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Abstract
This work tackles the open pit planning problem in an optimal control framework.We
study the optimality conditions for the so-called continuous formulation usingPontrya-
gin’s Maximum Principle, and introduce a new, semi-continuous formulation that can
handle the optimization of a two-dimensional mine profile. Numerical simulations are
provided for several test cases, including global optimization for the one-dimensional
final open pit, and first results for the two-dimensional sequential open pit. Theses
indicate a good consistency between the different approaches, and with the theoretical
optimality conditions.

Keywords Mine planning · Optimal control · Direct transcription method

Mathematics Subject Classification 49K30 · 49M25 · 90C26

1 Introduction

In long-term planning of mine operation, a common task consists in determining the
profile of the total mass of material to be extracted from the site to optimally design
an opencast mine. This so-called final open pit problem was introduced in the early
works (Lerchs and Grossman 1965; Johnson 1968), with a more recent overview in
Newman et al. (2010).
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The typical approach used to solve this problem is based on a discrete block model
of the site, each block having an associated extraction cost and profit value, based
on topographical and geological data. Using a graph of block precedence (i.e. order
of extraction) allows to take into account slope constraints for the mine stability, and
gives rise to large Integer Programming problems, see for instance (Caccetta 2007).
The dynamic programming approach was also investigated in this framework, see
e.g. Wright (1987). Yet another approach presented in Griewank and Strogies (2013)
describes the optimal digging sequence using time labeling functions in a partial
differential equation context.

The present paper follows the continuous reformulation of the Open Pit introduced
in Alvarez et al. (2011) in a calculus of variation framework, and then in (Amaya et al.
2019) in an optimal control framework. The main contributions of the present work
include the analysis of the final open pit (FOP in the following) with capacity, slope
and initial profile constraints, using Pontryagin’s Maximum Principle to extend the
optimality conditions previously obtained in Amaya et al. (2019) and characterize the
optimal profile in relation to the optimal control structure. Then we introduce a new
semi-continuous formulation that can handle the sequential open pit problem (SOP in
the following), i.e. optimization of the mine profile over a sequence of several time-
frames, for a 2D space domain. Finally, numerical simulations are provided for both the
continuous and semi-continuous approaches, including global optimization for the 1D
FOP case, and to our knowledge the first results for the 2D profile optimization as an
optimal control problem. The outline of the paper is as follows. After the introduction
presenting context, Sect. 2 covers the SOP problem statement with the continuous
approach, and introduces the semi-continuous formulation. Section 3 presents the
FOP analysis using Pontryagin’s Maximum Principle and in particular discusses the
control structure in terms of bang, constrained and singular arcs. Section 4 present
the numerical simulations for three test cases: 1D FOP, 1D SOP and 2D SOP, and is
followed by the conclusions.

2 Problem statement

For a given spatial domain �, we consider a continuous function p : � → R called
profile that delimits the shape of the mine pit. The aim is to determine the profile
that maximizes the gain from the excavated soil, while respecting some limits for
the excavated capacity and maximal slope of the mine. We recall now the continuous
approach for open pit planning, and introduce a new semi-continuous approach that
can handle the 2D profile case. Both of these approaches lead to optimal control
formulations of the problem.

2.1 Continuous formulation

The key idea in the so-called continuous formulation, originally introduced in (Alvarez
et al. 2011), is to use the distance (position along the x-axis) as independent variable,
which allows to define the mine profile as a function of this new ’time’. Introducing
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Optimal control approaches for open pit planning 2889

a suitable dynamics for this function, with the associated control function, allows to
formulate the open pit planning as an optimal control problem (OCP).

2.1.1 Final open pit planning

Pit domain For the 1-dimensional case, the domain � = [a, b] will correspond to the
independent variable or ’time’ of the optimal control problem.

Pit profile The depth of the pit is defined by the state variable P : [a, b] → R
+,

with the boundary conditions P(a) = P0(a), P(b) = P0(b) enforcing that no further
digging occurs at the domain boundaries.

State equation and slope constraint The original slope constraint as stated in
(Alvarez et al. 2011) for a differentiable profile was |Ṗ| ≤ κ(t, P(t)), ∀t ∈ [a, b],
where κ(t, z) > 0 is the maximal allowed slope at position t and depth z. We
restrict here ourselves to the case of a constant maximal slope, and use a nor-
malized control u : [a, b] → [−1, 1] with the corresponding profile dynamics
Ṗ(t) = u(t)κ, ∀t ∈ [a, b].

Initial profileDenoting P0 ≥ 0 the initial profile corresponding to the natural shape
of the ground, we have the constraint P(t) ≥ P0(t), ∀t ∈ [a, b], i.e. no backfilling is
allowed. This is a so-called pure state constraint since it does not involve the control
variable.

Capacity limit Since the overall excavation effort is typically limited, we define a
second state variable C : [a, b] → R

+ with dynamics Ċ(t) = P(t) − P0(t), ∀t ∈
[a, b]1 and intial condition C(a) = 0. The overall capacity limit is then written as the
final condition C(b) ≤ Cmax .

Objective The aim is to maximize the gain from the excavated soil
∫ b
a

∫ P(t)
P0(t)

G(t, z)
dzdt , with G : [a, b] × R → R the gain density at a given position and depth. Note
that G is typically defined by interpolation over tabular data, and has to be integrated
numerically along the depth z.

The optimal control formulation of (FOP1D) is then as follows, with Fig. 1 illus-
trating the problem:

(FOP1D)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min−
∫ b

a

∫ P(t)

P0(t)
G(t, z)dzdt

Ṗ(t) = u(t)κ ∀t ∈ [a, b]
Ċ(t) = P(t) − P0(t) ∀t ∈ [a, b]

u(t) ∈ U = [−1, 1] ∀t ∈ [a, b]
P0(t) − P(t) ≤ 0 ∀t ∈ [a, b]

P(a) = P0(a), P(b) = P0(b)
C(a) = 0, C(b) ≤ Cmax

1 A more general expression would be Ċ(t) =
∫ P(t)

P0(t)
E(t, z)dz
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Fig. 1 Schematic illustration of the final open pit problem (FOP1D)

2.1.2 Sequential open pit planning

We introduce now an extended version of (FOP1D), in which we want to schedule
an extraction program over N consecutive time-frames. This case is quite relevant
in mine planning since mining companies divide the digging process into periods
for operational purposes. We extend the notations of (FOP1D) to the multi-frame
framework, and note Pi the mine profile at time-frame i , with the associated control
ui , whileCi is the excavated capacity during time-frame i . Each mine profile has to be
deeper than the previous one, i.e. the constraint P ≥ P0 from (FOP1D) is generalized
as Pi ≥ Pi−1, i = 1 . . . N . The capacity limitCi

max is now enforced at each individual
time-frame. Finally, the objective function now takes into account a depreciation rate
α > 0 over time, with the gains for the more distant time-frames being valued less
than for the more immediate time-frames. This new optimal control problem reads as
follows

(SOP1D)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
N∑

i=1

∫ b

a

∫ Pi (t)

Pi−1(t)

G(t, z)

(1 + α)t−1 dzdt

Ṗi (t) = uiκ(t, Pi (t)) ∀t ∈ [a, b], i = 1, . . . , N

Ċi =
∫ Pi (t)

Pi−1(t)
E(t, z)dz ∀t ∈ [a, b], i = 1, . . . , N

ui (t) ∈ [−1, 1], ∀t ∈ [a, b], i = 1, . . . , N
Pi−1(t) − Pi (t) ≤ 0 ∀t ∈ [a, b], i = 1, . . . , N

Pi (a) = P0(a), Pi (b) = P0(b) i = 1, . . . , N
Ci (a) = 0, Ci (b) ≤ Ci

max i = 1, . . . , N
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Fig. 2 1D/2D space discretization of the mine profile

Remark 1 Note that (SOP1D) with N = 1 corresponds to (FOP1D). Numerically,
the multi-stage (SOP1D) can be reformulated by duplicating the state and control
variables (as well as the constraints) for each time-frame. Adding the proper linking
constraints between the final and initial conditions of the successive time-frames, we
obtain a single stage version of (SOP1D) that can be solved by standard methods.
The overall problem dimension, however, is higher, therefore computationally expen-
sive methods such as global optimization may be able to handle (FOP1D) but not
(SOP1D), see Sect. 4.

Remark 2 For the discrete (block) formulation, it is known [see for instance (Caccetta
and Hill 2003; Molina and Amaya 2017)] that each profile (or ’pit’) which is solution
of (SOP1D) is not deeper than the optimal pit of (FOP1D)with the same parameters
and infinite capacity, i.e., Cmax = ∞. A similar result has been obtained for the
continuous framework in Alvarez et al. (2011).

2.2 Semi-continuous formulation for SOP

The main limitation of the continuous approach is that using the independent variable
to represent the position in space makes it difficult to handle the 2D profile case,
both in terms of dynamics/controls and profile slopes. This is why we introduce a new
approach called the semi-continuous formulation, based on an explicit discretization of
the space domain�. Themine profile is therefore represented by afinite set of variables
at the discretization nodes, as illustrated in Fig. 2. Control variables are defined as the
excavation effort at each discretization node. Slope constraints are modeled as state
constraint linking each node with their neighbors. The independent variable is here
standard time, expressed in time-frames such that the final time T is the total number of
time-frames. Since SOP is a multi-phase problem, one standard way to formulate it is
to normalize the time interval to [0, 1] and duplicate the variables for each time-frame.
This approach yields another optimal control formulation of the sequential open pit
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problem, for which extension from 1D to 2D space domain is rather straightforward,
at the cost of an increase in overall problem dimension.

Notations In the context of the semi-continuous approach, for functions of both space
and time such as profile, controls and slopes, we will typically use subscripts for
the space discretization node in �, and exponents for the time-frame of the multi-
phase sequential open pit. For instance, Pk

i will represent the profile depth at node
i and time-frame k, and Pk := (Pk

i ), i = 0, . . . , N refers to the mine profile at
time-frame k. Similarly, Uk

i will denote the digging at node i and time-frame k, with
Uk := (Pk

i ), i = 0, . . . , N corresponding to the overall excavation effort over the

domain � at time-frame k. We will also denote by
∫ Pk+1

Pk the integral of a function
between the two mine profiles at time-frames k and k + 1; for 1D profiles this is a 2D
integral along x and the depth z, and a 3D integral along x, y, z for 2D profiles.

2.2.1 One dimensional profile space domain

Discrete profile We discretize the space domain � = [a, b] into N equal intervals of
length �x = b−a

N , with N + 1 discretization nodes (xi ), and note I = {0, . . . , N } the
set of indices for the nodes. We define the state variables for the profile nodes (Pi )i∈I
as functions of time.We also introduce the control variables at each node (Ui )i∈I ≥ 0,
corresponding to the excavation effort, so that the profile variables follow the simple
dynamics

Ṗi (t) = Ui (t) , ∀i ∈ I , ∀t ∈ [0, T ]. (1)

Gain The gain realized during time-frame k is the integral of G between the cur-
rent profile Pk and the previous Pk−1. Taking into account the depreciation rate α

introduced in 2.1.2, the overall gain to be maximized is

T∑

k=1

∫ Pk

Pk−1

G(x, z)

(1 + α)tk−1 dxdz. (2)

The computation of this objective is detailed in A.
Slope We denote Ski the slope at node i and time-frame k, which is a function of

time. The maximal slope condition writes as

− 1 ≤ Ski (t)

κ
(
xi , Pk

i (t)
) ≤ 1 , ∀i ∈ I , ∀k = 0 . . . T , ∀t ∈ [0, 1] (3)

In the 1D case we will use the simple slope formula

Ski = (Pk
i − Pk

i−1)/�x (4)

and the slope limits are state constraints.
Capacity The excavation effort at each time-frame k corresponds to the integral of

the effort E between the two consecutive profiles Pk−1 and Pk , and the capacity limit
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Fig. 3 Illustration of the 1D
profile model discretized w.r.t.
space and time as a set of Pk

i
state variables with
i = 0, . . . , N profile nodes and
k = 0, . . . , T time-frames.
Controls Uk

i are the depths
excavated from the previous
time-frame at each node. Slopes
Ski between neighbor nodes
must be smaller than the local
maximal slopes i.e. κ(Xi , P

k
i )

Ωa b

N intervals

P 0

P 1
P 2

Xi

P k
i

P k−1
i

P k
i+1

Uk
i

Sk
i

writes as ∫ Pk

Pk−1
E(x, z)dxdz ≤ Ck, ∀k = 1, . . . , T . (5)

The computation of this integral is detailed in A.
Initial profile This is now a standard initial condition of the form

P0
i (0) = p0(xi ) , ∀i ∈ I . (6)

We obtain the following multi-phase problem (SOP)1DSC with Fig. 3 illustrating the
profile discretization in the 1D case, with N = 7 and T = 2. Implementation details
regarding the approximation of the various integrals are presented in A

(SOP)1DSC

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
T∑

k=1

∫ Pk

Pk−1

G

(1 + α)k−1

Ṗk
i (t) = Uk

i (t), i ∈ I , k = 1, . . . , T , t ∈ [0, 1]

−1 ≤ Ski (t)

κ(xi ,Pk
i (t)

≤ 1, i ∈ I , k = 1, . . . , T , t ∈ [0, 1]

∫ Pk

Pk−1
E(x, z)dxdz ≤ Ck, k = 1, . . . , T

P0
i (0) = p0(xi ), i ∈ I
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Remark 3 Setting T = 1 corresponds to the final open pit problem with a single
time-frame.

Remark 4 The boundary condition P|∂� = 0 is in practice built in directly in the
problem formulation by eliminating the profile and control variables at the nodes
corresponding to the boundary of the space domain.

Remark 5 Moreover, the constraint that each profile must be deeper than the previous
one,whichwas a state constraint in the continuous formulation, is now simply enforced
by the conditions Ui ≥ 0.

Remark 6 The step size�x for the discretization of� in the semi-continuous approach
can be seen as the analogue of the time step �t for the continuous approach, which
uses distance as independent variable.

2.2.2 Two dimensional profile space domain

For the two dimensional case, the extraction domain considered is� = [a, b]×[c, d].
Generalizing the 1D case, we discretize [a, b] and [c, d] into N and M intervals of
length�x = b−a

N and�y = d−c
M respectively, and obtain a gridwith (N+1)×(M+1)

nodes. Noting J = {0, . . . , M}, we introduce the state variables (functions of time)
(Pi, j )i, j∈I×J representing themine depth at each node (xi , y j ) := (a+i�x, c+ j�y).
The mine profile at time-frame k is now a surface represented by the set of points
Pk := (Pk

i, j (0)). We introduce the (N + 1) × (M + 1) non-negative controls Uk
i, j ≥

0 i, j ∈ I × J , with the same dynamics Ṗk
i, j = Uk

i, j .
Initial profile conditions are written as:

P0
i, j (0) = p0(xi , y j ) , i, j ∈ I × J . (7)

The objective and capacity limit are similar to the 1D case, except that the integrals
ofG and E between two consecutive profiles are now in 3D instead of 2D. The relevant
implementation details are provided in A.

Themain adjustment concerns the slope constraint: for each point Pi, j of the profile
we now choose to consider two slopes Si, j and Ti, j , in the x-axis and y-axis directions
respectively. Using the same basic forward finite differences as in 1D, we obtain the
two sets of slope constraints at time-frame k:

−1 ≤ Pk
i+1, j (t) − Pk

i, j (t)

κ
(
xi , y j , Pk

i, j (t)
)

�x
≤ 1, ∀i = 0, . . . , N − 1,

j = 0, . . . , M − 1, ∀t ∈ [0, 1]. (8)

−1 ≤ Pk
i, j+1(t) − Pk

i, j (t)

κ
(
xi , y j , Pk

i, j (t)
)

�y
≤ 1, ∀i = 0, . . . , N − 1,

j = 0, . . . , M − 1, ∀t ∈ [0, 1]. (9)
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Ω

x

y

0 N

M

P k
i,j P k

i+1,j

P k
i,j+1

Sk
i,j

T k
i,j Uk

i,j

Fig. 4 Illustration of the 2D profile model with N = 5 and M = 3. View is from ’above’, with the state
variable Pk

i, j giving the profile depth at node (xi , y j ) at time-frame k. Slopes Ski, j , T
k
i, j with neighbors

along the x-axis and y-axis must be smaller than the maximal allowed slopes given by the function κ . The
controlUk

i, j (along the z-axis) corresponds to the excavated depth from the same profile node at the previous

time-frame Pk−1
i, j

Note that more sophisticated choices could be used for the slopes, such as centered
differences formulas or increasing the number of slopes considered at each point.
The formulation of (SOP)2DSC is summarized below, with Fig. 4 illustrating the profile
discretization in the 2D case with N = 5 and M = 3.

(SOP)2DSC

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
T∑

k=1

∫ Pk

Pk−1

G

(1 + α)k−1

Ṗk
i, j (t) = Uk

i, j (t), ∀(i, j) ∈ I × J , k = 1, . . . , T , t ∈ [0, 1]

−1 ≤ Ski, j (t)

κ
(
xi ,y j ,Pk

i, j (t)
) ≤ 1, ∀(i, j) ∈ I × J , k = 1, . . . , T , t ∈ [0, 1]

−1 ≤ T k
i, j (t)

κ
(
xi ,y j ,Pk

i, j (t)
) ≤ 1, ∀(i, j) ∈ I × J , k = 1, . . . , T , t ∈ [0, 1]

∫ Pk

Pk−1
E(x, y, z)dxdydz ≤ Ck , k = 1, . . . , T

P0
i, j (0) = p0(xi , y j ), ∀(i, j) ∈ I × J
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3 Characterization of solution for (FOP1D)

We study the final open pit problem in continuous formulation (FOP1D) by analyzing
the necessary optimality conditions from Pontryagin’s Maximum Principle, and in
particular have a look of the possible control structure of optimal profiles and the
corresponding interpretation. Looking at (FOP1D), the dynamics is linear w.r.t the
control, which typically implies a solution where the optimal control is a sequence of
so-called bang arcswhere it saturates its bounds, and singular arcswhere it does not. In
addition to this, the initial profile constraint P ≤ P0 is a so-called pure state constraint
since it does not involve the control directly. The handling of pure state constraints
in the PMP and indirect shooting methods is a significant and still open subject,
and we limit ourselves to a basic expression of the necessary optimality conditions
for (FOP1D) that we can check for the numerical solutions obtained in 4, without
delving into the mathematical details. These results expand the analysis of singular
arcs obtained in Amaya et al. (2019) with calculus of variations techniques. We refer
readers to for instance (Bonnans and Hermant 2008) for an illustration of the so-called
alternative adjoint formulation applied to shooting methods, as well as (Bonnard et al.
2003; Cots 2017) for the geometric control approach.

Optimality conditions for (SOP1D) are not detailed here, and are more involved
in particular due to the state constraint P ≤ P0 being generalized over the sequence
of time-frames, i.e. Pi ≤ Pi−1, i = 1, . . . , N .

Optimality conditions for the semi-continuous formulation in both 1D and 2D cases
remain to be investigated thoroughly. On one hand the constraints Pi ≤ Pi−1, i =
1, . . . , N are now trivially enforced by the lower bound Ui ≥ 0. On the other hand
the maximal slope limits are now state constraints that involve at least two adjacent
nodes of the discretized profile, and the coupling between several controls means the
expression of the boundary control is not straightforward.

3.1 Applying Pontryagin’s minimum principle

We introduce here the generic notations x := (P,C) for the state variables and
denote the final conditions as x(b) ∈ C f , as well as the functions for the dynamics f :
(t, x, u) �→ (u(t)κ; P(t)−P0(t)), the running cost l : (t, x, u) �→ − ∫ P(t)

P0(t)
G(t, z)dz,

and the state constraint c : (t, x) �→ P0(t)−P(t).Assume the trajectoryx associated to
the control u is optimal, there must exist p0 ≤ 0, an adjoint vector p and a multiplier
μ for the state constraint, with (p, p0, μ) 	= 0, such that the following necessary
optimality conditions are satisfied. Define the pre-Hamiltonian

H(t, x, p, p0, u) =< p, f (t, x, u) > +p0l(t, x, u).

Then

(i) Adjoint equation:

− dp(t) = ∂H

∂x
(t, x(t),p(t), p0,u(t))dt + ∂c

∂x
(t, x(t))dμ(t) a.e. (10)

123



Optimal control approaches for open pit planning 2897

(ii) Hamiltonian minimization:

H(t, x(t),p(t), p0,u(t)) = minv∈U H(t, x(t),p(t), p0, v) a.e. (11)

(iii) Transversality conditions: the initial state being fixed, we only have the condition
on the adjoint at the final time, namely p(b) is normal to C f at x(b).

(iv) State constraint complementarity condition:

dμ ≥ 0 ,

∫ b

a
c(t, x(t))dμ(t) = 0. (12)

We assume here the so-called normal case i.e. p0 	= 0, and use the normalization
p0 = 1. Let us now rewrite the necessary conditions using the original variable
notations from (FOP1D).

3.1.1 Hamiltonian

Introducing (pP , pC ) = p the individual adjoints corresponding to the state variables
P,C for the profile and capacity, the pre-Hamiltonian rewrites as

H(t, P(t),C(t), pP (t), pC (t), u(t)) = pP (t)u(t)κ + pC (t)(P(t) − P0(t))

−
∫ P(t)

P0(t)
G(t, z)dz.

3.1.2 Adjoint equation

(i) ṗP (t) = − ∂H
∂P (.) − ∂c

∂P (.)
dμ
dt (t) = −pC (t) + G(t, P(t)) + dμ

dt (t).
(ii) ṗC = 0 i.e. the adjoint associated to the capacity C is constant.

3.1.3 Transversality conditions

(i) pP (b) is free since P(b) = 0.
(ii) If the capacity limit is not reached i.e. C(b) < Cmax , then pC = pC (b) = 0, and

pC = pC (b) ≥ 0 otherwise.

We now study more specifically the optimal control structure.

3.2 Inactive constraint case: bang/singular arcs

We start by studying the case when the state constraint is not active. Since per (11) the
optimal control minimizes the pre-Hamiltonianwhich is linear in the control, solutions
typically consist in a sequence of bang (saturated control) and/or singular control arcs.
We introduce the switching function whose sign will determine the optimal control

ψ(t) := ∂H

∂u
(t) = pP (t)κ (13)

123



2898 E. Molina et al.

Since κ > 0 we obtain the control law:

ū(t) =

⎧
⎪⎨

⎪⎩

1 if pP (t) < 0

−1 if pP (t) > 0

us(t) if pP (t) = 0 over an interval

(14)

The value of the singular control us is traditionally determined from the fact that
ψ and all its time derivatives vanish over a singular arc. Keeping in mind that dμ = 0
when the state constraint is inactive as per (12), the first time derivative is

ψ̇(t) = κ ṗP(t) = κ(G(t, P(t)) − pC (t)). (15)

As well known, the control does not appear in this expression. However, the second
derivative is enough, with

ψ̈(t) = κĠ(t, P(t)) = κ(Gt (t, P(t)) + uκGP (t, P(t))) (16)

where Gt ,GP denote the derivatives of G w.r.t t and P . Solving ψ̈(t) = 0 for the
singular control leads to

us(t) = − Gt (t, P(t))

κGP (t, P(t))
. (17)

We observe that a singular arc is not admissible when | Gt (t,P)
κGP (t,P)

| > 1, and in
particular when GP (t, P) = 0. Furthermore, we have the following result.

Lemma 1 Let P̄ be an optimal profile solution of (FOP1D), then, over a singular arc
the curve (t, P̄(t)) follows a level sets of G, and more specifically the level set of null
gain G = 0 if the maximal capacity limit is not reached.

Proof From (15), over a singular arc the equation ψ̇ = 0 indicates that the derivative
Ġ := Gt (t, P̄(t)) + ṖGP (t, P̄(t)) vanishes, therefore the mine profile will follow
a level sets of G. Additionally, if the final constraint for the maximal capacity is not
active, then pC = 0 and ψ̇ = 0 then gives G = 0. 
�

3.3 Active constraint case: boundary arcs

Over a boundary arc, the associated feedback control uc is such that the constraint
remains active, i.e. P = P0, thus

uc(t) = Ṗ0(t)

κ
. (18)

Note that a constrained arc can only occur if the uc is admissible, i.e. |Ṗ0| ≤ κ , which
simply means that the initial profile must satisfy the maximal slope constraint. In the
general case the adjoint state may present discontinuities at the junctions between
boundary and interior arcs. However, for a first order scalar constraint with a scalar
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control, it is known that the adjoint is continuous if the control is discontinuous at
the junction [see for example Bonnard et al. (2003)], which is the situation we will
encounter in the numerical simulations.

3.4 Control structure summary for the final open pit

To summarize, the optimal profile, in terms of control structure, is a sequence of bang,
singular and/or constrained arcs. Constrained arcs are where the profile is the initial
one, meaning there was no further excavation at these parts of the domain. Bang arcs
correspond to the parts of the profile where the slope reaches its maximal allowed
value, i.e. the digging is as steep as possible. Singular arcs, finally, are parts where the
optimal profile follows the level sets of the gain function, meaning the gain is constant
along these parts of the profile. Moreover, if the capacity limit is not reached, then this
level set is more specifically the one of null gain, i.e. the digging stops at the depth
where excavation is not profitable anymore.

4 Numerical simulations

We present now the numerical simulations that illustrate the continuous and semi-
continuous formulations of the Open Pit problem. After a brief description of the
algorithms used for the global and local optimizations, we detail three test cases. First
is the 1D FOPwith limited capacity, that we solvewith the continuous (both global and
local optimization) and semi-continuous formulation (local optimization). The second
example is the 1D SOPwith limited capacity, for which we compare the results of both
continuous and semi-continuous formulations (both with local optimization). Finally,
we present a test case for the 2D SOP problem with the semi-continuous formulation.
All simulations were carried out on a standard laptop, with numerical settings for all
methods recalled in Table 1 p.15.

4.1 Numerical methods

4.1.1 Global optimization: FOP with continuous formulation

The final open pit problem is low-dimensional, with only two state variables (not
counting the running cost) and one control variable. Therefore it makes sense to try a
global optimizationmethod such as dynamic programming, or the so-calledHamilton–
Jacobi–Bellman (HJB) approach. We use here the software BocopHJB (Bonnans
et al. 2019a), and refer to for instance (Falcone and Ferretti 2013) for a detailed
description of theHJBmethod. In this approach the value function of a fully discretized
(time, state and control variables) version of the problem is computed, with the global
optimum then being reconstructed from this information. In addition to finding the
global optimum, this method also does not require an initial guess.
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Table 1 Numerical settings for the continuous and semi continuous formulations

1D FOP (global) t : 123 steps; P : 50 steps, e : 210 steps; u : 100 steps

1D FOP/SOP (local) t : 123 steps; tol = 10−10; maxiter = 10000

1D SOP semi-continuous (local) t : T steps; N = 123 nodes; tol = 10−10; maxiter = 10000

2D SOP semi-continuous (local) t : T steps; 30 × 10 nodes; tol = 10−6; maxiter = 10000

All local optimizations use a trivial initial guess of 0.1 for all variables

4.1.2 Local optimization: FOP and SOP with continuous and semi-continuous
formulations

Since the numerical cost of the global method is too high for the sequential open pit
problem, we also use a local optimization method, namely the direct transcription
approach. This method approximates the original (OCP) problem by a discretized
reformulation as a nonlinear optimization problem (NLP), using a discretization of
the time interval. We refer interested readers to for instance (Betts 2001) for a review
of direct methods. We use here the software Bocop (Bonnans et al. 2019b), based on
the solver Ipopt (Waechter and Biegler 2006) with sparse derivative computed by the
automatic differentiation tool Cppad (Bell 2012). This local optimization method is
also used for the semi-continuous formulation with explicit discretization of the space
domain.

4.1.3 Numerical settings

In Table 1 are the settings for the different numerical methods used in the simulations.

4.2 Final open pit (1D): global and local optimization

We start with the 1D FOP as first example, since it is the only one for which all
formulations, including global optimization, are available. We set a maximal capacity
Cmax = 20.000. The gain function G is interpolated from values found in the Marvin
block model of Minelib, a publicly available library of test problem instances for
open pit mining problems (see (Espinoza et al. 2013)).

Remark 7 Solutions for the unlimited capacity case, with a different control structure
(i.e. singular arcs), are shown in B, with both constant and variable maximal slope.

4.2.1 1D FOP with global optimization for continuous approach

The solution obtained by the global optimization is displayed in Fig. 5. At first glance,
the control structure seems to be of the form Constrained-Bang-Bang-Constrained.
On both sides the constraint P = P0 is active, meaning there is no additional digging
from the initial profile. In the middle, digging occurs with maximal slope, leading to
the two bang arcs.
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Fig. 5 1D profile with limited capacity—global optimization (HJB method)

Remark 8 The non zero control around x = 200 simply follows the existing initial
profile P0, and is part of the first constrained arc. See 4.2.2 for more details.

Remark 9 It is worth noting that an estimate of the PMP costate can be derived from
the gradient of the value function computed by the global method, see for instance
Refs. (Clarke and Vinter 1987; Cristiani and Martinon 2010). In the present case
however, the gradient turns out to be quite noisy and of little practical use. This could
be improved by increasing the discretizations, although the increase in computational
times would not be competitive with respect to using a direct method.

4.2.2 1D FOP with local optimization for continuous approach

The solution from the local optimization is displayed in Fig. 6 with the optimal profile
and control as well as the PMP costate check. This solution is actually extremely close
to the one in Sect. 4.2.1, which indicates that the direct method actually found the
global optimum as well, with the benefit of a more accurate solution. In particular,
we can here clearly see that the first two arcs with nonzero control around x = 200
are not bang arcs since |u| < 1: they are actually part of the first constrained arc and

correspond to the region where P0 varies, thus the control uc(t) = Ṗ0(t)
κ(t,P(t)) from (18)

is not just zero.
Moreover, we can now check that the Constrained-Bang-Bang- Constrained control

structure is consistent with the switching function and the path constraint. We observe
a perfect match between the adjoint estimate from the discretized problem and the
recomputed PMP costate. Figure6 shows the value of the state constraint g = P0 − P
and its associated multiplier dμ. We retrieve dμ from the multiplier of the state con-
straint in the discretized problem (the correspondence can be inferred from comparing
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Fig. 6 1D profile with limited capacity—local optimization (direct method) and optimality conditions

the expression of the PMP Hamiltonian and the Lagrangian of the NLP problem). In
accordance with (12), the multiplier dμ is positive, and null when the constraint is
not active. We also observe that the costate pP is continuous at the junctions between
bang and singular arcs, while the control is discontinuous.

Remark 10 In this particular case, the solution has no singular arcs, which is due to the
capacity limit that prevents reaching the null gain region. The example with unlimited
capacity in B illustrate a solution with singular arcs where the optimal profile follows
the level set G = 0.

4.2.3 1D FOP with semi-continuous approach

We finally present the solution obtained for the same problem using the semi-
continuous formulation with a single phase (i.e T = 1). As can be seen in Fig. 7
and Table2, the solution is similar to the global and local optimizations using the con-
tinuous approach, with close values for the objective. CPU times are of the same order
of magnitude for the two local optimizations with continuous and semi-continuous
formulation, while global optimization is significantly slower (two orders).
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Fig. 7 1D profile, limited capacity—local optimization using semi-continuous formulation

Table 2 Solutions for the 1D FOP with limited capacity

Method Objective CPU (s)

1D FOP global optim 10,846 369

1D FOP local optim 11,093 3

1D FOP semi-continuous local optim 11,100 2

4.3 Sequential open pit (1D and 2D): local optimization

In this section we present solutions for the sequential open pit. First we solve a 1D
example using both the continuous and semi-continuous formulations. Then we show
a solution for a more realistic 2D problem using the semi-continuous formulation. To
our knowledge, this is the first attempt to tackle the 2D case in an optimal control
framework.

4.3.1 1D SOP with continuous and semi-continuous approach

Continuous approach We solve the 1D SOP problem for 12 time-frames, with a con-
stant function κ = 1, a rate α = 0.1 and a maximal capacity Cmax = 1e4 for each
time-frame. The solution indicates that most of the excavation effort is concentrated
in the high gain regions of the domain, which is not surprising.

Semi continuous approach We now solve the same SOP problem with the semi-
continuous formulation. Both approaches give similar solutions, as can be seen in
Fig. 8. The objective values showed in Table 3 are quite close with a difference of
1.3%, while CPU times are in the same order of magnitude.
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Table 3 Solutions for the 1D
SOP problem

Method Objective CPU (s)

Continuous 89,939 31

Semi-continuous 91,153 43

Fig. 8 1D SOP: continuous and semi-continuous formulations

4.3.2 2D SOP with semi continuous approach

For the 2D case we consider a domain � = [0, 1200] × [0, 400] and an analytical
gain density function stated by

G(x, y, z) = 1000 −
√

(x − 600)2 + (y − 200)2 + (z − 350)2 (19)

that reaches its maximal value in (600, 200, 350) and which decreases radially from
this point. The initial profile used in this instance is showed in Fig. 9.

We set a discount factor α = 0.1 and solve the 2D SOP for different capacity limits
and number of time-frames, using a 30 × 10 discretization of �. Figures10 and 11
illustrate the optimal sequence of 2D profile corresponding toCmax = 106 and 5×106

respectively, with T = 2, 3, 6 time-frames. Table 4 shows the objective values and
CPU times. Results are consistent overall, with solutions trying to reach the region
of highest gain as fast as allowed by the slope and capacity constraints. Increasing
the capacity limit and / or the duration of the time interval both yield better objective
values, as expected. CPU times are still reasonable, with the longest run at 139s.

Remark 11 It is worth noting that, in real instances, the information about gain is
discretized into blocks since the block model is widespread used in mine planning.
An open challenge is to build a gain density G using this type of information. A first

123



Optimal control approaches for open pit planning 2905

Fig. 9 Initial profile for the 2D SOP case

Fig. 10 2D profile optimization with limited capacity C = 1e6, for T = 2, 3 and 6 time-frames

Fig. 11 2D profile optimization with limited capacity Cmax = 5e6, for T = 2, 3 and 6 time-frames

Table 4 2D SOP: solutions from the semi-continuous formulation, for different time intervals and capacity
limit per time-frame

Times-frames Capacity limit: 106 Capacity limit: 5 × 106

Objective CPU (s) Objective CPU (s)

T = 2 69,954.88 11 73,089.311 53

T = 3 100,103.04 38 104,684.29 124

T = 6 175,132.64 31 183,583.57 139

approach might be to use a three-dimensional linear interpolation, but it could require
a big computational effort so more sophisticated techniques should be investigated.
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5 Conclusions

In the present work we focused on the Open Pit problem in an optimal control frame-
work. We extended some previous results on the optimality conditions for the final
open pit, and introduced a new semi-continuous formulation that handles the 2D pro-
file sequential optimization. Numerical simulations are provided for the continuous
and semi-continuous approaches on several test cases. The 1D FOP case showed a
good consistency between global and local optimization for the continuous approach,
as well as local optimization for semi-continuous, and matched the optimality con-
ditions from Pontryagin’s Principle. Then the 1D SOP case again indicated a good
match for the continuous and semi-continuous formulations. Finally we solved a 2D
SOP test case, to our knowledge for the first time in an optimal control framework.
Perspectives in the continuation of the present work include solving a more complete
2D SOP example using 3D interpolated data for the gain and maximal slope, as well
as studying the optimality conditions for the semi-continuous approach. The latter
could prepare for the use of indirect shooting methods such as Hampath (Caillau
et al. 2012), especially since the local optimization method used here can provide the
knowledge of the optimal control structure and a costate approximation.

AppendixA: Implementationdetails for thesemi-continuousapproach

Time discretization The sequential open pit for the semi-continuous approach
described in 2.2 is a multi phase problem. Instead of duplicating the variables for
each time-frame, we use here in practice a more compact implementation, by using a
time step �t of 1 time-frame, i.e. the time discretization tk = 0 . . . T is the sequence
of time-frames. This choice makes sense from the operational point of view, since
the sequential open pit planning precisely consists in determining the optimal mine
profile at each time-frame. It also simplifies a lot the computation of the integrals of the
gain and effort functions between two successive mine profiles. We choose an implicit
Euler scheme for the time discretization, which gives the trivial discrete dynamics

Pk+1
i = Pk

i +Uk+1
i (20)

that easily gives the next / previous mine profile when needed in the computations.
Gain An additional state variable g is added to represent the gain realized along

the time-frames, whose dynamics can be written as

ġ(tk) = 1

(1 + α)k−1

∫ Pk

Pk−1
G(x, z)dxdz, ∀k = 1, . . . , T (21)

The objective is then to maximize g(T ). For the 1D case, we approximate the 2-
dimensional integral of G by trapezoidal rule over x then along z. In the 2D profile
case, the 3D integral of G for the computation of the gain is approximated using a 2D
trapezoidal rule along (x, y) then a standard trapezoidal rule along z.
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Capacity At each time-frame, the integral of the excavation effort over the domain
� can be approximated by

∫ Pk

Pk−1
E(x, z)dxdz ≈

N∑

i=0

�x

(∫ Pk
i

Pk−1
i

E(xi , z)dz

)

(22)

Since E = 1 and from the discrete dynamics Pk
i = Pk−1

i + Uk
i , we can use the

following formula
∫ Pk

Pk−1
E(x, z)dxdz ≈ �x

N−1∑

i=0

Uk
i . (23)

Similarly, for the 2D profile case, the excavation effort at time-frame k is approximated
as

∫ Pk

Pk−1
E(x, y, z)dxdydz ≈ �x�y

N−1∑

i=0

M−1∑

j=0

Uk
i, j . (24)

B: Additional examples for the final open pit: continuous formulation

B.1: FOP with infinite capacity and constant slope

We show here the basic example with unconstrained capacity, namely Cmax = ∞.
Figure 12 shows the solution obtained by the global method, and Fig. 13 shows the
solution from the localmethod, andwe observe that both solutionsmatch.With infinite
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Fig. 12 1D profile with infinite capacity—global optimization (HJB method)
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Fig. 13 1D profile with infinite capacity—local optimization (direct method) and consistency with PMP
optimality condition

capacity, the solution, as expected, digs asmuch as possiblewith respect to themaximal
slope, until it reaches negative gain. This corresponds to the observed Bang-Singular-
Bang control structure (neglecting the two very small constrained arcs P = P0 = 0
at the extremities). As stated in Lemma 2, the singular arc in the middle follows the
geodesic G = 0. The corresponding control also matches the theoretical expression
of the singular control (14), despite some oscillations at the junctions with the bang
arcs.
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