
Vol.:(0123456789)

Optimization and Engineering (2023) 24:65–91
https://doi.org/10.1007/s11081-022-09716-5

1 3

RESEARCH ARTICLE

A refined inertial DC algorithm for DC programming

Yu You1 · Yi‑Shuai Niu2,3 

Received: 29 April 2021 / Revised: 17 February 2022 / Accepted: 24 February 2022 /  
Published online: 5 April 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2022

Abstract
In this paper we consider the difference-of-convex (DC) programming problems, 
whose objective function is the difference of two convex functions. The classical 
DC Algorithm (DCA) is well-known for solving this kind of problems, which gener-
ally returns a critical point. Recently, an inertial DC algorithm (InDCA) equipped 
with heavy-ball inertial-force procedure was proposed in de Oliveira et al. (Set-Val-
ued Variat Anal 27(4):895–919, 2019), which potentially helps to improve both the 
convergence speed and the solution quality. Based on InDCA, we propose a refined 
inertial DC algorithm (RInDCA) equipped with enlarged inertial step-size com-
pared with InDCA. Empirically, larger step-size accelerates the convergence. We 
demonstrate the subsequential convergence of our refined version to a critical point. 
the Kurdyka-Łojasiewicz (KL) property of the objective function, we establish the 
sequential convergence of RInDCA. Numerical simulations on checking copositivity 
of matrices and image denoising problem show the benefit of larger step-size.
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1 Introduction

Difference-of-convex (DC) programming, referring to the problems of minimiz-
ing a function which is the difference of two convex functions, forms an important 
class of nonconvex programming and has been studied extensively for decades, see 
e.g., (Hartman 1959; Hiriart-Urruty 1985; Pham and Souad 1986; Pham and Le Thi  
1997; Pham and Le Thi 1998; Horst and Thoai 1999; Le Thi and Pham 2005; Alek-
sandrov 2012; Le Thi et al. 2012; Pham and Le Thi 2014; Souza et al. 2016; Joki 
et al. 2017; Pang et al. 2017; Le Thi and Pham 2018; de Oliveira 2020).

In the paper, we consider the standard DC program in form of

where f1 and f2 are proper closed and convex functions. Such a function f 
is called a DC function, while f1 − f2 is a DC decomposition of f with f1 and f2 
being DC components. Formulation (P) also includes convex constrained prob-
lems min{f̃1(�) − f2(�) ∶ � ∈ X} , where f̃1 ∶ ℝ

n
→ ℝ is convex and X ⊆ ℝ

n 
is nonempty, closed and convex. By introducing the indicator function of X, 
i.e., �X(�) = 0 if � ∈ X and �X(�) = ∞ otherwise, this model recovers (P) as 
min{(̃f1 + �X)(�) − f2(�) ∶ � ∈ ℝ

n} . Throughout the manuscript, we make the next 
assumptions for problem (P).

Assumption 1 

(a) dom(f1) ⊆ Y ⊆ int(dom(f2)) , where Y ⊆ ℝ
n is closed.

(b) The function f is bounded below, i.e., there exists a scalar f ∗ such that f (�) ≥ f ∗ 
for all � ∈ ℝ

n.

The term (a) of Assumption 1 guarantees the nonemptiness of the subdifferential 
of f2 at any point of dom(f1) . It will be also used in Theorem 4.1.

The DC Algorithm (DCA) (Pham and Le Thi  1997; Pham and Le Thi 1998; Le 
Thi and Pham 2005, 2018) is renowned for solving (P), which has been introduced 
by Pham Dinh Tao in 1985 and extensively developed by Le Thi Hoai An and Pham 
Dinh Tao since 1994. Specifically, at iteration k, DCA obtains the next iterate �k+1 
by solving the convex subproblem

where �k ∈ �f2(�
k) . It has been proved in Pham and Le Thi  (1997) that any limit 

point �̄ of the generated sequence {�k} is a (DC) critical point of problem (P), i.e., 
the necessary local optimality condition 𝜕f1(�̄) ∩ 𝜕f2(�̄) ≠ � is verified.

Recently, several accelerated algorithms for DC programming have been studied. 
Actacho et  al. proposed in Artacho et  al. (2018); Artacho and Vuong (2020) the 
boosted DC algorithms for unconstrained smooth/nonsmooth DC program, where 
the direction �k+1 − �k , determined by the consecutive iterates of DCA, is veri-
fied as a descent direction of f at �k+1 when f2 is strongly convex, thus a line-search 

min
{
f (�) ∶= f1(�) − f2(�) ∶ � ∈ ℝ

n
}
, (P)

�k+1 ∈ argmin
�
f1(�) − ⟨�k, �⟩ ∶ � ∈ ℝ

n
�
,



67

1 3

A refined inertial DC algorithm for DC programming  

procedure can be conducted along it to obtain a better candidate with lower objec-
tive value. Next, Niu et al. Niu andWang (2019) developed a boosted DCA by incor-
porating the line-search procedure for DC program (both smooth and nonsmooth) 
with convex constraints. Later, Actacho et  al. Artacho et  al. (2019) investigated 
the line-search idea in DC program with linear constraint, where a sufficient and 
necessary condition for determining the feasibility of the direction �k+1 − �k is pro-
posed. Different from the boosted approaches above, another type of acceleration 
is the momentum methods. There are two renowned momentum methods: the Pol-
yak’s heavy-ball method (Polyak 1987; Zavriev and Kostyuk 1993) and the Nest-
erov’s acceleration technique (Nesterov 1983, 2013). Indeed, Nesterov’s accelera-
tion belongs to the heavy-ball family. These two momentum methods have been 
successfully applied for various nonconvex optimizations problems (see, e.g., Adly 
et al. 2021; Ochs et al. 2014; Pock and Sabach 2016; Mukkamala et al. 2020). In 
de Oliveira and Tcheou (2019), de Oliveira et  al. proposed an inertial DC algo-
rithm (InDCA) for problem (P) in the premise that f2 is strongly convex, where the 
heavy-ball inertial-force procedure is introduced. Phan et al. developed in Phan et al. 
(2018) an accelerated variant of DCA for (P) by incorporating the Nesterov’s accel-
eration technique. At the same time, Wen et al. (2018) used the same technique for 
a special class of DC program, where f1 is the sum of a smooth convex function and 
a (possibly non-smooth) convex function. Adly et  al. Adly et  al. (2021) proposed 
a gradient-based method, using both heavy-ball and Nesterov’s inertial-forces, for 
optimizing a smooth function. They apply the algorithm for (P) by minimizing the 
DC Moreau envelope �f1 − �f2

1, which can return a critical point of f1 − f2 . How-
ever, their methods require computing the proximal operators of f1 and f2 . The above 
inertial-type methods often help to improve the performances (compared with their 
counterparts without inertial-forces) in both the convergence speed and the solution 
quality. Concerning the optimality condition of the DC program (P), the aforemen-
tioned methods only guarantee the critical point, which is weaker than the d-station-
ary point (see, e.g., Pang et al. 2017; de Oliveira 2020). Next, we introduce some 
works about obtaining the d-stationary solution of (P). By exploring the structure 
of f2 , i.e., f2 is the supremum of finitely many convex smooth functions, Pang et al. 
(2017) proposed a novel enhanced DC algorithm (EDCA) to obtain a d-stationary 
solution. Later, Lu et al. (2019) developed an inexact variant of EDCA in order to 
make EDCA cheaper at each iteration. Furthermore, considering additionally the 
same structure of f1 as that in Wen et al. (2018), a proximal version of EDCA was 
developed, whose cost in each iteration is lower than the inexact version, besides, 
this algorithm incorporated the Nesterov’s extrapolation for possible acceleration.

In this paper, based on the inertial DC algorithm (InDCA) (de Oliveira and Tch-
eou 2019), we propose a refined version (RInDCA) equipped with larger inertial 
step-size. Indeed, both InDCA and RInDCA can handle exactness and inexactness 
in the solution of the convex subproblems. The basic idea of the exact versions of 
InDCA and RInDCA (denoted by InDCAe and RInDCAe ) are described as follows. 

1 Let 𝜇 > 0 and i = 0, 1 , �fi is the Moreau envelope of fi with parameter � , defined as 
�fi(�) ∶= min{fi(�) +

1

2�
‖� − �‖2 ∶ � ∈ ℝ

n}.
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RInDCAe obtains at the k-th iteration the next iterate �k+1 by solving the convex 
subproblem

where �k ∈ �f2(�
k) . Our analysis shows that the inertial step-size � ∈ [0, (�1 + �2)∕2) 

is adequate for the convergence of RInDCAe compared with [0, �2∕2) in InDCAe , 
where �1 and �2 are the strong convex parameters of f1 and f2 . Thus, the inertial 
range of RInDCAe is larger than that of InDCAe when 𝜎1, 𝜎2 > 0 . Empirically, 
larger step-size accelerates the convergence. In some applications, we will encounter 
the case where f1 is strongly convex and f2 is not, then RInDCAe is applicable but 
not InDCAe . Later, the details about the exact and inexact versions can be found in 
Sect. 3. The benefit of larger inertial step-size is discussed in Sect. 6.

Our contributions are: (1) propose a refined inertial DC algorithm, which is 
equipped with larger inertial step-size compared with InDCA (de Oliveira and Tch-
eou 2019). Besides, the relation between the inertial-type DCA and the classical 
DCA is pointed out. (2) establish the subsequential convergence of our refined ver-
sion and the sequential convergence by further assuming the Kurdyka-Łojasiewicz 
(KL) property of the objective function.

The rest of the paper is organized as follows: Sect. 2 reviews some notations and 
preliminaries in convex and variational analysis. In Sect. 3, we first introduce our 
refined inertial DC algorithm (RInDCA), followed by some DC programming appli-
cations. Next, the relation between the inertial-type DCA and the successive DCA 
is discussed. Section  4 focuses on establishing the subsequential convergence of 
RInDCA. By assuming additionally the KL property of the objective function, we 
prove in Sect. 5 the sequential convergence of RInDCA. Section 6 summarizes the 
numerical results on checking copositivity of matrices and image denoising prob-
lem, in which the benefit of enlarged inertial step-size is demonstrated. Some con-
cluding remarks are given in the final section.

2  Notations and preliminaries

Let ℝn denote the finite dimensional vector space endowed with the canonical inner 
product ⟨⋅, ⋅⟩ , and the Euclidean norm ‖ ⋅ ‖ , i.e., ‖ ⋅ ‖ =

√⟨⋅, ⋅⟩ . The entry of a vector 
x is denoted as �i , and the entry of a matrix � is denoted as �i,j.

For an extended real-valued function h ∶ ℝ
n
→ (−∞,∞] , the set

denotes its effective domain. If dom(h) ≠ � , and h does not attain the value −∞ , 
then h is called a proper function. The set

denotes the epigraph of h, and h is closed (resp. convex) if epi(h) is closed (resp. 
convex). The conjugate function of h is defined as

�k+1 ∈ argmin {f1(�) − ⟨�k + �(�k − �k−1), �⟩ ∶ � ∈ ℝ
n},

dom(h) ∶= {� ∈ ℝ
n ∶ h(�) < ∞}

epi(h) ∶= {(�, t) ∶ h(�) ≤ t, � ∈ ℝ
n, t ∈ ℝ}
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Given a proper closed function h ∶ ℝ
n
→ (−∞,∞] , the Fréchet subdifferential of h 

at � ∈ dom(h) is given by

while for � ∉ domh , �Fh(�) ∶= � . The (limiting) subdifferential of f at � ∈ dom(h) 
is defined as

and �h(�) ∶= � if � ∉ dom(h) . Note that if h is also convex, then the Fréchet subdif-
ferential and the limiting subdifferential will coincide with the convex subdifferen-
tial, that is,

Given a nonempty set C ⊆ ℝ
n , the distance from a point � ∈ ℝ

n to C is denoted 
as dist(�, C) ∶= inf{‖� − �‖ ∶ � ∈ C} . We now recall the Kurdyka-Łojasiewicz 
(KL) property (Bolte et  al. 2007; Attouch and Bolte 2009; Attouch et  al. 2013). 
For � ∈ (0,∞] , we denote by Ξ� the set of all concave continuous functions 
� ∶ [0, �) → [0,∞) that are continuously differentiable over (0, �) with positive 
derivatives and satisfy �(0) = 0.

Definition 2.1 (KL property) A proper closed function h is said to satisfy the KL 
property at �̄ ∈ dom(𝜕h) ∶= {� ∈ ℝ

n ∶ 𝜕h(�) ≠ �} if there exist � ∈ (0,∞] , a neigh-
borhood U of �̄ , and a function � ∈ Ξ� such that for all � in the intersection

it holds that

If h satisfies the KL property at any point of dom(�h) , then h is called a KL function.

The following uniformized KL property plays an important role in our sequential 
convergence analysis.

Lemma 2.1 (Uniformized KL property, see Bolte et  al. (2014)) Let Ω ⊆ ℝ
n be a 

compact set and let h ∶ ℝ
n
→ (−∞,∞] be a proper closed function. If h is constant 

on Ω and satisfies the KL property at each point of Ω , then there exist 𝜀, 𝜂 > 0 and 
� ∈ Ξ� such that

for any �̄ ∈ Ω and any � satisfying dist(�,Ω) < 𝜀 and h(�̄) < h(�) < h(�̄) + 𝜂.

h∗(�) = sup{⟨�, �⟩ − h(�) ∶ � ∈ ℝ
n}, � ∈ ℝ

n.

�Fh(�) ∶=

�
� ∈ ℝ

n ∶ lim inf
�→�

h(�) − h(�) − ⟨�, � − �⟩
‖� − �‖ ≥ 0

�
,

�h(�) ∶= {� ∈ ℝ
n ∶∃(�k → �, h(�k) → h(�), �k ∈ �Fh(�k)) such that �k → �},

�Fh(�) = �h(�) = {� ∈ ℝ
n ∶ h(�) ≥ h(�) + ⟨�, � − �⟩ for all � ∈ ℝ

n}.

U ∩ {� ∈ ℝ
n ∶ h(�̄) < h(�) < h(�̄) + 𝜂},

𝜑�(h(�) − h(�̄))dist(�, 𝜕h(�)) ≥ 1.

𝜑�(h(�) − h(�̄))dist(�, 𝜕h(�)) ≥ 1
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Now, let h ∶ ℝ
n
→ (−∞,∞] be a proper closed and convex function, and let 𝜀 > 0 , 

the set

denotes the �-subdifferential of h at � , and any point in ��h(�) is called a �-subgradi-
ent of h at � . Clearly, ��h(�) ≠ � implies that � ∈ dom(h) . A proper closed function 
h is called �-strongly convex (cf. �-convex) with � ≥ 0 if for any �, � ∈ dom(h) and 
� ∈ [0, 1] , it holds that

Moreover, let h be a �-convex function. Then it was known (Beck 2017) that for any 
� ∈ dom(�h) , � ∈ �h(�) and � ∈ dom(h) , we have

Finally, we give a result related to strong convexity and �-subdifferential, which will 
be used in analyzing our refined inexact DC algorithm.

Lemma 2.2 ( Pham et  al. (2021)) Let h ∶ ℝ
n
→ (−∞,∞] be a �-convex function, 

and let � ≥ 0 , t ∈ (0, 1] . Then for any � ∈ dom(h) , � ∈ dom(h) , and � ∈ ��h(�),

3  A refined inertial DC algorithm

In this section, we first describe a general inertial-type DC algorithm for problem (P), 
which is taken from de Oliveira and Tcheou (2019) except that the values of � and � are 
not specified. By setting different � and � we derive the classical DCA, the inertial DC 
algorithm (InDCA) proposed in de Oliveira and Tcheou (2019), and our refined version 
(RInDCA). Next, some practical applications of DC programming problems are intro-
duced, followed by a discussion of the relation between the inertial-type DCA and the 
successive DCA.

From now on, suppose that the objective function f has a DC decomposition 
f = f1 − f2 , where f1 is �1-convex and f2 is �2-convex. We describe below in Algo-
rithm 1 a general inertial-type DC algorithm for (P).

��h(�) ∶= {� ∈ ℝ
n ∶ h(�) ≥ h(�) + ⟨�, � − �⟩ − � for all � ∈ ℝ

n}

h(�� + (1 − �)�) ≤ �h(�) + (1 − �)h(�) −
�

2
�(1 − �)‖� − �‖2.

h(�) ≥ h(�) + ⟨�, � − �⟩ + �

2
‖� − �‖2.

(1)h(�) ≥ h(�) + ⟨�, � − �⟩ + �(1 − t)

2
‖� − �‖2 − �

t
.
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Algorithm 1: A general inertial-type DC algorithm for (P )
Input: x0 ∈ dom(f1); λ ∈ [0, 1); γ ≥ 0; x−1 = x0.

1 for k = 0, 1, 2, · · · do
2 find xk+1 ∈ Rn such that

∂εk+1f1(x
k+1) ∩ (∂f2(xk) + γ(xk − xk−1)) �= ∅ (2)

with 0 ≤ εk+1 ≤ λσ2
2 ‖xk+1 − xk‖2.

3 end

Note that Algorithm 1 includes exact and inexact cases. The exact case occurs when 
� = 0 , then �k+1 = 0 and ��k+1 f1(�

k+1) = �f1(�
k+1) , thus the iteration point �k+1 in (2) is 

obtained by exactly solving the next convex subproblem:

where �k ∈ �f2(�
k) . On the other hand, the inexact case occurs when 𝜆 > 0 and 

𝜎2 > 0 , then the iterate �k+1 in (2), which is an approximate minimizer of (3), could 
be computed by some bundle methods (see de Oliveira and Tcheou 2019). The clas-
sical DCA is derived when setting � = 0 and � = 0 in Algorithm 1. Next, we denote 
the exact (resp. inexact) versions of InDCA and RInDCA as InDCAe and RInDCAe 
(resp. InDCAn and RInDCAn ). The following table summarizes the four algorithms 
which are recovered by specifying some parameters in Algorithm 1 together with 
the assumptions about �1 and �2.

Algorithm � � t Assumption

InDCAe 0 [0, �2∕2) – 𝜎2 > 0

InDCAn (0,1) [0, (1 − �)�2∕2) – 𝜎2 > 0

RInDCAe 0 [0, (�1 + �2)∕2) – 𝜎1 + 𝜎2 > 0

RInDCAn (0,1) [0, (�1(1 − t) + �2 − ��2∕t)∕2)(0,1] 𝜎2 > 0

Comparing InDCAe with RInDCAe , the inertial range of the latter is larger than 
the former if 𝜎1 > 0 . Moreover, RInDCAe is applicable when �2 = 0 and 𝜎1 > 0 , 
while this is not the case for InDCAe . Next, for comparing InDCAn and RInDCAn , 
we need to optimize t in RInDCAn such that the supremum of the inertial step-size � 
is maximized. To this end, fixing � ∈ (0, 1) and let �(�, t) ∶= �1(1 − t) + �2 − ��2∕t , 
we can maximize �(�, t) with respect to t ∈ [0, 1) . It is easy to verify that

For the first two cases, �(�, 1) = (1 − �)�2 , this implies the same iner-
tial range between InDCAn and RInDCAn . Next, for the last case, we have 
𝜎(𝜆, 1) < 𝜎(𝜆,

√
𝜆𝜎2∕𝜎1) , thus the inertial range of RInDCAn is larger than that in 

(3)�k+1 ∈ argmin {f1(�) − ⟨�k + �(�k − �k−1), �⟩ ∶ � ∈ ℝ
n},

argmax {𝜎(𝜆, t) ∶ t ∈ (0, 1]} =

⎧
⎪⎨⎪⎩

1 if 𝜎1 = 0,

1 if 𝜎1 ≠ 0,
√
𝜆𝜎2∕𝜎1 ≥ 1,√

𝜆𝜎2∕𝜎1 if 𝜎1 ≠ 0,
√
𝜆𝜎2∕𝜎1 < 1.
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InDCAn . Now, let H1(�) ∶= �(�,
√
��2∕�1)∕2 and H2(�) ∶= (1 − �)�2∕2 , we visu-

alize in Fig. 1 the values of H1 for (�1, �2) ∈ {(1, 1), (2, 1), (3, 1), (4, 1)} as well as 
the values of H2 for �1 = 1 with respect to � ∈ (0, 1) respectively.

It can be observed that when fixing � ∈ (0, 1) and �2 = 1 , the value of H1(�) is 
getting larger as �1 increases, moreover, all of these values are larger than H2(�) . 
This observation implies that a larger strong convexity parameter of f1 will result in 
a larger inertial range.

Now, we introduce some DC programming problems, in which the first DC com-
ponents are strongly convex.

Example 3.1 (Convex constraint quadratic problem) Consider the quadratic problem 
with convex constraint

where � ∈ ℝ
n×n is symmetric and Y is a closed convex set. This model has a DC 

decomposition f = f1 − f2 with f1(�) =
L

2
‖�‖2 + �Y (�) and f2(�) =

L

2
‖�‖2 − 1

2
�⊤�� , 

where L ≥ ‖�‖2. When Y is the nonnegative orthant ℝn
+
 , DCA applied for the above 

DC decomposition has been used for checking copositivity of matrices (Dür and 
Hiriart-Urruty 2013). Note that for this DC decomposition, the first DC component 
is L-convex.

Example 3.2 (1D signals denoising) Consider the nonconvex sparse signal recovery 
problem for 1D signals:

min

{
f (�) =

1

2
�⊤�� + 𝛿Y (�) ∶ � ∈ ℝ

n

}
,

Fig. 1  The values of H1 with 
(�1, �2) ∈ {(1, 1), (2, 1), (3, 1), (4, 1)} 
and H2 with respect to � ∈ (0, 1)
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2 ‖�‖ is the spectral norm of �.
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where 𝜇 > 0 is a trade-off constant, � is the noise signal in ℝn , and � is 
a concave function for inducing sparsity, e.g., �(r) ∶= log(1 + 2r)∕r . 
In this model, taking �(r) = log(1 + 2r)∕r , we obtain a DC decom-
position as f1 − f2 with f1(�) =

�

2
‖� − �‖2 +∑n−1

i=1
��i+1 − �i� and 

f2 =
∑n−1

i=1
��i+1 − �i� −∑n−1

i=1
�(��i+1 − �i�) . Note that f1 is strongly convex, while f2 

is not. Thus InDCA can not be directly applied. In order to apply InDCA, a strong 
convexity term � ∶ � ↦ �‖�‖2∕2 is added into both f1 and f2 in de Oliveira and 
Tcheou (2019), yielding the new DC decomposition (f1 + �) − (f2 + �) , where the 
DC components are both strongly convex.

Remark 3.1 As shown in Examples 3.1 and 3.2, the first DC components are strongly 
convex. However, InDCA only takes into account the strong convexity of the second 
DC component. This often causes the inertial range smaller than that of our refined 
version RInDCA, which involves the strong convexity of both DC components.

Before ending this section, we mention out that the inertial-type DCA (both 
InDCAe and RInDCAe ) is related to the successive DCA, namely SDCA (see Le 
Thi and Pham 2018). Let us take at the k-th iteration of DCA the successive DC 
decomposition f = (f1 + �k) − (f2 + �k) with �k(�) =

�

2
‖� − �k−1‖2 , then DCA 

applied to this special DC decomposition yields

where �k ∈ �f2(�
k) . Then (4) reads as

Comparing SDCA described in (5) with RInDCAe (or InDCAe ) in (2), we observe 
that the only difference is the presence of the proximal term �k(�) in (5). This term 
plays a role of regularizer which can be interpreted as finding a point �k+1 close to 
�k−1 and a minimizer of the function � ↦ f1(�) − ⟨�k + �(�k − �k−1), �⟩ . This is the 
basic idea of proximal point methods, thus this SDCA is often called proximal DCA 
as well. The absence of �k in RInDCAe means that the iteration point �k+1 is not 
supposed to be close to �k−1 , which will lead to potential acceleration. In conclu-
sion, the term �k plays a key role to make RInDCAe differ from SDCA, and possibly 
yields acceleration in RInDCAe.

Remark 3.2 Indeed, the convex problem of (5) is irrelevant to �k−1 since

which is exactly the subproblem of DCA for the fixed DC decomposition

min

�
�

2
‖� − �‖2 +

n−1�
i=1

�(��i+1 − �i�) ∶ � ∈ ℝ
n

�
,

(4)�k+1 ∈ argmin
�
f1(�) + �k(�) − ⟨∇�k(�k) + �k, �⟩ ∶ � ∈ ℝ

n
�
,

(5)�k+1 ∈ argmin
�
f1(�) + �k(�) − ⟨�k + �(�k − �k−1), �⟩ ∶ � ∈ ℝ

n
�
.

(5) = argmin
�
f1(�) +

�

2
‖�‖2 − ⟨�k + ��k, �⟩ ∶ � ∈ ℝ

n
�
,
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4  Subsequential convergence analysis

This section focuses on showing the subsequential convergence of RInDCA (both 
RInDCAe and RInDCAn ), some results for further developing the sequential conver-
gence of RInDCA in the next section are also proved.

4.1  Subsequential convergence of RInDCA
e

The following assumption is made in this subsection.

Assumption 2 Suppose that the DC components f1 and f2 are respectively �1-convex 
and �2-convex with 𝜎1 + 𝜎2 > 0.

Now, we start to establish the subsequential convergence of RInDCAe.

Lemma 4.1 Let {�k} be the sequence generated by RInDCAe and 
� ∈ [0, (�1 + �2)∕2) , then the sequence {f (�k) + �1+�2−�

2
‖�k − �k−1‖2} is nonincreas-

ing and for all k ≥ 0,

Proof Because �k+1 satisfies (3), thus �k + �(�k − �k−1) ∈ �f1(�
k+1) , then by �1-con-

vexity of f1 , we have

On the other hand, it follows from �k ∈ �f2(�
k) and �2-convexity of f2 that

Summing (7) to (8) and reshuffling the terms, we derive that

By applying ⟨�k − �k−1, �k − �k+1⟩ ≥ −(‖�k − �k−1‖2 + ‖�k − �k+1‖2)∕2 to (9), we 
obtain

f =
�
f1 +

�

2
‖ ⋅ ‖2� − �

f2 +
�

2
‖ ⋅ ‖2�.

(6)
f (�k+1) +

�1 + �2 − �

2
‖�k+1 − �k‖2 ≤ f (�k) +

�1 + �2 − �

2
‖�k − �k−1‖2

−
�1 + �2 − 2�

2
‖�k − �k−1‖2.

(7)f1(�
k) ≥ f1(�

k+1) + ⟨�k + �(�k − �k−1), �k − �k+1⟩ + �1
2
‖�k+1 − �k‖2.

(8)f2(�
k+1) ≥ f2(�

k) + ⟨�k, �k+1 − �k⟩ + �2
2
‖�k+1 − �k‖2.

(9)f (�k) ≥ f (�k+1) + �⟨�k − �k−1, �k − �k+1⟩ + �1 + �2
2

‖�k+1 − �k‖2.
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Moreover, we get from 𝛾 < (𝜎1 + 𝜎2)∕2 that (𝜎1 + 𝜎2 − 2𝛾)∕2 > 0 , thus the sequence 
{f (�k) +

�1+�2−�

2
‖�k − �k−1‖2} is nonincreasing.   ◻

Theorem  4.1 Let {�k} be the sequence generated by RInDCAe and 
� ∈ [0, (�1 + �2)∕2) . Then the following statements hold: 

 (i) lim
k→∞

‖�k − �k−1‖ = 0;
 (ii) If {�k} is bounded, then any limit point of {�k} is a critical point of (P).

Proof (i) Let us denote �1 ∶= (�1 + �2 − �)∕2 and �2 ∶= (�1 + �2 − 2�)∕2 . Clearly, 
𝜂1 > 0 , 𝜂2 > 0 , and the inequality (6) reads as

By summing (10) from k = 0 to n, we obtain that

Recalling that f is bounded below by a scalar f ∗ (term (b) of Assumption 1), then we 
have

thus we obtain

Thus, 
∑∞

k=0
‖�k − �k−1‖2 < ∞ which implies lim

k→∞
‖�k − �k−1‖ = 0. (ii) The bound-

edness of {�k} together with term (a) of Assumption 1 implies the boundedness of 
{�k} (see Theorem 3.16 in Beck (2017)). Let �̄ be any limit point of {�k} , then there 
exists a convergent subsequence such that lim

i→∞
�ki = �̄ . Moreover, since {�ki} is 

bounded in ℝn , there exists a convergent subsequence of {�ki} . Without loss of gen-
erality, we can assume that the sequence {�ki} is convergent and lim

i→∞
�ki = �̄ . Then 

taking into account that �ki ∈ �f2(�
ki ) for all i, �ki → �̄ , �ki → �̄ , and the closedness 

of the graph �f2 (see Theorem 24.4 in Rockafellar (1970)), we obtain

On the other hand, the next relation holds for all i

f (�k+1) +
�1 + �2 − �

2
‖�k+1 − �k‖2 ≤ f (�k) +

�1 + �2 − �

2
‖�k − �k−1‖2

−
�1 + �2 − 2�

2
‖�k − �k−1‖2.

(10)f (�k+1) + �1‖�k+1 − �k‖2 ≤ f (�k) + �1‖�k − �k−1‖2 − �2‖�k − �k−1‖2.

(11)�2

n�
k=0

‖�k − �k−1‖2 ≤ f (�0) −
�
f (�n+1) + �1‖�n+1 − �n‖2�.

f (�n+1) + �1‖�n+1 − �n‖2 ≥ f ∗,

n�
k=0

‖�k − �k−1‖2 ≤ f (�0) − f ∗

�2
, ∀n ∈ ℕ.

(12)�̄ ∈ 𝜕f2(�̄).
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By the fact that lim
i→∞

�ki+1 = �̄ since lim
i→∞

‖�ki+1 − �ki‖ = 0 , then combining �ki → �̄ , 
�(�ki − �ki−1) → 0 , �ki+1 → �̄ , and the closedness of the graph �f1 , we have

We conclude from (12) and (13) that �̄ ∈ 𝜕f1(�̄) ∩ 𝜕f2(�̄) ≠ � , thus �̄ is a critical 
point of problem (P).   ◻

4.2  Subsequential convergence of RInDCA
n

The following assumption is made in this part.

Assumption 3 Suppose that the second DC component f2 is �2-convex with 𝜎2 > 0.

Now, we start to establish the subsequential convergence of RInDCAn.

Lemma 4.2 Let {�k} be the sequence generated by RInDCAn and 𝛾 ∈ [0, �̄�∕2) , 
where �̄� = 𝜎1(1 − t) + 𝜎2 − 𝜆𝜎2∕t with � ∈ (0, 1) , t ∈ (0, 1] . Then the sequence 
{f (�k) +

�̄�−𝛾

2
‖�k − �k−1‖2} is nonincreasing and for all k ≥ 0 , we have

Proof Because �k+1 satisfies (2), let �k ∈ �f2(�
k) such that 

�k + �(�k − �k−1) ∈ ��k+1 f1(�
k+1) , we have

where the second inequality is implied by the fact �k+1 ≤ �
�2
2
‖�k+1 − �k‖2 . On the 

other hand, �k ∈ �f2(�
k) and �2-convexity of f2 imply that

Summing (15) to (16) and reshuffling the terms, we obtain that

�ki + �(�ki − �ki−1) ∈ �f1(�
ki+1).

(13)�̄ ∈ 𝜕f1(�̄).

(14)
f (�k+1) +

�̄� − 𝛾

2
‖�k+1 − �k‖2 ≤ f (�k) +

�̄� − 𝛾

2
‖�k − �k−1‖2

−
�̄� − 2𝛾

2
‖�k − �k−1‖2.

(15)

f1(�
k)

(1)

≥ f1(�
k+1) + ⟨�k + �(�k − �k−1), �k − �k+1⟩

+
�1(1 − t)

2
‖�k+1 − �k‖2 − �k+1

t

≥ f1(�
k+1) + ⟨�k + �(�k − �k−1), �k − �k+1⟩

+
�1(1 − t) − ��2∕t

2
‖�k+1 − �k‖2,

(16)f2(�
k+1) ≥ f2(�

k) + ⟨�k, �k+1 − �k⟩ + �2
2
‖�k+1 − �k‖2.
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By applying ⟨�k − �k−1, �k − �k+1⟩ ≥ −(‖�k − �k−1‖2 + ‖�k − �k+1‖2)∕2 to (17), 
we obtain (14). Moreover, 𝛾 ∈ [0, �̄�∕2) implies (�̄� − 2𝛾)∕2 > 0 , thus the sequence 
{f (�k) +

�̄�−𝛾

2
‖�k − �k−1‖2} is nonincreasing.   ◻

The proof of the next theorem is omitted since it follows from the similar argu-
ments as in Theorem 4.1.

Theorem  4.2 Let {�k} be the sequence generated by RInDCAn and 𝛾 ∈ [0, �̄�∕2) , 
where �̄� = 𝜎1(1 − t) + 𝜎2 − 𝜆𝜎2∕t with � ∈ (0, 1) , t ∈ (0, 1] . Then the following 
statements hold: 

 (i) lim
k→∞

‖�k − �k−1‖ = 0;
 (ii) If {�k} is bounded, then any limit point of {�k} is a critical point of (P).

4.3  Some results on the sequences obtained by RInDCA

In this subsection, we provide some important results on the sequences obtained by 
RInDCAe and RInDCAn.

Proposition 4.1 Suppose that the assumptions in Theorem 4.1 hold. Let {�k} be the 
sequence generated by RInDCAe and let Ω1 be the set of the limit points of {�k} . If 
{�k} is bounded, then we have 

 (i) lim
k→∞

f (�k) ∶= � exists;
 (ii) f ≡ � on Ω1.

Proof (i) Lemma 4.1 implies that the sequence {f (�k) + �1+�2−�

2
‖�k − �k−1‖2} is 

nonincreasing, combining the fact that this sequence is bounded below, thus it con-
verges. On the other hand, (ii) of Theorem 4.1 implies that lim

k→∞
‖�k − �k−1‖2 = 0 . 

Therefore, lim
k→∞

f (�k) ∶= � exists. (ii) Because Ω1 is nonempty, thus given any 
�̄ ∈ Ω1 , there exists a subsequence {�ki} such that lim

i→∞
�ki = �̄ . Then, we get from 

�ki ∈ �f2(�
ki ) and �2-convexity of f2 that

Similarly, we obtain as well from �ki + �(�ki − �ki−1) ∈ �f1(�
ki+1) and �1-convexity 

of f1 that

(17)f (�k) ≥ f (�k+1) + 𝛾⟨�k − �k−1, �k − �k+1⟩ + �̄�

2
‖�k+1 − �k‖2.

(18)f2(�
ki+1) ≥ f2(�

ki) + ⟨�ki , �ki+1 − �ki⟩ + �2
2
‖�ki+1 − �ki‖2.
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Then we have

where the last equality follows that lim
i→∞

‖�ki − �ki−1‖ = 0 , f2 is continuous over 
domf1 , and {�ki} is bounded. On the other hand, because f is a closed function, then 
we have

Thus, we obtain that f (�̄) = 𝜁 and conclude that f ≡ � on Ω1 .   ◻

We can obtain a similar proposition for RInDCAn described as follows whose 
proof is omitted.

Proposition 4.2 Suppose that the assumptions in Theorem 4.2 hold. Let {�k} be the 
sequence generated by RInDCAn and let Ω2 be the set of the limit points of {�k} . If 
{�k} is bounded, then we have 

 (i) lim
k→∞

f (�k) ∶= �̃  exists;
 (ii) f ≡ �̃  on Ω2.

5  Sequential convergence analysis

In this section, we will establish the sequential convergence of RInDCA. Let us con-
sider the next auxiliary functions:

(19)f1(�̄) ≥ f1(�
ki+1) + ⟨�ki + 𝛾(�ki − �ki−1), �̄ − �ki+1⟩ + 𝜎1

2
‖�̄ − �ki+1‖2.

𝜁 = lim
k→∞

f (�k)

= lim
i→∞

f1(�
ki+1) − f2(�

ki+1)

(18)

≤ lim sup
i→∞

f1(�
ki+1) − {f2(�

ki ) + ⟨�ki , �ki+1 − �ki⟩ + 𝜎2
2
‖�ki+1 − �ki‖2}

(19)

≤ lim sup
i→∞

f1(�̄) − ⟨�ki + 𝛾(�ki − �ki−1), �̄ − �ki+1⟩ − 𝜎1
2
‖�ki+1 − �̄‖2

− f2(�
ki) − ⟨�ki , �ki+1 − �ki⟩ − 𝜎2

2
‖�ki+1 − �ki‖2

= f (�̄),

f (�̄) = f1(�̄) − f2(�̄)

≤ lim inf
i→∞

f1(�
ki ) − f2(�

ki )

= lim inf
i→∞

f (�ki ) = 𝜁 .
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where f1 and f2 are defined in problem (P) with the strong convexity parameters �1 
and �2 , f ∗2  is the conjugate function of f2 , and �̄� is defined in Lemma 4.2. Note that 
our construction of E and Ẽ is motivated by Liu et  al. (2019), and our sequential 
convergence analysis follows similar arguments as in Attouch et al. (2013); Liu et al. 
(2019).

First, the following Proposition 5.1 establishes the non-increasing property of 
the sequence {E(�k, �k−1, �k−1)}k≥1.

Proposition 5.1 Suppose that the assumptions in Theorem 4.1 hold. Let E be defined 
as in (20), {�k} be the sequence generated by RInDCAe , and �k ∈ �f2(�

k) for all 
k ≥ 0 . Then we have 

 (i) For any k ≥ 1 , 

 (ii) If {�k} is bounded, let Υ be the set of all limit points of the sequence 
{(�k, �k−1, �k−1)} . Then Υ is a nonempty compact set, 

 exists, and E ≡ � on Υ.

Proof (i) For any k ≥ 1 , �k−1 ∈ �f2(�
k−1) together with �2-convexity of f2 implies 

that

Thus we have

where the equality is implied by �k−1 ∈ �f2(�
k−1) , and thus 

⟨�k−1, �k−1⟩ = f2(�
k−1) + f ∗

2
(�k−1) (see Theorem  4.20 in Beck (2017)). Moreover, 

�k + �(�k − �k−1) ∈ �f1(�
k+1) and �1-convexity of f1 imply that

(20)E(�, �, �) = f1(�) − ⟨�, �⟩ + f ∗
2
(�) +

�1 − �

2
‖� − �‖2,

(21)�E(�, �, �) = f1(�) − ⟨�, �⟩ + f ∗
2
(�) +

�̄� − 𝜎2 − 𝛾

2
‖� − �‖2,

(22)E(�k+1, �k, �k) ≤ E(�k, �k−1, �k−1) −
�1 + �2 − 2�

2
‖�k − �k−1‖2;

lim
k→∞

E(�k, �k−1, �k−1) ∶= �

(23)f2(�
k) ≥ f2(�

k−1) + ⟨�k−1, �k − �k−1⟩ + �2
2
‖�k − �k−1‖2.

(24)
⟨�k−1, �k⟩ − f2(�

k) +
�2
2
‖�k − �k−1‖2 (23)

≤ ⟨�k−1, �k−1⟩ − f2(�
k−1)

= f ∗
2
(�k−1),
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Next, we have

where the second equality is implied by �k ∈ �f2(�
k) , and thus 

f2(�
k) + f ∗

2
(�k) = ⟨�k, �k⟩ ; the second inequality follows from 

⟨�k − �k−1, �k − �k+1⟩ ≥ −(‖�k − �k−1‖2 + ‖�k − �k+1‖2)∕2.
(ii) The boundedness of {�k} implies the boundedness of {�k−1} . Thus, the 

sequence {(�k, �k−1, �k−1)} is bounded, yielding that Υ is a nonempty compact set. 
Let (�̄, �̄, �̄) ∈ Υ , it is easy to see that (�̄, �̄, �̄) ∈ Υ implies �̄ = �̄ ∈ Ω1 . For any 
k ≥ 1 , we have

where the first inequality follows from f2(�k) + f ∗
2
(�k−1) ≥ ⟨�k, �k−1⟩ and f ∗ is the 

lower bound of f. Thus, lim inf
k→∞

E(�k, �k−1, �k−1) ≥ f ∗ . Then, combining the fact that 
the sequence {E(�k, �k−1, �k−1)} is nonincreasing (statement (i)), we obtain the exist-
ence of lim

k→∞
E(�k, �k−1, �k−1) . Next, we prove the last part of (ii). Given any 

(�̄, �̄, �̄) ∈ Υ , there exists a subsequence (�ki , �ki−1, �ki−1) such that

(25)f1(�
k) ≥ f1(�

k+1) + ⟨�k + �(�k − �k−1), �k − �k+1⟩ + �1
2
‖�k − �k+1‖2.

E(�k+1, �k, �k)

= f1(�
k+1) − ⟨�k+1, �k⟩ + f ∗

2
(�k) +

�1 − �

2
‖�k+1 − �k‖2

(25)

≤ f1(�
k) − ⟨�k + �(�k − �k−1), �k − �k+1⟩ − �1

2
‖�k+1 − �k‖2

− ⟨�k+1, �k⟩ + f ∗
2
(�k) +

�1 − �

2
‖�k+1 − �k‖2

= f1(�
k) − ⟨�k + �(�k − �k−1), �k − �k+1⟩ − �1

2
‖�k+1 − �k‖2

− ⟨�k+1, �k⟩ + ⟨�k, �k⟩ − f2(�
k) +

�1 − �

2
‖�k+1 − �k‖2

= f1(�
k) − f2(�

k) − ⟨�(�k − �k−1), �k − �k+1⟩ − �

2
‖�k+1 − �k‖2

≤ f1(�
k) − f2(�

k) +
�

2
‖�k − �k−1‖2

(24)

≤ f1(�
k) − ⟨�k, �k−1⟩ + f ∗

2
(�k−1) +

� − �2
2

‖�k − �k−1‖2

= E (�k, �k−1, �k−1) −
�1 + �2 − 2�

2
‖�k − �k−1‖2,

E(�k, �k−1, �k−1) = f1(�
k) − ⟨�k, �k−1⟩ + f ∗

2
(�k−1) +

�1 − �

2
‖�k − �k−1‖2

≥ f1(�
k) − f2(�

k) +
�1 − �

2
‖�k − �k−1‖2

≥ f ∗ +
�1 − �

2
‖�k − �k−1‖2,

lim
i→∞

‖(�ki , �ki−1, �ki−1) − (�̄, �̄, �̄)‖ = 0.
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Then we have

where the third equality follows from �ki ∈ �f2(�
ki ) and thus 

f2(�
ki) + f ∗

2
(�ki ) = ⟨�ki , �ki⟩ ; the first inequality is implied by 

�ki + �(�ki − �ki−1) ∈ �f1(�
ki+1) and �1-convexity of f1 ; the fifth equality follows 

from lim
i→∞

‖�ki − �ki−1‖ = 0 . On the other hand, the closedness of E implies that 
E(�̄, �̄, �̄) ≤ 𝜁 . Thus, we obtain that E(�̄, �̄, �̄) = 𝜁 and conclude that E ≡ � on Υ .   ◻

Next, we start to create the sequential convergence of RInDCAe based on the 
KL property of E and Proposition 5.1. Note that the KL property of E can be 
implied by the KL property of f (see Liu et al. 2019).

Theorem 5.1 Suppose that the assumptions in Proposition 5.1 hold. Let E defined in 
(20) be a KL function, {�k} be the sequence generated by RInDCAe , and �k ∈ �f2(�

k) 
for all k ≥ 0 . Then we have 

 (i) There exists D > 0 such that ∀k ≥ 1 , 

 (ii) If {�k} is bounded, then {�k} converges to a critical point of problem (P).

Proof (i) Note that the subdifferential of E at �k ∶= (�k, �k−1, �k−1) is:

lim
k→∞

E(�k, �k−1, �k−1)

= lim
i→∞

E(�ki+1, �ki , �ki )

= lim
i→∞

f1(�
ki+1) − ⟨�ki+1, �ki⟩ + f ∗

2
(�ki ) +

𝜎1 − 𝛾

2
‖�ki+1 − �ki‖2

= lim
i→∞

f1(�
ki+1) − ⟨�ki+1, �ki⟩ − f2(�

ki ) + ⟨�ki , �ki⟩ + 𝜎1 − 𝛾

2
‖�ki+1 − �ki‖2

≤ lim sup
i→∞

f1(�
ki ) − ⟨�ki + 𝛾(�ki − �ki−1), �ki − �ki+1⟩ − 𝜎1

2
‖�ki+1 − �ki‖2

− ⟨�ki+1, �ki⟩ − f2(�
ki) + ⟨�ki , �ki⟩ + 𝜎1 − 𝛾

2
‖�ki+1 − �ki‖2

= lim sup
i→∞

f (�ki ) − 𝛾⟨�ki − �ki−1, �ki − �ki+1⟩ − 𝛾

2
‖�ki+1 − �ki‖2

= lim sup
i→∞

f (�ki )

= 𝜁

= f (�̄) ≤ E(�̄, �̄, �̄),

(26)dist(�, �E(�k, �k−1, �k−1)) ≤ D(‖�k − �k−1‖ + ‖�k−1 − �k−2‖).
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Because �k−1 ∈ �f2(�
k−1) , thus �k−1 ∈ �f ∗

2
(�k−1) ; besides, we have 

�k−1 + �(�k−1 − �k−2) ∈ �f1(�
k) . Combining these relations, we have

Thus, it is easy to see that there exists D > 0 such that ∀k ≥ 1,

(ii) It is sufficient to prove that 
∑∞

k=1
‖�k − �k−1‖ < ∞ . If there exists N0 ≥ 1 such 

that E(�N0) = �1 , then the inequality (22) implies that �k = �N0 ,∀k ≥ N0 ; naturally, 
the sequence {�k} is convergent. Thus, we can assume that

Then, it follows from Υ is a compact set, Υ ⊆ dom𝜕E and E ≡ � on Υ that there 
exists 𝜀 > 0 , 𝜂 > 0 and � ∈ Ξ� such that

for all (�, �, �) ∈ U with

Moreover, it is easy to derive from lim
k→∞

dist(�k,Υ) = 0 and lim
k→∞

E(�k) = � that there 
exists N ≥ 1 such that �k ∈ U,∀k ≥ N . Thus,

Using the concavity of � , we see that ∀k ≥ N,

Let Δk ∶= �(E(�k) − � ) − �(E(�k+1) − � ) and C ∶=
�1+�2−2�

2
‖�k − �k−1‖2 . Then 

combining (27), (26) and (i) of Proposition 4.2, we have

Thus, taking square roots on both sides, we obtain

�E(�k) =

⎡
⎢⎢⎣

�f1(�
k) − �k−1 +

�−�2
2

(�k − �k−1)

−�k + �f ∗
2
(�k−1)

−
�−�2
2

(�k − �k−1)

⎤
⎥⎥⎦
.

⎡
⎢⎢⎣

�(�k−1 − �k−2) +
�−�2
2

(�k − �k−1)

−�k + �k−1

−
�−�2
2

(�k − �k−1)

⎤
⎥⎥⎦
∈ �E(�k).

dist(�, �E(�k, �k−1, �k−1)) ≤ D(‖�k − �k−1‖ + ‖�k−1 − �k−2‖).

E(�k) > 𝜁 ,∀k ≥ 1.

��(E(�, �, �) − �)dist(�, �E(�, �, �)) ≥ 1

U = {(�, �, �) ∶ dist((�, �, �),Υ) < 𝜀} ∩ {(�, �, �) ∶ 𝜁 < E(�, �, �) < 𝜁 + 𝜂}.

��(E(�k) − �)dist(�, �E(�k) ≥ 1, ∀k ≥ N.

(27)

[�(E(�k) − �) − �(E(�k+1) − � )]dist(�, �E(�k))

≥ ��(E(�k) − �)dist(�, �E(�k))(E(�k) − E(�k+1))

≥ E(�k) − E(�k+1).

‖�k − �k−1‖2 ≤ D

C
Δk(‖�k − �k−1‖ + ‖�k−1 + �k−2‖).
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this yields

Considering also that 
∑∞

k=1
Δk < ∞ , thus the above inequality implies that ∑∞

k=1
‖�k − �k−1‖ < ∞ , which indicates that {�k} is a Cauchy sequence, and thus 

convergent. The proof is completed.   ◻

The sequential convergence of RInDCAn can be similarly developed based on the 
KL property of Ẽ , Proposition 4.2, and Proposition 5.1 for Ẽ , thus the proof is omitted.

6  Numerical results

In this part, we conduct numerical simulations on testing copositivity of matrices (con-
strained case) and image denoising problem (unconstrained case). All experiments are 
implemented in Matlab 2019a on a 64-bit PC with an Intel(R) Core(TM) i5-6200U 
CPU (2.30GHz) and 8GB of RAM.

6.1  Checking copositivity of matrices

Recall that a symmetric matrix � ∈ ℝ
n×n is called copositive if �⊤�� ≥ 0 for all � ≥ 0 , 

and called non-copositive otherwise. Consider the next formulation

Clearly, � is copositive if and only if the optimal value of problem (COPO) is non-
negative, and problem (COPO) is equivalent to the next DC program

where L ≥ ‖�‖ . In Dür and Hiriart-Urruty (2013), DCA applied for the above DC 
decomposition is used to check the copositivity of � . For our experiments, the same 
instances of � as in Dür and Hiriart-Urruty (2013) will be used. A brief introduction 
about the instances is given as follows. Let �n ∈ ℝ

n×n be the matrix with all entries 
being one. The matrix �cycle = (aij) ∈ ℝ

n×n is given component-wise by

‖�k − �k−1‖ ≤

�
2D

C
Δk

�
‖�k − �k−1‖ + ‖�k−1 − �k−2‖

2

≤
D

C
Δk +

1

4
‖�k − �k−1‖ + 1

4
‖�k−1 − �k−2‖,

1

2
‖�k − �k−1‖ ≤

D

C
Δk +

1

4
‖�k−1 − �k−2‖ − 1

4
‖�k − �k−1‖.

(COPO)
min

1

2
�⊤��

s.t. � ∈ ℝ
n
+
.

f (�) =
L

2
‖�‖2 + 𝛿

ℝ
n
+
(�)

�������������������
f1(�)

−(
L

2
‖�‖2 − 1

2
�⊤��

�������������������
f2(�)

), (DCcopo)
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It was known that the following matrix

is copositive for � ≥ 2 and non-copositive for 𝜇 < 2 . When � = 2 , ��
n
 is called Horn 

matrix, denoted as �n.
In order to apply DCA, InDCAe , and RInDCAe for ( DCcopo ), we set L = ‖�‖ for 

DCA and L = ‖�‖ + 1 for InDCAe and RInDCAe . The inertial ranges of InDCAe 
and RInDCAe are [0, 1/2) and [0, (‖�‖ + 2)∕2) , respectively. For InDCAe , � = 0.499 
is set, while for RInDCAe  we choose � = 0.499(‖�‖ + 2) . Moreover, the common 
initial point for all involved algorithms is randomly generated as follows: we first use 
the standard normal distribution to generate a point � ∈ ℝ

n , then we obtain the ini-
tial point �0 = (�0

j
) by setting

for j = 1,… , n . We report the number of iterations, the computational time, and 
the objective functions values. The bold values in Tables 1 and 2 highlight the best 
numerical results. The computational time presented is the average execution time 
(in seconds) over 10 runs.

First, we consider to check the copositivity of the Horn matrices. All algo-
rithms are terminated when ‖�k − �k−1‖ < 10−9 . Table  1 describes the perfor-
mances of DCA, InDCAe , and RInDCAe for checking the copositivity of �n with 
n ∈ {500, 1000, 1500, 2000} . It is observed that DCA and InDCAe perform almost 
the same since the number of iterations of InDCAe is very close to that of DCA. 
We also observe that RInDCAe performs the best among the three algorithms, 

aij ∶=

{
1 if |i − j| ∈ {1, n − 1},

0 otherwise.

��
n
∶= �(�n − �cycle) − �n ∈ ℝ

n×n

�0
j
=

e�j∑n

j=1
e�j

Table 1  Performances 
of DCA, InDCAe , and 
RInDCAe for checking 
the copositivity of �n with 
n ∈ {500, 1000, 1500, 2000}

Size (n) Algorithm It. Time Fval

500 DCA 1963 0.0799 4.0483e–14
InDCAe 1965 0.0817 4.0470e–14
RInDCAe 1020 0.0399 9.6531e–15

1000 DCA 2915 1.1634 1.6403e–13
InDCAe 2916 1.1692 1.6449e–13
RInDCAe 1562 0.6276 3.9847e–14

1500 DCA 4772 4.9034 3.7082e–13
InDCAe 4773 4.9557 3.7170e–13
RInDCAe 2542 2.5938 9.1359e–14

2000 DCA 5829 10.8607 6.6003e–13
InDCAe 5830 11.1934 6.6094e–13
RInDCAe 3129 6.0101 1.6295e–13
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terminating with almost half of the number of iterations of DCA or InDCAe , and 
with the smallest objective function values. The reason why InDCAe loses the 
inertial-force effect may be that 0.499 is much smaller than 0.499(‖�‖ + 2) for the 
instance �n when n is large.

Next, we check the non-copositivity of ��
n
 (� = 1.9) . Here, the stopping criterion 

for the involved algorithms DCA, InDCAe , and RInDCAe is that f (�k) ≤ −10−6 . 
Once this condition is verified, then the non-copositivity of the involved matrix is 
determined. Table 2 shows the performances of DCA, InDCAe , and RInDCAe for 
checking the copositivity of ��

n
 ( � = 1.9 ) with n ∈ {500, 1000, 1500, 2000}.

It is also observed that among the involved algorithms RInDCAe performs the 
best, hitting the stopping criterion f (�k) ≤ −10−6 with about half of the number of 
iterations as well as the time of DCA or InDCAe . The behavior of the algorithms for 
checking the noncopositivity almost coincides with the previous experiment.

The above experiments show that the effect of heavy-ball inertial-force may be 
lost if the strong convexity of the first DC component is not considered.

6.2  Image denoising problem

Consider a gray-scale image of m × n pixels and with entries in [0,  1], where 0 
represents pure black and 1 represents pure white. The original image � ∈ ℝ

m×n 
is assumed to be corrupted with a noise � . Then, we obtain the observed image 
�̃ = � + � , which is known to us. We aim to recover the original image � by solv-
ing the next problem

where 𝜇 > 0 is a trade-off constant; �̃ is the observed image; ‖ ⋅ ‖F represents the 
Frobenius norm; � ∶ ℝ+ → ℝ is a concave function and TV� is defined as:

(28)min

�
�

2
‖� − �̃‖2

F
+ TV�(�) ∶ � ∈ ℝ

m×n

�
,

Table 2  Performances of 
DCA, InDCAe , and RInDCAe 
for checking the copositivity 
of ��

n
 ( � = 1.9 ) with 

n ∈ {500, 1000, 1500, 2000}

Size (n) Algorithm It. Time Fval

500 DCA 430 0.0330 – 9.9882e–07
InDCAe 430 0.0359 – 9.9139e–07
RInDCAe 209 0.0169 – 9.8189e–07

1000 DCA 824 0.5786 – 9.9785e–07
InDCAe 825 0.6014 – 9.9907e–07
RInDCAe 405 0.2991 – 9.9934e–07

1500 DCA 2036 4.6078 – 9.9965e–07
InDCAe 2037 4.6695 – 9.9975e–07
RInDCAe 1021 2.3593 – 9.9985e–07

2000 DCA 5094 14.8749 – 9.9993e–07
InDCAe 5095 15.1039 – 9.9987e–07
RInDCAe 2559 7.7138 – 9.9977e–07
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with

When � ≡ 1 , we denote TV as TV� . The model (28) with � ≡ 1 is convex. In (de 
Oliveira and Tcheou 2019), it has shown that the convex model ( � ≡ 1 ) is not effec-
tive to preserve edges in the restoration process of piecewise-constant images than 
the model (28) with � being concave, such as the � described in Table 3. Moreover 
it has also shown how to derive the DC decomposition for TV� . Concretely, TV�(�) 
has the following DC decomposition

Then, we get from (28) the next two equivalent DC programs

and

where 𝜌 > 0.
We will compare DCA, InDCAe , RInDCAe , and ADCA (Phan et al. 2018) (a 

DCA based algorithm using the Nesterov’s extrapolation). Note that DCA and 
ADCA are applied for (29), while InDCAe and RInDCAe are applied for (30). All 
of the involved algorithms require solving the convex subproblems in form of

TV�(�) =
�
i,j

�(‖∇�i,j‖)

‖∇�i,j‖ =

⎧
⎪⎪⎨⎪⎪⎩

��i,j − �i,j+1� i = m, j ≠ n,

��i,j − �i+1,j� i ≠ m, j = n,

0 i = m, j = n,�
(�i,j − �i+1,j)

2 + (�i,j − �i,j+1)
2 otherwise.

TV�(�) = TV(�) − (TV(�) − TV�(�)).

(29)
min{

�

2
‖� − �̃‖2

F
+ TV(�)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f1(�)

−(TV(�) − TV�(�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

f2(�)

) ∶ � ∈ ℝ
m×n},

(30)
min{

� + �

2
‖� − �̃‖2

F
+ TV(�)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f̃1(�)

−(
�

2
‖� − �̃‖2

F
+ TV(�) − TV�(�)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f̃2(�)

)},

Table 3  Some examples of 
concave function �a ∶ ℝ+ → ℝ 
parameterized by a > 0

�log �rat �atan �exp

�a(r)
log(1+ar)

a

r

1+ar∕2
atan((1+ar)∕

√
3)−�∕6

a
√
3∕4

1−exp(−ar)

a

�
�

a
(r) 1

1+ar

1

(1+ar∕2)2
4

a2r2+2ar+4

1

exp(ar)
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where �t > 0 and � ∈ ℝ
m×n , which can be efficiently solved by the fast gradient pro-

jection (FGP) method proposed in Beck and Teboulle (2009).
We use the gray-scale image checkerboard.png ( 200 × 200 pixels) for our experi-

ments. White noise with variance 0.1 is added to the image to produce the observed 
image �̃ in both (29) and (30). Here, we use the same method as described in de 
Oliveira and Tcheou (2019) to generate the corrupted image. The original image and 
the corrupted image are shown in Fig. 2. To measure the quality of reconstruction 
images, we use the peak signal-to-noise ratio (PSNR) and the structural similarity 
(SSIM) index (see (Monga 2017)). In general, the larger PSNR means the better 
restoration, while the closer to 1 of SSIM indicates the better reconstruction quality. 
For all the involved algorithms, the observed images �̃ are set as the common initial 
point, whose convex subproblems are all solved by FGP with the stopping condi-
tion that the distance between two consecutive iterates is smaller than 10−4 . It is also 
worth noting that for problems (29) and (30), another DCA based method with Nest-
erov’s extrapolation developed in Wen et al. (2018) reduces to DCA.

We test DCA and ADCA for (29), InDCAe and RInDCAe for (30). The parameter 
� for both (29) and (30) ranges from 0.8 to 1.6, and we set � = �rat with a = 6 , more-
over, the parameter � in (30) is fixed as 1. The inertial step-size � in InDCAe is set as 
0.5 × � × 99% = 0.495 , and in RInDCAe as 0.5 × (� + 2�) × 99% = 0.495� + 0.99 . 
Besides, the parameter q in ADCA is set as 3. In Table 4, we present in detail the 
best objective values fbest within 100 iterations and the corresponding values of 
PSNR and SSIM. The trends of the objective function values together with the val-
ues of PSNR and SSIM when � = 1.2 with respect to running time (average on 10 
runs) are plotted in Fig 3. Moreover, the recovered images within 100 iterations are 
demonstrated in Fig 4. Here, we observes that RInDCAe always obtains the lowest 
objective function values, and almost always the best PSNR and SSIM. The ben-
efit of enlarged inertial step-size is indicated by comparing InDCAe and RInDCAe . 
Moreover, we also observe that ADCA performs better than DCA and InDCAe . 
Finally, by comparing DCA and InDCAe , we observe that adding a strong convex-
ity term to the original DC program (29) degrades the effectiveness of DCA-based 
algorithm, which can not be offset by the benefit of inertial-force.

min

�
t̃

2
‖� − �‖2

F
+ TV(�) ∶ � ∈ ℝ

m×n

�
,

Fig. 2  Original and corrupted 
images
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As a conclusion, for the image denoising problem, our method RInDCAe is a 
promising approach, which outperforms the other tested algorithms.

Table 4  Restoration of the 
corrupted checkerboard image

(Bold values for the best numerical results)

Algorithm � fbest PSNR SSIM

DCA 2.2920e+03 24.2319 0.8268
InDCAe 0.8 2.2937e+03 24.2902 0.8269
RInDCAe 2.2896e+03 24.4612 0.8324
ADCA 2.2909e+03 24.4654 0.8272
DCA 2.4923e+03 24.1899 0.8324
InDCAe 0.9 2.4937e+03 24.1308 0.8307
RInDCAe 2.4876e+03 24.3191 0.8363
ADCA 2.4907e+03 24.2289 0.8344
DCA 2.6944e+03 23.8179 0.8265
InDCAe 1.0 2.6974e+03 23.7593 0.8262
RInDCAe 2.6854e+03 24.1334 0.8390
ADCA 2.6914e+03 23.9806 0.8308
DCA 2.8987e+03 23.3509 0.8202
InDCAe 1.1 2.9017e+03 23.2949 0.8171
RInDCAe 2.8839e+03 23.7590 0.8433
ADCA 2.8937e+03 23.4928 0.8272
DCA 3.0961e+03 23.0492 0.8114
InDCAe 1.2 3.0971e+03 22.9270 0.8114
RInDCAe 3.0811e+03 23.3767 0.8353
ADCA 3.0927e+03 23.1191 0.8166
DCA 3.2964e+03 22.4314 0.7942
InDCAe 1.3 3.2997e+03 22.4193 0.7933
RInDCAe 3.2745e+03 23.0360 0.8279
ADCA 3.2908e+03 22.5914 0.8030
DCA 3.4935e+03 21.9890 0.7723
InDCAe 1.4 3.4967e+03 21.9640 0.7700
RInDCAe 3.4688e+03 22.5424 0.8127
ADCA 3.4876e+03 22.0525 0.7797
DCA 3.6881e+03 21.5175 0.7517
InDCAe 1.5 3.6907e+03 21.5080 0.7487
RInDCAe 3.6584e+03 22.1562 0.8004
ADCA 3.6817e+03 21.5928 0.7569
DCA 3.8768e+03 21.1589 0.7272
InDCAe 1.6 3.8791e+03 21.1393 0.7240
RInDCAe 3.8478e+03 21.6137 0.7752
ADCA 3.8704e+03 21.2309 0.7357
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7  Conclusion and perspective

In this paper, based on the inertial DC algorithm (de Oliveira and Tcheou 2019) for 
DC programming, we propose a refined version with larger inertial step-size, for 
which we prove the subsequential convergence and the sequential convergence by 
further assuming the KL property. Numerical simulations on checking copositivity 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Elapsed time (s)

3500

4000

4500

5000

5500

6000

6500

7000

7500

O
bj

ec
tiv

e 
va

lu
e

DCA
InDCA

e

RInDCA
e

ADCA

(a)

5 10 15 20 25 30

Elapsed time (s)

3085

3090

3095

3100

3105

3110

3115

3120

O
bj

ec
tiv

e 
va

lu
e

DCA
InDCA

e

RInDCA
e

ADCA

(b)

0 5 10 15 20 25 30

Elapsed time (s)

15

16

17

18

19

20

21

22

23

24

P
S

N
R

DCA
InDCA

e

RInDCA
e

ADCA

(c)

0 5 10 15 20 25 30

Elapsed time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
S

IM

DCA
InDCA

e

RInDCA
e

ADCA

(d)

Fig. 3  The trends of the objective function values together with PSNR and SSIM

Fig. 4  Image reconstructions where a,  b,  c,  d is respectively the resulting image by DCA, InDCAe , 
RInDCAe , and ADCA
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of matrices and image denoising problem show the good performance of our pro-
posed methods and the benefit of larger step-size.

About the future works, the numerical test on RInDCAn will be investigated. We 
may also introduce non-heavy-ball and non-Nesterov acceleration to DC program-
ming. Furthermore, the inertial-force procedure will be extended to the partial DC 
programming (Pham et al. 2021) in which the objective function f depends on two 
variables � and � where f (�, .) and f (., �) are both DC functions.
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