
Vol.:(0123456789)

Optimization and Engineering (2023) 24:1411–1432
https://doi.org/10.1007/s11081-022-09738-z

1 3

RESEARCH ARTICLE

A general optimization framework for dynamic time
warping

Dave Deriso1 · Stephen Boyd2

Received: 4 December 2021 / Revised: 14 June 2022 / Accepted: 14 June 2022 /
Published online: 22 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
The goal of dynamic time warping is to transform or warp time in order to approxi-
mately align two signals. We pose the choice of warping function as an optimization
problem with several terms in the objective. The first term measures the misalign-
ment of the time-warped signals. Two additional regularization terms penalize the
cumulative warping and the instantaneous rate of time warping; constraints on the
warping can be imposed by assigning the value +∞ to the regularization terms. Dif-
ferent choices of the three objective terms yield different time warping functions
that trade off signal fit or alignment and properties of the warping function. The
optimization problem we formulate is a classical optimal control problem, with ini-
tial and terminal constraints, and a state dimension of one. We describe an effec-
tive general method that minimizes the objective by discretizing the values of the
original and warped time, and using standard dynamic programming to compute the
(globally) optimal warping function with the discretized values. Iterated refinement
of this scheme yields a high accuracy warping function in just a few iterations. Our
method is implemented as an open source Python package GDTW.

Keywords Time-Series · DTW · Dynamic programming

 * Dave Deriso
 dderiso@alumni.stanford.edu

 Stephen Boyd
 boyd@stanford.edu

1 Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Suite 060,
Stanford, CA 94305-4042, USA

2 Elecrical Engineering, Stanford University, 350 Serra Mall, Packard 175, Stanford,
Ca 94305-1234, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-022-09738-z&domain=pdf

1412 D. Deriso, S. Boyd

1 3

1 Background

The goal of dynamic time warping (DTW) is to find a time warping func-
tion that transforms, or warps, time in order to approximately align two signals
together (Sakoe and Chiba 1978). At the same time, we prefer that the time warp-
ing be as gentle as possible, in some sense, or we require that it satisfy some
requirements.

DTW is a versatile tool used in many scientific fields, including biology,
economics, signal processing, finance, and robotics. It can be used to measure
a realistic distance between two signals, usually by taking the distance between
them after one is time-warped. In another case, the distance can be the minimum
amount of warping needed to align one signal to the other with some level of
fidelity. Time warping can be used to develop a simple model of a signal, or to
improve a predictor; as a simple example, a suitable time warping can lead to
a signal being well fit by an auto-regressive or other model. DTW can also be
used for pattern recognition and searching for a match among a database of sig-
nals (Rakthanmanon et al 2012). It can be employed in any machine-learning
application that relies on signals, such as PCA, clustering, regression, logistic
regression, or multi-class classification. (We return to this topic in §7.)

Almost all DTW methods are based on the original DTW algorithm (Sakoe
and Chiba 1978), which uses dynamic programming to compute a time warping
path that minimizes misalignments in the time-warped signals while satisfying
monotonicity, boundary, and continuity constraints. The monotonicity constraint
ensures that the path represents a monotone increasing function of time. The
boundary constraint enforces that the warping path beings with the origin point
of both signals and ends with their terminal points. The continuity constraint
restricts transitions in the path to adjacent points in time.

Despite its popularity, DTW has a longstanding problem with producing sharp
irregularities in the time warp function that cause many time points of one signal
to be erroneously mapped onto a single point, or “singularity,” in the other signal.
Most of the literature on reducing the occurrence of singularities falls into two
camps: preprocessing the input signals, and variations on continuity constraints.
Preprocessing techniques rely on transformations of the input signals, which
make them smoother or emphasize features or landmarks, to indirectly influence
the smoothness of the warping function. Notable approaches use combinations of
first and second derivatives (Keogh and Pazzani 2001; Marron et al 2015; Singh
et al 2008), square-root velocity functions (Srivastava et al 2011), adaptive down-
sampling (Dupont and Marteau 2015), and ensembles of features including wave-
let transforms, derivatives, and several others (Zhao and Itti 2016). Variations of
the continuity constraints relax the restriction on transitions in the path, which
allows smoother warping paths to be chosen. Instead of only restricting transi-
tions to one of three neighboring points in time, as in the original DTW algo-
rithm, these variations expand the set of allowable points to those specified by
a “step pattern,” of which there are many, including symmetric or asymmetric,
types I-IV, and sub-types a-d (Sakoe and Chiba 1978; Itakura 1975; Myers et al

1413

1 3

A general optimization framework for dynamic time warping

1980; Rabiner and Juang 1993). While preprocessing and step patterns may result
in smoother warping functions, they are ad-hoc techniques that often require
hand-selection for different types of input signals.

We propose to handle these issues entirely within an optimization framework
in continuous time. Here we pose DTW as an optimization problem with several
penalty terms in the objective. The basic term in our objective penalizes mis-
alignments in the time-warped signals, while two additional terms penalize (and
constrain) the time warping function. One of these terms penalizes the cumula-
tive warping, which limits over-fitting similar to “ridge” or “lasso” regulariza-
tion (Tikhonov and Arsenin 1977; Tibshirani 1996). The other term penalizes the
instantaneous rate of time warping, which produces smoother warping functions,
an idea that previously proposed in (Green and Silverman 1993; Ramsay and Sil-
verman 2005, 2007; Srivastava and Klassen 2016).

Our formulation offers almost complete freedom in choosing the functions
used to compare the sequences, and to penalize the warping function. We include
constraints on the fit and warping functions by allowing these functions to take on
the value +∞ . Traditional penalty functions include the square or absolute value.
Less traditional but useful ones include for example the fraction of time the two
signals are within some threshold distance, or a minimum or maximum on the
cumulative warping function. The choice of these functions, and how much they
are scaled with respect to each other, gives a very wide range of choices for
potential time warpings.

Our continuous time formulation allows for non-uniformly sampled signals,
which allows us to use simple out-of-sample validation techniques to help guide
the choice of time warping penalties; in particular, we can determine whether a
time warp is ‘over-fit’. Our handling of missing data in the input signals is useful
in itself since real-world data often have missing entries. There are many exam-
ples of using validation to select hyper-parameters, such as the “warping win-
dow,” and do this by splitting their dataset of signals into test signals and train
signals (Dau et al 2018). To the best of our knowledge, we are the first use of
out-of-sample validation for performing model selection in DTW, where we build
a test and training dataset by partitioning samples from a single signal.

We develop a single, efficient algorithm that solves our formulation, independ-
ent of the particular choices of the penalty functions. Our algorithm uses dynamic
programming to exactly solve a discretized version of the problem with linear
time complexity, coupled with iterative refinement at higher and higher resolu-
tions. Our discretized formulation can be thought of as generalizing the Itakura
parallelogram (Itakura 1975); the iterated refinement scheme is similar in nature
to FastDTW (Salvador and Chan 2007). We offer our implementation as open
source C++ code with an intuitive Python package called GDTW (https:// github.
com/ dderi so/ gdtw).

We describe several extensions and variations of our method. In one exten-
sion, we extend our optimization framework to find a time-warped center of or
template for a set of signals; in a further extension, we cluster a set of signals into
groups, each of which is time-warped into one of a set of templates or prototypes.

https://github.com/dderiso/gdtw
https://github.com/dderiso/gdtw

1414 D. Deriso, S. Boyd

1 3

2 Dynamic time warping

Signals. A (vector-valued) signal f is a function f ∶ [a, b] → �
d , with argument time.

A signal can be specified or described in many ways, for example a formula, or via a
sequence of samples along with a method for interpolating the signal values in between
samples. For example we can describe a signal as taking values s1,… , sN ∈ �

d , at
points (times) a ≤ t1 < t2 < ⋯ < tN ≤ b , with linear interpolation in between these
values and a constant extension outside the first and last values:

For simplicity, we will consider signals on the time interval [0, 1].
Time warp function. Suppose � ∶ [0, 1] → [0, 1] is increasing, with �(0) = 0 and

�(1) = 1 . We refer to � as the time warp function, and � = �(t) as the warped time
associated with real or original time t. When �(t) = t for all t, the warped time is the
same as the original time. In general we can think of

as the amount of cumulative warping at time t, and

as the instantaneous rate of time warping at time t. These are both zero when
�(t) = t for all t.

Time-warped signal. If x is a signal, we refer to the signal x̃ = x◦𝜙 , i.e.,

as the time-warped signal, or the time-warped version of the signal x.
Dynamic time warping. Suppose we are given two signals x and y. Roughly

speaking, the dynamic time warping problem is to find a warping function � so that
x̃ = x◦𝜙 ≈ y . In other words, we wish to warp time so that the time-warped version of
the first signal is close to the second one. We refer to the signal y as the target, since the
goal is warp x to match, or align with, the target.

Example. An example is shown in Fig. 1. The top plot shows a scalar signal x and
target signal y, and the bottom plot shows the time-warped signal x̃ = x◦𝜙 and y. The
middle plot shows the correspondence between x and y associated with the warping
function � . Figure 2 shows the time warping function; the next plot is the cumulative
warp, and the next is the instantaneous rate of time warping.

f (t) =

⎧
⎪⎨⎪⎩

s1 a ≤ t < t1
ti+1−t

ti+1−ti
si +

t−ti

ti+1−ti
si+1 ti ≤ t < ti+1, i = 1,… ,N − 1,

sN tN < t ≤ b,

� − t = �(t) − t

d�

dt
(� − t) = ��

(t) − 1

x̃(t) = x(𝜏) = x(𝜙(t)),

1415

1 3

A general optimization framework for dynamic time warping

3 Optimization formulation

We will formulate the dynamic time warping problem as an optimization problem,
where the time warp function � is the (infinite-dimensional) optimization variable to
be chosen. Our formulation is very similar to those used in machine learning, where
a fitting function is chosen to minimize an objective that includes a loss function that
measures the error in fitting the given data, and regularization terms that penalize
the complexity of the fitting function (Friedman et al 2001).

Loss functional. Let L ∶ �
d
→ � be a vector penalty function. We define the loss

associated with a time warp function � , on the two signals x and y, as

the average value of the penalty function of the difference between the time-warped
first signal and the second signal. The smaller L(�) is, the better we consider
x̃ = x◦𝜙 to approximate y.

Simple choices of the penalty include L(u) = ‖u‖2
2
 or L(u) = ‖u‖1 . The cor-

responding losses are the mean-square deviation and mean-absolute deviation,

(1)L(�) = ∫
1

0

L(x(�(t)) − y(t))dt,

Fig. 1 Top. A signal x and target signal y. Middle. Warping function � drawn as lines between x and y.
Bottom. The time-warped signal x̃ and y

1416 D. Deriso, S. Boyd

1 3

respectively. One useful variation is the Huber penalty (Huber 2011; Boyd and
Vandenberghe 2004),

where M > 0 is a parameter. The Huber penalty coincides with the least squares
penalty for small u, but grows more slowly for u large, and so is less sensitive to out-
liers. Many other choices are possible, for example

where � ∈ �
+
 is a positive parameter. The associated loss L(�) is the fraction of

time the time-warped signal is farther than � from the second signal (measured by
the norm ‖ ⋅ ‖).

The choice of penalty function L (and therefore loss functional L) will influ-
ence the warping found, and should be chosen to capture the notion of approxi-
mation appropriate for the given application.

L(u) =

�‖u‖2
2

‖u‖2 ≤ M

2M‖u‖2 −M2 ‖u‖2 > M,

L(u) =

�
0 ‖u‖ ≤ �

1 otherwise ,

Fig. 2 Top. A time warping function �(t) . Middle. The cumulative warp �(t) − t . Bottom. The instantane-
ous rate of time warping ��

(t) − 1

1417

1 3

A general optimization framework for dynamic time warping

Cumulative warp regularization functional. We express our desired qualities
for or requirements on the time warp function using a regularization functional
for the cumulative warp,

where Rcum
∶ � → � ∪ {∞} is a penalty function on the cumulative warp. The func-

tion Rcum can take on the value +∞ , which allows us to encode constraints on � .
While we do not require it, we typically have Rcum

(0) = 0 , i.e., there is no cumula-
tive regularization cost when the warped time and true time are the same.

Instantaneous warp regularization functional. The regularization functional for
the instantaneous warp is

where Rinst
∶ � → � ∪ {∞} is the penalty function on the instantaneous rate of time

warping. Like the function Rcum , Rinst can take on the value +∞ , which allows us to
encode constraints on �′ . By assigning Rinst

(u) = +∞ for u < smin , for example, we
require that ��

(t) ≥ smin for all t. We will assume that this is the case for some posi-
tive smin , which ensures that � is invertible. While we do not require it, we typically
have Rinst

(0) = 0 , i.e., there is no instantaneous regularization cost when the instan-
taneous rate of time warping is one.

As a simple example, we might choose

i.e., a quadratic penalty on cumulative warping, and a square penalty on instantane-
ous warping, plus the constraint that the slope of � must be between smin and smax . A
very wide variety of penalties can be used to express our wishes and requirements
on the warping function.

Dynamic time warping via regularized loss minimization. We propose to
choose � by solving the optimization problem

where �cum ∈ �
+
 and �inst ∈ �

+
 are positive hyper-parameters used to vary the rela-

tive weight of the three terms. The variable in this optimization problem is the time
warp function �.

Optimal control formulation. The problem (4) is an infinite-dimensional,
and generally non-convex, optimization problem. Such problems are generally
impractical to solve exactly, but we will see that this particular problem can be
efficiently and practically solved.

(2)R
cum

(�) = ∫
1

0

Rcum
(�(t) − t)dt,

(3)R
inst

(�) = ∫
1

0

Rinst
(��

(t) − 1)dt,

Rcum
(u) = u2, Rinst

(u) =

{
u2 smin ≤ u ≤ smax

∞ otherwise ,

(4)minimize f (�) = L(�) + �cumRcum
(�) + �instRinst

(�)

subject to �(0) = 0, �(1) = 1,

1418 D. Deriso, S. Boyd

1 3

It can be formulated as a classical continuous-time optimal control problem
(Bertsekas 2005), with scalar state �(t) and action or input u(t) = ��

(t):

where � is the state-action cost function

There are many classical methods for numerically solving the optimal control prob-
lem (5), but these generally make strong assumptions about the loss and regulariza-
tion functionals (such as smoothness), and do not solve the problem globally. We
will instead solve (5) by brute force dynamic programming, which is practical since
the state has dimension one, and so can be discretized.

Lasso and ridge regularization. Before describing how we solve the optimal
control problem (5), we mention two types of regularization that are widely used
in machine learning, and what types of warping functions typically result when
using them. They correspond to Rcum and Rinst being either u2 (quadratic, ridge,
or Tikhonov regularization (Tikhonov and Arsenin 1977; Hansen 2005)) or |u|
(absolute value, �1 regularization, or Lasso (Golub and Van Loan 2012, p564)
(Tibshirani 1996))

With Rcum
(u) = u2 , the regularization discourages large deviations between �

and t, but the not the rate at which � changes with t. With Rinst
(u) = u2 , the regu-

larization discourages large instantaneous warping rates. The larger �cum is, the
less � deviates from t; the larger �inst is, the more smooth the time warping func-
tion � is.

Using absolute value regularization is more interesting. It is well known in
machine learning that using absolute value or �1 regularization leads to solutions
with an argument of the absolute value that is sparse, that is, often zero (Boyd
and Vandenberghe 2004). When Rcum is the absolute value, we can expect many
times when � = t , that is, the warped time and true time are the same. When
Rinst is the absolute value, we can expect many times when ��

(t) = 1 , that is, the
instantaneous rate of time warping is zero. Typically these regions grow larger as
we increase the hyper-parameters �cum and �inst.

Discretized time formulation. To solve the problem (4) we discretize time with
the N values

We will assume that � is piecewise linear with knot points at t1,… , tN ; to describe it
we only need to specify the warp values �i = �(ti) for i = 1,… ,N , which we express
as a vector � ∈ �

N . We assume that the points ti are closely enough spaced that the
restriction to piecewise linear form is acceptable. The values ti could be taken as
the values at which the signal y is sampled (if it is given by samples), or just the
default linear spacing, ti = (i − 1)∕(N − 1) . The constraints �(0) = 0 and �(1) = 1
are expressed as �1 = 0 and �N = 1.

(5)minimize ∫ 1

0

(
�(�(t), u(t), t) + �instRinst

(u(t))
)
dt

subject to �(0) = 0, �(1) = 1, ��
(t) = u(t), 0 ≤ t ≤ 1,

�(u, v, t) = L(x(u) − y(t)) + �cumRcum
(u).

0 = t1 < t2 < ⋯ < tN = 1.

1419

1 3

A general optimization framework for dynamic time warping

Using a simple Riemann approximation of the integrals and the approximation

we obtain the discretized objective

The discretized problem is to choose the vector 𝜏⋆ ∈ �
N that minimizes f̂ (𝜏) , sub-

ject to �1 = 0 , �N = 1 . With 𝜏⋆ , we can construct an approximation to function �
using piecewise-linear interpolation. The only approximation here is the discretiza-
tion; we can use standard techniques based on bounds on derivatives of the func-
tions involved to bound the deviation between the continuous-time objective f (�)
and its discretized approximation f̂ (𝜏).

4 Dynamic programming with refinement

In this section we describe a simple method to minimize f̂ (𝜏) subject to �1 = 0 and
�N = 1 , i.e., to solve the optimal control problem (5) to obtain �∗ . We first discretize
the possible values of �i , whereupon the problem can be expressed as a shortest path
problem on a graph, and then efficiently and globally solved using standard dynamic
programming techniques. To reduce the error associated with the discretization of the
values of �i , we choose a new discretization with the same number of values, but in a
reduced range (and therefore, more finely spaced values) around the previously found
values. This refinement converges in a few steps to a highly accurate solution of the
discretized problem. Subject only to the reasonable assumption that the discretization
of the original time and warped time are sufficiently fine, this method finds the global
solution.

4.1 Dynamic programming

We now discretize the values that �i is allowed to take:

One choice for these discretized values is linear spacing between given lower and
upper bounds on �i , 0 ≤ li ≤ ui ≤ 1:

Here M is the number of values that we use to discretize each value of �i (which
we take to be the same for each i, for simplicity). We will assume that 0 ∈ T1 and
1 ∈ TN , so the constraints �1 = 0 and �N = 1 are feasible.

��
(ti) =

�(ti+1) − �(ti)

ti+1 − ti
=

�i+1 − �i

ti+1 − ti
, i = 1,… ,N − 1,

(6)

f̂ (𝜏) =

N−1∑
i=1

(ti+1 − ti)

(
L(x(𝜏i) − y(ti)) + 𝜆cumRcum

(𝜏i − ti) + 𝜆instRinst

(
𝜏i+1 − 𝜏i

ti+1 − ti
− 1

))
.

�i ∈ Ti = {�i1,… , �iM}, i = 1,… ,N.

�ij = li +
j − 1

M − 1
(ui − li), j = 1,… ,M, i = 1,… ,N.

1420 D. Deriso, S. Boyd

1 3

The bounds can be chosen as

where smin and smax are the given minimum and maximum allowed values of �′ .
This is illustrated in Fig. 3, where the nodes of T are drawn at position (ti, �ij) , for
N = 30,M = 20 and various values of smin and smax . Note that since N

M
 is the mini-

mum slope, M should be chosen to satisfy M >
N

smax
 , a consideration that is auto-

mated in the provided software.
The objective (6) splits into a sum of terms that are functions of �i , and terms

that are functions of �i+1 − �i . (These correspond to the separable state-action loss
function terms in the optimal control problem associated with �(t) and ��

(t) , respec-
tively.) The problem is then globally solved by standard methods of dynamic pro-
gramming (Bellman and Dreyfus 2015), using the methods we now describe.

We form a graph with MN nodes, associated with the values �ij , i = 1,… ,N and
j = 1,… ,M . (Note that i indexes the discretized values of t, and j indexes the dis-
cretized values of � .) Each node �ij with i < N has M outgoing edges that termi-
nate at the nodes of the form �i+1,k for k = 1,… ,M . The total number of edges is
therefore (N − 1)M2 . This is illustrated in Fig. 3 for M = 25 and N = 100 , where the
nodes are shown at the location (ti, �ij) . (In practice M and N would be considerably
larger.)

At each node �ij , we associate the node cost

and on the edge from �ij to �i+1,k , we associate the edge cost

With these node and edge costs, the objective f̂ (𝜏) is the total cost of a path start-
ing at node �11 = 0 and ending at �NM = 1 . (Infeasible paths, for examples ones
for which 𝜏i+1,k < 𝜏i,j , have cost +∞ .) Our problem is therefore to find the shortest
weighted path through a graph, which is readily done by dynamic programming.

The computational cost of dynamic programming is order NM2 flops (not count-
ing the evaluation of the loss and regularization terms). With current hardware, it

(7)
li = max{sminti, 1 − smax

(1 − ti)}, ui = min{smaxti, 1 − smin
(1 − ti)}, i = 1,… ,N,

(ti+1 − ti)(L(x(�ij) − y(ti)) + �cumRcum
(�ij − ti)),

(ti+1 − ti)

(
�instRinst

(
�i+1,k − �ij

ti+1 − ti

))
.

Fig. 3 Left. Unconstrained grid. Left center. Effect of introducing smin . Right center. Effect of smax . Right.
Typical parameters that work well for our method

1421

1 3

A general optimization framework for dynamic time warping

is entirely practical for M = N = 1000 or even (much) larger. The path found is the
globally optimal one, i.e., �∗ minimizes f̂ (𝜏) , subject to the discretization constraints
on the values of �i.

4.2 Iterative refinement

After solving the problem above by dynamic programming, we can reduce the error
induced by discretizing the values of �i by updating li and ui . We shrink them both
toward the current value of �∗

i
 , thereby reducing the gap between adjacent discre-

tized values and reducing the discretization error. One simple method for updating
the bounds is to reduce the range ui − li by a fixed fraction � , say 1/2 or 1/8.

To do this we set

in iteration q + 1 , where the superscripts in parentheses above indicate the iteration.
Using the same data as Figs. 2 and 4 shows the iterative refinement of �∗ . Here,
nodes of T are plotted at position (ti, �ij) , as it is iteratively refined around �∗

i
.

4.3 Implementation

GDTW package. The algorithm described above has been implemented as the open
source Python package GDTW, with the dynamic programming portion written in
C++ for improved efficiency. The node costs are computed and stored in an M × N
array, and the edge costs are computed on the fly and stored in an M ×M × N array.
For multiple iterations on group-level alignments (see §7), multi-threading is used to
distribute the program onto worker threads.

Performance. We give an example of the performance attained by GDTW using
real-world signals described in §5, which are uniformly sampled with N = 1000 .
Although it has no effect on method performance, we take square loss, square cumu-
lative warp regularization, and square instantaneous warp regularization. We take
M = 100.

The computations are carried on a 4 core MacBook. To compute the node costs
requires 0.0055 seconds, and to compute the shortest path requires 0.0832 seconds.
With refinement factor � = .15 , only three iterations are needed before no significant

l
(q+1)

i
= max{�

∗(q)

i
− �

u
(q)

i
− l

(q)

i

2
, l
(0)

i
}, u

(q+1)

i
= min{�

∗(q)

i
+ �

u
(q)

i
− l

(q)

i

2
, u

(0)

i
}

Fig. 4 Left to right. Iterative refinement of �∗ for iterations q = 0, 1, 2, 3 , with �∗ colored orange

1422 D. Deriso, S. Boyd

1 3

improvement is obtained, and the result is essentially the same with other choices
for the algorithm parameters N, M, and � . Over 10 trials, our method only took an
average of 0.25 seconds, to compute using a radius of 50, which is equivalent to
M = 100 . All of the data and example code necessary to reproduce these results
are available in the GDTW repository. Also available are supplementary materials
that contain step-by-step instructions and demonstrations on how to reproduce these
results.

4.4 Validation

To test the generalization ability of a specific time warping model, parameterized by
L, λcum, Rcum, λinst, and Rinst, we use out-of-sample validation. We form two increas-
ing sequences, ttrain ∈ RN train and ttest ∈ RN test , by randomly sampling without replace-
ment from the N discretized time values, and we include the boundaries tt = 0 and tN
= 1 in each sequence. Using only the time points in ttrain, we obtain our time warp-
ing function ϕ by minimizing our discretized objective (6). (Recall that since our
method does not require signals to be sampled at regular intervals, it will work with
the irregularly spaced time points in ttrain.)

We compute two loss values: a training error

 and a test error

 Figure 5 shows �test over a grid of values of λcum and λinst, for a partitioning where
ttrain and ttest each contain 50% of the time points. In this example, we use the signals
shown figure 1.

4.4.1 Ground truth estimation

When a ground truth warping function, �true , is available, we can score how well our
ϕ approximates �true by computing the following errors:

and

�
train

=

N train
−1∑

i=1

(ttrain
i+1

− ttrain
i

)(L(x(�(ttrain
i

)) − y(ttrain
i

))),

�
test

=

N test
−1∑

i=1

(ttest
i+1

− ttest
i

)(L(x(�(ttest
i

)) − y(ttest
i

))).

�train =

N train
−1∑

i=1

(
ttrain
i+1

− ttrain
i

)(
L(�true

(ttrain
i

) − �(ttrain
i

))

)
,

�test =

N test
−1∑

i=1

(
ttest
i+1

− ttest
i

)(
L(�true

(ttest
i

) − �(ttest
i

))

)
.

1423

1 3

A general optimization framework for dynamic time warping

In the example shown in Fig. 5, target signal y is constructed by composing x with a
known warping function �true , such that y(t) = (x◦�true)(t). Figure 6 shows the con-
tours of ϵtest for this example.

10−6 10−4 10−2 100

λcum

10−6

10−5

10−4

10−3

10−2

10−1

100

101

λ
in

s
t

�test

10−5

10−4

10−3

10−2

10−1

100

Fig. 5 Test Loss

10−6 10−4 10−2 100

λcum

10−6

10−5

10−4

10−3

10−2

10−1

100

101

λ
in

s
t

εtest

10−5

10−4

10−3

10−2

10−1

100

Fig. 6 Test error

1424 D. Deriso, S. Boyd

1 3

Fig. 7 Left. Signal x and target signal y. Middle. Warping function � and the ground truth warping �true .
Right. The time-warped x and y

Fig. 8 Top four. ECGs warped using our method while increasing �inst . Bottom. Results using FastDTW,
with a few of the singularities circled in red

Fig. 9 Left. �(t) Right. �(t) − t for ECGs. (Smoother lines correspond to larger �inst.)

1425

1 3

A general optimization framework for dynamic time warping

5 Examples

We present a few examples of alignments using our method. Figure 7 is a syn-
thetic example of different types of time warping functions. Figure 8 is real-world
example using biological signals (ECGs). We compare our method using vary-
ing amounts of regularization �inst ∈ {0.01, 0.1, 0.5},N = 1000,M = 100 to those
using with FastDTW (Salvador and Chan 2007), using the equivalent graph size
N = 1000, radius = 50 . As expected, the alignments using regularization are
smoother and less prone to singularities than those from FastDTW, which are unreg-
ularized. Figure 9 shows how the time warp functions become smoother as �inst
grows.

6 Extensions and variations

We will show how to extend our formulation to address complex scenarios, such as
aligning a portion of a signal to the target, regularization of higher-order derivatives,
and symmetric time warping, where both signals align to each other.

6.1 Alternate boundary and slope constraints

We can align a portion of a signal with the target by adjusting the boundary
constraints to allow 0 ≥ �(0) ≥ � and (1 − �) ≤ �(1) ≤ 1 , We incorporate this by
reformulating (7) as

for i = 1,… ,N.
We can also allow the slope of � to be negative, by choosing smin < 0 . These

modifications are illustrated in Fig. 10, where the nodes of T are drawn at posi-
tion (ti, �ij) , for N = 30,M = 20 and various values of � , smin , and smax.

li = max{sminti, (1 − smax
(1 − ti)) − �}, ui = min{smaxti + �, 1 − smin

(1 − ti)},

Fig. 10 Left. Effect of introducing � to unconstrained grid. Left center. Effect of introducing � using typi-
cal parameters. Right center. Effect of introducing � using larger smin . Right. Effect of negative smin

1426 D. Deriso, S. Boyd

1 3

6.2 Penalizing higher‑order derivatives

We can extend the formulation to include a constraint or objective term on the higher-
order derivatives, such as the second derivative �′′ . This requires us to extend the dis-
cretized state space to include not just the current M values, but also the last M values,
so the state space size grows to M2 in the dynamic programming problem.

In the continuous formulation, the regularization functional for the second-order
instantaneous warp is

where Rinst
2

∶ � → � ∪ {∞} is the penalty function on the second-order instantane-
ous rate of time warping. Like the function Rinst , Rinst

2 can take on the value +∞ ,
which allows us to enforce constraints on �′′.

With this additional regularization functional, we can reformulate the problem in (4)
as

where �inst2 ∈ �
+
 is a positive hyper-parameter.

To solve the problem (8), we can include a discretized version of Rinst
2

 inside the dis-
cretized objective (6). We propose a discretized formulation of Rinst

2

 using a three-point
central difference approximation of the second derivative. Note that this approximation
depends on the spacing of the time points. For regularly spaced time points, we can use

and for irregularly spaced time points, we can use

for i = 1,… ,N − 1 , and where �1 = ti − ti−1 and �2 = ti+1 − ti.

6.3 General loss

The two signals need not be vector valued; they could have categorical values, for
example

R
inst

2

(�) = ∫
1

0

Rinst
2

(���
(t))dt,

(8)minimize f (�) = L(�) + �cumRcum
(�) + �instRinst

(�) + �inst
2

R
inst

2

(�)

subject to �(0) = 0, �(1) = 1,

���
(ti) =

�(ti+1) − 2�(ti) + �(ti−1)

(ti+1 − ti)
2

=

�i+1 − 2�i + �i−1

(ti+1 − ti)
2

, i = 1,… ,N − 1,

���
(ti) =

2(�1�(ti+1) − (�1 + �2)�(ti) + �2�(ti−1))

�1�2(�1 + �2)

=

2(�1�i+1 − (�1 + �2)�i + �2�i−1)

�1�2(�1 + �2)
,

L(�i, ti) =

{
1 �i ≠ ti
0 otherwise ,

1427

1 3

A general optimization framework for dynamic time warping

or

where g ∶ �
++

× �
++

→ � is a categorical distance function that can specify the
cost of certain mismatches or a similarity matrix (Needleman and Wunsch 1970).

Another example could use the Earth mover’s distance, EMD ∶ �
n
× �

n
→ � ,

between two short-time spectra

where � ∈ � is a radius around time point ti.

6.4 Symmetric time warping

Until this point, we have used unidirectional time warping, where signal x is time-
warped to align with y such that x◦� ≈ y . We can also perform bidirectional time
warping, where signals x and y are time-warped each other. Bidirectional time warp-
ing results in two time warp functions, � and � , where x◦� ≈ y◦�.

Bidirectional time warping requires a different loss functional. Here we define the
bidirectional loss associated with time warp functions � and � , on the two signals x
and y, as

where we distinguish the bidirectional case by using two arguments, L(�,�) ,
instead of one, L(�) , as in (1).

Bidirectional time warping can be symmetric or asymmetric. In the symmetric
case, we choose �,� by solving the optimization problem

where the constraint �(t) = 2t − �(t) ensures that � and � are symmetric about the
identity. The symmetric case does not add additional computational complexity, and
can be readily solved using the iterative refinement procedure described in §4.

In the asymmetric case, �,� are chosen by solving the optimization problem

The asymmetric case requires Rcum , Rinst to allow negative slopes for � . Further,
it requires a modified iterative refinement procedure (not described here) with an
increased complexity of order NM4 flops, which is impractical when M is not small.

L(�i, ti) =

{
g(�i, ti) �i ≠ ti
0 otherwise ,

L(�, ti) = EMD ({�(ti − �),… ,�(ti),… ,�(ti + �)}, {ti − �,… , ti,… , ti + �}),

L(�,�) = ∫
1

0

L(x(�(t)) − y(�(t)))dt,

minimize L(�,�) + �cumRcum
(�) + �instRinst

(�)

subject to �(0) = 0, �(1) = 1, �(t) = 2t − �(t),

minimize L(�,�) + �cumRcum
(�) + �cumRcum

(�) + �instRinst
(�) + �instRinst

(�)

subject to �(0) = 0, �(1) = 1, �(0) = 0, �(1) = 1.

1428 D. Deriso, S. Boyd

1 3

7 Time‑warped distance, centering, and clustering

In this section we describe three simple extensions of our optimization formulation that
yield useful methods for analyzing a set of signals x1,… , xM.

7.1 Time‑warped distance

For signals x and y, we can interpret the optimal value of (4) as the time-warped dis-
tance between x and y, denoted D(x, y). (Note that this distance measures takes into
account both the loss and the regularization, which measures how much warp-
ing was needed.) When �cum and �inst are zero, we recover the unconstrained DTW
distance (Sakoe and Chiba 1978). This distance is not symmetric; we can (and usu-
ally do) have D(x, y) ≠ D(y, x) . If a symmetric distance is preferred, we can take
(D(x, y) + D(y, x))∕2 , or the optimal value of the group alignment problem (9), with a
set of original signals x, y.

The warp distance can be used in many places where a conventional distance
between two signals is used. For example we can use warp distance to carry out k near-
est neighbors regression (Xi et al 2006) or classification. Warp distance can also be
used to create features for further machine learning. For example, suppose that we have
carried out clustering into K groups, as discussed above, with target or group centers or
exemplar signals y1,… , yK . From these we can create a set of K features related to the
warp distance of a new signal x to the centers y1,… , yK , as

where di = D(x, yi) , and � ∈ �
+
 is a positive (scale) hyper-parameter.

7.2 Time‑warped alignment and centering

In time-warped alignment, the goal is to find a common target signal � that each of the
original signals can be warped to, at low cost. We pose this in the natural way as the
optimization problem

where the variables are the warp functions �1,… ,�M and the target � , and
�cum ∈ �

+
 and �inst ∈ �

+
 are positive hyper-parameters. The objective is the sum

of the objectives for time warping each xi to � . This is very much like our basic for-
mulation (4), except that we have multiple signals to warp, and the target � is also a
variable that we can choose.

The problem (9) is hard to solve exactly, but a simple iterative procedure seems to
work well. We observe that if we fix the target � , the problem splits into M separate
dynamic time warping problems that we can solve (separately, in parallel) using the

zi =
edi∕�∑K

j=1
edj∕�

, i = 1,… ,K,

(9)

minimize
∑M

i=1

�∫ 1

0
L(xi(�i(t)) − �(t)) dt + �cumRcum

(�i) + �instRinst
(�i)

�

subject to �i(0) = 0, �i(1) = 1,

1429

1 3

A general optimization framework for dynamic time warping

method described in §4. Conversely, if we fix the warping functions �1,… ,�M , we
can optimize over � by minimizing

This amounts to choosing each �(t) to minimize

This is typically easy to do; for example, with square loss, we choose �(t) to be
the mean of xi(�i(t)) ; with absolute value loss, we choose �(t) to be the median of
xi(�i(t)).

This method of alternating between updating the target � and updating the warp
functions (in parallel) typically converges quickly. However, it need not converge
to the global minimum. One simple initialization is to start with no warping, i.e.,
�i(t) = t . Another is to choose one of the original signals as the initial value for �.

As a variation, we can also require the warping functions to be evenly arranged
about a common time warp center, for example �(t) = t . We can do this by imposing
a centering constraint on (9),

where 1
M

∑M

i=1
�i(t) = t forces �1,… ,�M to be evenly distributed around the identity

�(t) = t . The resulting centered time warp functions, can be used to produce a cen-
tered time-warped mean. Figure 11 compares a time-warped mean with and without
centering, using synthetic data consisting of multi-modal signals from (Srivastava
et al 2011).

Figure 12 shows examples of centered time-warped means of real-world
data (using our default parameters), consisting of ECGs and sensor data from an

M∑
i=1

∫
1

0

L(xi(�i(t)) − �(t)) dt.

M∑
i=1

L(xi(�i(t)) − �(t)).

(10)

minimize
∑M

i=1

�∫ 1

0
L(xi(�i(t)) − �(t)) dt + �cumRcum

(�i) + �instRinst
(�i)

�

subject to �i(0) = 0, �i(1) = 1,
1

M

∑M

i=1
�i(t) = t,

Fig. 11 Top. Time-warped mean. Bottom. Centered time-warped mean. Left. Original signals. Left
center. Warped signals after iteration 1. Right center. Warped signals after iteration 2. Right. Time warp
functions after iteration 2

1430 D. Deriso, S. Boyd

1 3

automotive engine (Abou-Nasr and Feldkamp 2008). The ECG example demon-
strates that subtle features of the input sequences are preserved in the alignment
process, and the engine example demonstrates that the alignment process can find
structure in noisy data.

7.3 Time‑warped clustering

A further generalization of our optimization formulation allows us to cluster set
of signals x1,… , xM into K groups, with each group having a template or center or
exemplar. This can be considered a time-warped version of K-means clustering;
see, e.g., (Boyd and Vandenberghe 2018, Chapter 4). To describe the clusters we
use the M-vector c, with ci = j meaning that signal xi is assigned to group j, where
j ∈ {1,… ,M} . The exemplars or templates are the signals denoted y1,… , yK.

where the variables are the warp functions �1,… ,�M , the templates y1,… , yK ,
and the assignment vector c. As above, �cum ∈ �

+
 and �inst ∈ �

+
 are positive

hyper-parameters.
We solve this (approximately) by cyclically optimizing over the warp func-

tions, the templates, and the assignments. Figure 13 shows an example of this

(11)

minimize
∑M

i=1

�∫ 1

0
L(xi(�i(t)) − yci (t)) dt + �cumRcum

(�i) + �instRinst
(�i)

�

subject to �i(0) = 0, �i(1) = 1,

Fig. 12 Top. ECG signals. Bottom. Engine sensor signals. Left. Original signals. Left center. Warped sig-
nals after iteration 1. Right center. Warped signals after iteration 2. Right. Time warp functions after
iteration 2

Fig. 13 K-means alignment on synthetic data

1431

1 3

A general optimization framework for dynamic time warping

procedure (using our default parameters) on a set of sinusoidal, square, and trian-
gular signals of varying phase and amplitude.

8 Conclusion

We claim three main contributions. We propose a full reformulation of DTW in con-
tinuous time that eliminates singularities without the need for preprocessing or step
functions. Because our formulation allows for non-uniformly sampled signals, we
are the first to demonstrate how out-of-sample validation can be used on a single
signal for selecting DTW hyper-parameters. Finally, we distribute our C++ code as
an open-source Python package called GDTW.

Compliance with ethical standards

Disclosure statement The authors declare that they have no conflicts of interest.

References

Abou-Nasr M, Feldkamp L (2008) Ford Classification Challenge. Zip Archive http:// www. times eries class
ifica tionc om/ descr iptio nphp? Datas et= FordA

Bellman RE & Dreyfus SE (2015) Applied dynamic programming (Vol. 2050). Princeton university press
Bertsekas DP (2005) Vol. 1 of Dynamic programming and optimal control. Athena scientific Belmont,

MA
Boyd S, Boyd SP, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
Boyd S, Vandenberghe L (2018) Introduction to applied linear algebra: vectors, matrices, and least

squares. Cambridge University Press, Cambridge
Dau H, Silva D, Petitjean F et al (2018) Optimizing dynamic time warping’s window width for time

series data mining applications. Data min knowl Discov 32(4):1074–1120
Dupont M, Marteau P (2015) Coarse-DTW for sparse time series alignment. In: International Workshop

on Advanced Analytics and Learning on Temporal Data, Springer, pp 157–172
Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer series in statis-

tics, New York, NY, USA
Golub GH & Loan CF Van (2012) Matrix computations, vol. 3 JHU press
Green PJ & Silverman BW (1993) Nonparametric regression and generalized linear models: a roughness

penalty approach. Crc Press
Hansen PC (1998). Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion.

Society for Industrial and Applied Mathematics
Huber P (2011) Robust statistics. In: International encyclopedia of statistical science. Springer, p

1248–1251
Itakura F (1975) Minimum prediction residual principle applied to speech recognition. IEEE Trans

Acoust Speech Signal Process 23(1):67–72
Keogh E, Pazzani M (2001) Derivative dynamic time warping. In: Proceedings of the 2001 SIAM inter-

national conference on data mining, SIAM, pp 1–1
Marron J, Ramsay J, Sangalli L et al (2015) Functional data analysis of amplitude and phase variation.

Stat Sci 30(4):468–484
Myers C, Rabiner L, Rosenberg A (1980) Performance tradeoffs in dynamic time warping algorithms for

isolated word recognition. IEEE Trans Acoust Speech Signal Process 28(6):623–635
Needleman S, Wunsch C (1970) A general method applicable to the search for similarities in the amino

acid sequence of two proteins. J Mol Biol 48(3):443–453

http://www.timeseriesclassificationcom/descriptionphp?Dataset=FordA
http://www.timeseriesclassificationcom/descriptionphp?Dataset=FordA

1432 D. Deriso, S. Boyd

1 3

Rabiner L & Juang BH (1993) Fundamentals of speech recognition. Prentice-Hall, Inc.
Rakthanmanon T, Campana B, Mueen A, et al (2012) Searching and mining trillions of time series subse-

quences under dynamic time warping. In: Proceedings of the international conference on knowledge
discovery and data mining, ACM, pp 262–270

Ramsay JO, Silverman BW (2005) Fitting differential equations to functional data: Principal differential
analysis. Springer, New York, pp 327–348

Ramsay J, Silverman B (2007) Applied functional data analysis: Methods and case studies. Springer
Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition.

IEEE Trans Acoust Speech Signal Process 26(1):43–49
Salvador S, Chan P (2007) Toward accurate dynamic time warping in linear time and space. Intell Data

Anal 11(5):561–580
Singh M, Cheng I, Mandal M, et al (2008) Optimization of symmetric transfer error for sub-frame video

synchronization. In: European conference on computer vision, Springer, pp 554–567
Ramsay JO & Silverman BW(2005). Fitting differential equations to functional data: Principal differential

analysis (pp. 327-348). Springer New York
Srivastava A, Wu W, Kurtek S, et al (2011) Registration of functional data using Fisher-Rao metric.

arXiv preprint arXiv: 1103. 3817
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc 58(1):267–288
Tikhonov A, Arsenin V (1977) Solutions of Ill-Posed Problems, vol 14. Winston
Xi X, Keogh E, Shelton C, et al (2006) Fast time series classification using numerosity reduction. In: Pro-

ceedings of the 23rd international conference on machine learning, ACM, pp 1033–1040
Zhao J, Itti L (2016) ShapeDTW: Shape dynamic time warping. arXiv preprint arXiv: 1606. 01601

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1103.3817
http://arxiv.org/abs/1606.01601

	A general optimization framework for dynamic time warping
	Abstract
	1 Background
	2 Dynamic time warping
	3 Optimization formulation
	4 Dynamic programming with refinement
	4.1 Dynamic programming
	4.2 Iterative refinement
	4.3 Implementation
	4.4 Validation
	4.4.1 Ground truth estimation

	5 Examples
	6 Extensions and variations
	6.1 Alternate boundary and slope constraints
	6.2 Penalizing higher-order derivatives
	6.3 General loss
	6.4 Symmetric time warping

	7 Time-warped distance, centering, and clustering
	7.1 Time-warped distance
	7.2 Time-warped alignment and centering
	7.3 Time-warped clustering

	8 Conclusion
	References

