El_weight(i,1)=1;
72. else
73. El_weight(i,1:M)=(1-(((ElemCoord(temp,1)-

NodeCoord(i,1)).^2+(ElemCoord(temp,2)-
NodeCoord(i,2)).^2).^(0.5))/sum(((ElemCoord(temp,1)-
NodeCoord(i,1)).^2+(ElemCoord(temp,2)-NodeCoord(i,2)).^2).^(0.5)))/(M-1);

74. end
75. end

%% Computing the weights of the nodes that are in an elements filter
76. Nd_weight=zeros(length(ElemFilter(:,1)),size);
77. for i=1:length(ElemFilter(:,1))
78. M=sum(ElemFilter(i,:)~=0);
79. temp=ElemFilter(i,ElemFilter(i,:)~=0);
80. Nd_weight(i,1:M)=Rmin-((NodeCoord(temp,1)-

ElemCoord(i,1)).^2+(NodeCoord(temp,2)-ElemCoord(i,2)).^2).^(0.5);
81. end

82. fid=fopen('Iteration_0.dat','r');
83. line_counter=1;
84. tline = fgetl(fid);
85. while ischar(tline)
86. tline = fgetl(fid);
87. line_counter=line_counter+1;
88. header=strfind(tline,'ELEMENT FOOT- EVOL');
89. if ~isempty(header)
90. header_line=line_counter+2;
91. fclose('all');
92. break;
93. end
94. end
95. Vol_Data=importdata('Iteration_0.dat',' ',header_line);
96. InitialVol=Vol_Data.data(:,:);
97. DesVol=sum(InitialVol(:,2));

98. save('BESO_Arrays.mat','ElemFilter','NodalConnect','Nd_weight','El_weig
ht','InitialVol','DesVol');

123

Developing an efficient coupled function-based topology… 599

2. Lck.Chk.m (ABAQUS running)
1. function LckChk(Iter)
2. A=0;
3. while A==0
4. A=exist(['Iteration_' num2str(Iter) '.lck'],'file');
5. end
6. A=2;
7. while A==2
8. A=exist(['Iteration_' num2str(Iter) '.lck'],'file');
9. end

9. while ischar(tline)
10. tline = fgetl(fid);
11. line_counter=line_counter+1;
12. header=strfind(tline,'ELEMENT FOOT- ELSE');
13. if ~isempty(header)
14. header_line=line_counter+2;
15. fclose('all');
16. break;
17. end
18. end
19. Enrg_Data = importdata(DatName,' ',header_line);
20. ELSE = Enrg_Data.data(:,:);
21. ElStat(:,1)=1:NmEl;
22. ElStat(ELSE(:,1),2) = 1; %alive elements
23. Compl = sum(ELSE(:,2));
24. RoughElSen(ELSE(:,1),1) = ELSE(:,2);

%% 2- Smoothing sensitivity numbers
25. load BESO_Arrays.mat
26. for i=1:NmNd
27.

NdSen(i)=sum(RoughElSen(NodalConnect(i,NodalConnect(i,:)~=0),1).*El_weight
(i,1:sum(NodalConnect(i,:)~=0))');

28. end
29. for i=1:NmEl
30.

ElSen(i)=sum(NdSen(ElemFilter(i,ElemFilter(i,:)~=0),1).*Nd_weight(i,1:sum(
ElemFilter(i,:)~=0))');

31. end
32. if Iter==1
33. ElStat(:,3)=ElSen(:,1);
34. else
35. ElStat(:,3)=(ElSen(:,1)+ElSen_old)/2;
36. end
37. ElSen_new=ElStat(:,3);

%% 3-Determining target volume for the next iteration
38. Cur_Vol=sum(InitialVol(ELSE(:,1),2));
39. if Cur_Vol>Vol_Frc*DesVol
40. TargVol=(1-ER)*Cur_Vol;
41. end
42. if Cur_Vol<=Vol_Frc*DesVol
43. TargVol=Vol_Frc*DesVol;
44. End

%% 4-Determining elements to be deleted or added
45. [Y,I]=sort(ElStat(:,3)); % "I" gives the index of element in column;

"Y" is the sorted columns of matrix
46. Stat_Sorted=ElStat(I,:);
47. i=1;
48. sum_vol=0;
49. while sum_vol<(DesVol-TargVol)
50. sum_vol=sum_vol+InitialVol(Stat_Sorted(i,1),2);
51. i=i+1;
52. end
53. if mod(i,2)==1
54. i=i-1;

3. Elem.Upd.m (Sensitivity analysis)
1. function

[AR_Cur,sh_del_elm,sh_live_elm,Compl,Cur_Vol,ElSen_new,InitialVol]=ElemUpd
(DatName,ER,NmEl,NmNd,Vol_Frc,ElSen_old,Iter,sh_del_elm_old)

%% 1-Exporting sensitivity numbers from previous iteration FEA results
2. ElStat = zeros(NmEl,3); %number, state, sensitivity
3. RoughElSen = zeros(NmEl,1);
4. NdSen = zeros(NmNd,1);
5. ElSen = zeros(NmEl,1);

6. fid = fopen(DatName,'r');
7. line_counter=1;
8. tline = fgetl(fid);

55. end
56. AllElements = 1:NmEl;
57. AllElements = AllElements(:);
58. sh_del_elm = Stat_Sorted(1:i,1);
59. sh_live_elm = setdiff(AllElements,sh_del_elm);

60. end

123

600 M. Teimouri, M. Asgari

4. Inp.Upd.m (Creating new input file for next iteration)
1. function InpUpd(Iter,InpBase,sh_del_elm)
2. fidin=fopen([InpBase '.inp'],'r');
3. fidout=fopen(['Iteration_' num2str(Iter) '.inp'],'w+');
4. line_counter=1;
5. tline = fgetl(fidin);
6. while ischar(tline)
7. header=strfind(tline,'*Elset, elset=sh_del_elm, instance=Part-1-1');
8. if ~isempty(header)
9. fprintf(fidout,'%s\n',tline);
10. fprintf(fidout,'%d, %d, %d,\n', sh_del_elm);
11. if mod(length(sh_del_elm),3)==1 || mod(length(sh_del_elm),3)==2
12. fprintf(fidout,'\n');
13. end
14. tline = fgetl(fidin);
15. continue;
16. end
17. fprintf(fidout,'%s\n',tline);
18. tline = fgetl(fidin);
19. end
20. fclose('all');

References

Allaire G, Jouve F, Toader A-M (2002) A level-set method for shape optimization. CR Math
334(12):1125–1130

Andreassen E et al (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct
Multidiscip Optim 43(1):1–16

Ansola Loyola R et al (2018) A sequential element rejection and admission (SERA) topology optimization
code written in Matlab. Struct Multidiscip Optim 58(3):1297–1310

AsgariM (2015)Material distribution optimization of 2D heterogeneous cylinder under thermo-mechanical
loading. Struct Eng Mech Int J 53(4):703–723

AsgariM (2016)Material optimization of functionally graded heterogeneous cylinder for wave propagation.
J Compos Mater 50(25):3525–3528

Banh TT et al (2021a) Multiple bi-directional FGMs topology optimization approach with a preconditioned
conjugate gradient multigrid. Steel Compos Struct 41(3):385–402

Banh TT, Luu NG, Lee D (2021b) A non-homogeneous multi-material topology optimization approach for
functionally graded structures with cracks. Compos Struct 273:114230

BanhTTet al (2023)A robust dynamic unifiedmulti-material topology optimizationmethod for functionally
graded structures. Struct Multidiscip Optim 66(4):75

Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202
BendsøeMP et al (1995)Optimal design ofmaterial properties andmaterial distribution formultiple loading

conditions. Int J Numer Methods Eng 38(7):1149–1170
Bendsøe MP et al. (1994) On the prediction of extremal material properties and optimal material distribu-

tion for multiple loading conditions. In: International design engineering technical conferences and
computers and information in engineering conference. American Society of Mechanical Engineers

Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM Control Optim
Calcul Var 9:19–48

Challis VJ (2010) A discrete level-set topology optimization code written in Matlab. Struct Multidiscip
Optim 41(3):453–464

Chen Q, Zhang X, Zhu B (2019) A 213-line topology optimization code for geometrically nonlinear struc-
tures. Struct Multidiscip Optim 59(5):1863–1879

Doan QH, Lee D (2017) Optimum topology design of multi-material structures with non-spurious buckling
constraints. Adv Eng Softw 114:110–120

Dong G et al (2020) Design and optimization of solid lattice hybrid structures fabricated by additive
manufacturing. Addit Manuf 33:101116

123

Developing an efficient coupled function-based topology… 601

Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization
of structures. Struct Optim 8(1):42–51

Ferrari F, Sigmund O (2020) A new generation 99 line Matlab code for compliance topology optimization
and its extension to 3D. Struct Multidiscip Optim 62(4):2211–2228

Gao J et al (2021) IgaTop: an implementation of topologyoptimization for structures using IGA inMATLAB.
Struct Multidiscip Optim 64(3):1669–1700

Han Y, Xu B, Liu Y (2021) An efficient 137-line MATLAB code for geometrically nonlinear topology opti-
mization using bi-directional evolutionary structural optimization method. Struct Multidiscip Optim
63(5):2571–2588

Huang X, Xie Y (2007a) Convergent and mesh-independent solutions for the bi-directional evolutionary
structural optimization method. Finite Elem Anal Des 43(14):1039–1049

Huang X, Xie Y (2007b) Bidirectional evolutionary topology optimization for structures with geometrical
and material nonlinearities. AIAA J 45(1):308–313

Huang X, Xie Y (2008a) Topology optimization of nonlinear structures under displacement loading. Eng
Struct 30(7):2057–2068

Huang X, Xie Y (2008b) Optimal design of periodic structures using evolutionary topology optimization.
Struct Multidiscip Optim 36(6):597–606

Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with
one or multiple materials. Comput Mech 43(3):393–401

Huang X, Xie Y (2010a) Evolutionary topology optimization of continuum structures with an additional
displacement constraint. Struct Multidiscip Optim 40(1):409–416

Huang X, Xie M (2010b) Evolutionary topology optimization of continuum structures: methods and appli-
cations. Wiley, Heidellberg

Huang X, Xie YM, Lu G (2007) Topology optimization of energy-absorbing structures. Int J Crashworthi-
ness 12(6):663–675

Huang X, Zuo Z, Xie Y (2010) Evolutionary topological optimization of vibrating continuum structures
for natural frequencies. Comput Struct 88(5–6):357–364

Lagaros ND, Vasileiou N, Kazakis G (2019) AC# code for solving 3D topology optimization problems
using SAP2000. Optim Eng 20(1):1–35

Laurain A (2018) A level set-based structural optimization code using FEniCS. Struct Multidiscip Optim
58(3):1311–1334

Li Q et al (1999) Shape and topology design for heat conduction by evolutionary structural optimization.
Int J Heat Mass Transf 42(17):3361–3371

Liang Y, Cheng G (2020) Further elaborations on topology optimization via sequential integer program-
ming and Canonical relaxation algorithm and 128-line MATLAB code. Struct Multidiscip Optim
61(1):411–431

Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscip
Optim 50(6):1175–1196

LuoZ et al (2008)A level set-based parameterizationmethod for structural shape and topology optimization.
Int J Numer Methods Eng 76(1):1–26

Meng Z et al (2020) New hybrid reliability-based topology optimization method combining fuzzy and
probabilistic models for handling epistemic and aleatory uncertainties. Comput Methods Appl Mech
Eng 363:112886

MengZ et al (2021)Robust topology optimizationmethodology for continuumstructures under probabilistic
and fuzzy uncertainties. Int J Numer Methods Eng 122(8):2095–2111

Meng Z et al (2022) A fidelity equivalence computation method for topology optimization of geometrically
nonlinear structures. Eng Optim. https://doi.org/10.1080/0305215X.2022.2146684

Michell AGM (1904) LVIII. The limits of economy of material in frame-structures. Lond Edinb Dublin
Philos Mag J Sci 8(47):589–597

Ngoc NM, Hoang V-N, Lee D (2022) Concurrent topology optimization of coated structure for non-
homogeneous materials under buckling criteria. Eng Comput 38(6):5635–5656

Picelli R, Sivapuram R, Xie YM (2021) A 101-line MATLAB code for topology optimization using binary
variables and integer programming. Struct Multidiscip Optim 63(2):935–954

Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimisation (ESO) using a bidirectional
algorithm. Eng Comput 15(8):1031–1048

Querin O, Steven G, Xie Y (2000a) Evolutionary structural optimisation using an additive algorithm. Finite
Elem Anal Des 34(3):291–308

123

https://doi.org/10.1080/0305215X.2022.2146684

602 M. Teimouri, M. Asgari

Querin O et al (2000b) Computational efficiency and validation of bi-directional evolutionary structural
optimisation. Comput Methods Appl Mech Eng 189(2):559–573

SalgarelloM, Visconti G, Barone-Adesi L (2013) Interlocking circumareolar suture with undyed polyamide
thread: a personal experience. Aesthetic Plast Surg 37(5):1061–1062

Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods.
J Comput Phys 163(2):489–528

Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim
21(2):120–127

Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control
Optim 37(4):1251–1272

Talischi C et al (2012) PolyTop: a Matlab implementation of a general topology optimization framework
using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45(3):329–357

Tavakoli R,Mohseni SM (2014)Alternating active-phase algorithm formultimaterial topology optimization
problems: a 115-line MATLAB implementation. Struct Multidiscip Optim 49(4):621–642

Teimouri M, Asgari M (2019) Multi-objective BESO topology optimization for stiffness and frequency of
continuum structures. Struct Eng Mech 72(2):181–190

Teimouri M, Asgari M (2020) Developing a bidirectional evolutionary topology algorithm for continuum
structures with the objective functions of stiffness and fundamental frequency with geometrical sym-
metry constraint. Amirkabir J Mech Eng 52(1):249–264

Teimouri M, Asgari M (2021) Mechanical performance of additively manufactured uniform and graded
porous structures based on topology-optimized unit cells. Proc Inst Mech Eng C J Mech Eng Sci
235(9):1593–1618

Teimouri M, Mahbod M, Asgari M (2021) Topology-optimized hybrid solid-lattice structures for efficient
mechanical performance. In: Structures. Elsevier

WangMY,WangX,GuoD (2003)A level setmethod for structural topology optimization. ComputMethods
Appl Mech Eng 192(1):227–246

Wei P et al (2018) An 88-line MATLAB code for the parameterized level set method based topology
optimization using radial basis functions. Struct Multidiscip Optim 58(2):831–849

Xia L, Breitkopf P (2015) Design of materials using topology optimization and energy-based homogeniza-
tion approach in Matlab. Struct Multidiscip Optim 52(6):1229–1241

Xia Q, Shi T (2016a) Topology optimization of compliant mechanism and its support through a level set
method. Comput Methods Appl Mech Eng 305:359–375

Xia Q, Shi T (2016b) Optimization of structures with thin-layer functional device on its surface through a
level set based multiple-type boundary method. Comput Methods Appl Mech Eng 311:56–70

Xia Q et al (2006) Semi-Lagrange method for level-set-based structural topology and shape optimization.
Struct Multidiscip Optim 31(6):419–429

Xia Q, Shi T, Wang MY (2011) A level set based shape and topology optimization method for maximizing
the simple or repeated first eigenvalue of structure vibration. Struct Multidiscip Optim 43(4):473–485

Xia Q et al (2012) A level set solution to the stress-based structural shape and topology optimization.
Comput Struct 90:55–64

Xia Q, Wang MY, Shi T (2014) A level set method for shape and topology optimization of both structure
and support of continuum structures. Comput Methods Appl Mech Eng 272:340–353

Xia L et al (2018) Bi-directional evolutionary structural optimization on advanced structures and materials:
a comprehensive review. Arch Comput Methods Eng 25(2):437–478

Xie Y, Steven GP (1992) Shape and layout optimization via an evolutionary procedure. In: Proceedings of
the international conference on computational engineering science

Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct
49(5):885–896

Yaghmaei M, Ghoddosian A, Khatibi MM (2020) A filter-based level set topology optimization method
using a 62-line MATLAB code. Struct Multidiscip Optim 62(2):1001–1018

Zhang W et al (2016) A new topology optimization approach based on Moving Morphable Components
(MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260

Zhao C et al (1998) A generalized evolutionary method for numerical topology optimization of structures
under static loading conditions. Struct Optim 15(3):251–260

Zhou M, Rozvany G (1991) The COC algorithm, Part II: topological, geometrical and generalized shape
optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

123

Developing an efficient coupled function-based topology… 603

Zhu B et al (2020) Design of compliant mechanisms using continuum topology optimization: a review.
Mech Mach Theory 143:103622

Zhu B et al (2021) An 89-line code for geometrically nonlinear topology optimization written in FreeFEM.
Struct Multidiscip Optim 63(2):1015–1027

Zuo ZH, Xie YM (2015) A simple and compact Python code for complex 3D topology optimization. Adv
Eng Softw 85:1–11

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Developing an efficient coupled function-based topology optimization code for designing lightweight compliant structures using the BESO algorithm
	Abstract
	List of symbols
	1 Introduction
	2 The BESO algorithm formulation implemented in MATLAB
	2.1 Problem statement
	2.2 The BESO algorithm

	3 MATLAB-ABAQUS interface implementation
	3.1 Define a design domain (lines 7–8)
	3.2 Define the BESO parameters (lines 9–12)
	3.3 Zeroth iteration (lines 13–15)
	3.4 Obtaining FEM model parameters (line 17)
	3.5 Beginning of the evolutionary process (lines 18–50)
	3.5.1 Sensitivity analysis
	3.5.2 Updating the design area by creating an input file for the next loop FEA (line 30)
	3.5.3 New FEA on the updated design area (lines 31–32)
	3.5.4 Convergence criterion check (lines 33–38)

	3.6 Exporting plots (lines 39–50)

	4 Results
	4.1 A short cantilever problem
	4.2 An MBB beam problem
	4.3 A Bridge-type structure
	4.4 A Multiple-load case problem

	5 Conclusion
	6 Supplementary materials
	Appendix
	References

