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Abstract
We embellish a mixed-integer program that prescribes a set of renewable energy,
conventional generation, and storage technologies to procure, along with a corre-
sponding dispatch strategy. Specifically, we add combined heat and power to this set.
The model minimizes fixed and operational costs less incentives for the use of vari-
ous technologies, subject to a series of component interoperability and system-wide
constraints. The resulting mixed-integer linear program contains hundreds of thou-
sands of variables and constraints. We demonstrate how to efficiently formulate and
solve the corresponding instances such that we produce near-optimal solutions in min-
utes. A previous rendition of the model required hours of solution time for the same
instances.

Keywords Mixed-integer linear optimization · Renewable energy · Combined heat
and power systems · Efficient formulations

1 Introduction

Distributed generation is gaining increasing interest in the energy sector owing to its
economic, technical, and environmental benefits. As opposed to purchasing power
exclusively from the grid, users can invest in on-site generation using technologies of
their choice, such as wind, solar photovoltaics (PV) and storage.When integrated with
combined heat and power (CHP) technology, a single energy source can simultane-
ously generate electricity and heat tomeet heating and cooling demands (see Fig. 1). In
other words, the process of generating electricity releases waste heat which CHP can
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Fig. 1 A notional distributed generation system with a collection of technologies (including thermal energy
storage (TES)) available for electrical, heating, and cooling loads; the technologies highlighted in blue
represent a baseline casewithout distributed resources. Dashed boxes on the right side of the image represent
loads that depend on cooling dispatch decisions when an absorption chiller is available. Image adapted from:
Anderson et al. (2021)

capture to produce usable thermal energy, offsetting the consumption of extra fuel for
this purpose. In this way, distributed generation systems achieve greater energy effi-
ciency relative to that of conventional generators that separate electrical and thermal
production (Kerr 2008). The use of renewable technologies and the efficiency gains
of CHP lead to significant reduction in emissions, which promote the world’s initia-
tive to reduce global pollution and meet climate change goals. Additionally, research
shows that distributed generation systems offer energy savings and play a major role
in reducing investments in transmission and distribution capacity (El-Khattam and
Salama 2004; Gumerman et al. 2003). Benefits also include peak shaving, as well
as improved system reliability and resiliency (Chiradeja and Ramakumar 2004). Our
research informs the optimal design (i.e., size andmix) and dispatch of renewable tech-
nologies with combined heat and power to reduce costs for representative commercial
buildings.

TheNational Renewable EnergyLaboratory has developedREopt Lite, amodel that
helps energy planners assess the economic feasibility of using renewable energy tech-
nologies, combined heat and power, conventional generators, and storage (Anderson
et al. 2021; Mishra et al. 2021). This model determines the system sizes and dispatch
decisions, includes an option to assess grid resilience in case of an outage, and incor-
porates sophisticated pricing structures. For the purpose of this paper, we refer to this
model as the original formulation (R̄). Ogunmodede et al. (2021) improve the perfor-
mance of themathematical formulationwithout CHP, but omit implementation details.
Ourmodel, whichwe term (̂R), extends the reformulation inOgunmodede et al. (2021)
to include the option of CHP technologies and thermal energy storage. This involves
the addition of: (i) fuel constraints, (ii) thermal production restrictions, (iii) storage
operations, (iv) charging rates, (v) cold and hot thermal loads, (vi) load balancing and
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grid sales, and (vii) standby charges. We correspondingly provide implementation
details.

In aggregate, the contributions of our paper are as follows: (i) the extension of an
existing energy design and dispatch model (Ogunmodede et al. 2021) to accommodate
combined heat and power technologies, (ii) an improvement in the tractability of this
(and theOgunmodede et al. (2021))model through the use of appropriate data handling
and data structures, and thorough reformulation; and, (iii) the presentation of manage-
rial insights gained from solutions to realistic instances of this complicated system.
The remainder of the paper is organized as follows: Section 2 reviews the relevant
literature. Section3 presents the notation and corresponding mathematical formula-
tion. Section4 provides the solution methodology we employ to increase tractability
of the model. Section5 describes the data we use and corresponding results, including
performance characteristics and solution analysis. Finally, Section 6 concludes and
proposes future work.

2 Literature review

Models that optimally determine design and dispatch simultaneously are NP-hard,
and can consist of nonlinear functional forms (De Mel et al. 2020; Pruitt et al. 2014;
Zakrzewski 2017) and/or integrality restrictions on (some of) the decision variables
(Merkel et al. 2015). Problem simplifications, such as shortening the time horizon
(Fuentes-Cortés and Flores-Tlacuahuac 2018; Gopalakrishnan and Kosanovic 2014,
2015), aggregating time periods (Oluleye et al. 2018), or scaling down the entire
system (Adam et al. 2015; Merkel et al. 2015) might compromise the quality of the
solution, even if the model itself becomes more tractable.

An increasing number of models in literature simultaneously address the design
and dispatch problem. Specifically, there have been those that consider dispatching
microgrids (Goodall et al. 2019; Scioletti et al. 2017; Zhao et al. 2014), concen-
trated solar power (Hamilton et al. 2020a, b), and oxidized fuel cells (Anyenya et al.
2018). Some optimization models incorporate combined heat and power. For exam-
ple, Krug et al. (2020) provide a nonlinear model whose solution dispatches district
heating networks, and Rong and Lahdelma (2007) weigh the cost of investing in such
technologies against CO2 emissions in a multi-period stochastic optimization model.
Literature demonstrates alternative solutions to design and dispatch with CHP using
multi-objective optimization (Hollermann et al. 2020; Huster et al. 2019; Perera et al.
2017). Other models addressing simultaneous design and dispatch with combined
heat and power tend to produce sub-optimal solutions to the monolith (Blackburn
et al. 2019), or optimal solutions to a problem with reduced scope (Burer et al. 2003;
Buoro et al. 2014; Pruitt et al. 2013b; Silvente et al. 2015; Weber et al. 2006). In par-
ticular, although Pruitt et al. (2013a, b) make optimal design and dispatch decisions
for a combined heat and power system, the pricing structure and operational details
of the technologies are not as sophisticated as those we consider.

The Distributed Energy Resources-Customer Adoption Model (Der- Cam) is a
mixed-integer linear program. Authors such as Siddiqui et al. (2005), Stadler et al.
(2014), Braslavsky et al. (2015), and Mashayekh et al. (2017) report on its capabili-
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ties, which consist of generating an optimal design and dispatch strategy for a suite of
technologies, subject to constraints on load shifting, peak shaving, power export agree-
ments, and ancillary service markets. Some versions of this model consider detailed
electrical distribution, but loads are not incorporated at a level as fine as hourly, the
technologies are dispatched in a coarser manner, and themodel lacks certain economic
nuances, such as tiered monthly demand charges, minimum required utility payments,
and offtake agreements. Desod (Bracco et al. 2016) optimizes an energy system with
CHP for independent buildings, omitting connections to the utility for thermal energy.
Dispatch is alsoon a coarser level, e.g., by considering “typical-day” loads.A shortened
time horizon expedites solutions. Balmorel (Wiese et al. 2018) is an open-source
model that considers thermal-producing and distributed energy generation (Karlsson
and Meibom 2008; Koivisto et al. 2019; Nasution et al. 2019). Although the model
possesses hourly fidelity, it fails to include resiliency and investment incentives. Con-
nolly et al. (2010) and Ringkjøb et al. (2018) provide significant reviews of energy
and electricity system analysis.

3 Mathematical formulation

We introduce the monolith mixed-integer linear programming formulation of our
design and dispatch problem, (̂R). This model is an extension of that given in Ogun-
modede et al. (2021), which we term (R), and introduces combined heat and power
into the system. Figure2 summarizes the variables, objectives, and constraints of the
monolith, which seeks design and dispatch decisions for a system of distributed energy
resources that minimizes the cost of capital, operations and maintenance (O&M), fuel
and utility costs, net of production incentives and energy exports. Constraints ensure
that: (i) system sizing and fuel consumption fall within user-specified limits, (ii) pro-

Fig. 2 A categorical overview of the decision variables, objective function, and constraints that compose
the REopt Lite optimization model, (̂R), where SOC denotes state of charge

123



Optimizing design and dispatch of a renewable energy… 1615

duction and load balance in each time period, and (iii) production incentives, utility
charges, and other policy structures are accurately accounted for.

This section presents contributions to the model that involve additional or sig-
nificantly altered constraints. We provide first notation used for these additions, in
alphabetic order, and categorized as: (i) indices and sets, (ii) parameters, and (iii)
variables. We state for ease of exposition the objective function, and then give the
sets of constraints that were significantly modified from (R). Finally, we point to the
appendix for the remainder, which we include for completeness. Our naming conven-
tion represents sets using calligraphic capital letters, parameters employing lower-case
letters, and variables invoking upper-case letters. Subscripts denote indices, whereas
superscripts and other “decorations” represent similar constructswith the same “stem.”

3.1 Sets and parameters

Sets
B Storage systems
C Technology classes
D Time-of-use demand periods
E Electrical time-of-use demand tiers
F Fuel types
H Time steps
M Months of the year
N Monthly peak demand tiers
T Technologies
U Total electrical energy pricing tiers

Subsets and indexed sets

B c ⊆ Bth Cold thermal energy storage systems
B e ⊆ B Electrical storage systems
B h ⊆ Bth Hot thermal energy storage systems
B th ⊆ B Thermal energy storage systems
Hg ⊆ H Time steps in which grid purchasing is available
Hm ⊆ H Time steps within a given month m
Hd ⊆ H Time steps within electrical power time-of-use demand tier d
Kt ⊆ K Subdivisions applied to technology t
Kc ⊆ K Capital cost subdivisions
Stk ⊆ S Power rating segments from subdivision k applied to technology t
Tb ⊆ T Technologies that can charge storage system b
Tc ⊆ T Technologies in class c
Tf ⊆ T Technologies that burn fuel type f
Tv ⊆ T Technologies that may access net-metering regime v

T ac ⊆ T cl Absorption chillers
T CHP ⊆ T f CHP technologies
T cl ⊆ T Cooling technologies
T e ⊆ T Electricity-producing technologies
T ec ⊆ T cl Electric chillers
T f ⊆ T e Fuel-burning, electricity-producing technologies
T ht ⊆ T Heating technologies
T td ⊆ T Technologies that cannot turn down, i.e., PV and wind
Up ⊆ U Electrical energy purchase pricing tiers
U s
t ⊆ U s Electrical energy sales pricing tiers accessible by technology t

U sb ⊆ U s Electrical energy sales pricing tiers accessible by storage
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Scaling parameters

Γ Number of time periods within a day [–]
Δ Time step scaling [h]
Θ Peak load oversizing factor [–]
M Sufficiently large number [various]

Parameters for costs and their functional forms

cafc Utility annual fixed charge [$]
ccbts y-intercept of capital cost curve for technology t in segment s [$]

ccmts Slope of capital cost curve for technology t in segment s [$/kW]

ceuh Export rate for energy in energy demand tier u in time step h [$/kWh]

c
g
uh Grid energy cost in energy demand tier u during time step h [$/kWh]

ckWb Capital cost of power capacity for storage system b [$/kW]

ckWh
b Capital cost of energy capacity for storage system b [$/kWh]

comb
b Operation and maintenance cost of storage system b per unit of

energy rating
[$/kWh]

c
omp
t Operation and maintenance cost of technology t per unit of

production
[$/kWh]

comσ
t Operation and maintenance cost of technology t per unit of power

rating, including standby charges
[$/kW]

crde Cost per unit peak demand in time-of-use demand period d and
tier e

[$/kW]

crmmn Cost per unit peak demand in tier n during month m [$/kW]

cuf Unit cost of fuel type f [$/MMBTU]

Demand parameters

δch Cooling load in time step h [kW]

δdh Electrical load in time step h [kW]

δ̄
gs
u Maximum allowable sales in electrical energy demand tier u [kWh]

δhh Heating load in time step h [kW]

δlp Look-back proportion for ratchet charges [fraction]

δ̄mt
n Maximum monthly electrical power demand in peak pricing tier n [kW]

δ̄te Maximum power demand in time-of-use demand tier e [kW]

δ̄tuu Maximum monthly electrical energy demand in tier u [kWh]

Incentive parameters

ı̄t Upper incentive limit for technology t [$]

inv Net metering limits in net metering regime v [kW]

i rt Incentive rate for technology t [$/kWh]

ı̄σt Maximum power rating for obtaining production incentive for
technology t

[kW]

Technology-specific time-series factor parameters

f edth Electrical power derate factor of technology t at time step h [unitless]

f fath Fuel burn ambient correction factor of technology t at time step h [unitless]

f hath Hot water ambient correction factor of technology t at time step h [unitless]
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f htth Hot water thermal grade correction factor of technology t at time step h [unitless]

f
p
th Production factor of technology t during time step h [unitless]

Technology-specific factor parameters

f dt Derate factor for turbine technology t [unitless]

f lt Levelization factor of technology t [fraction]

f lit Levelization factor of production incentive for technology t [fraction]

f
pf
t Present worth factor for fuel for technology t [unitless]

f
pi
t Present worth factor for incentives for technology t [unitless]

f td
t

Minimum turn down for technology t [unitless]

Generic factor parameters

f e Energy present worth factor [unitless]
f om O&M present worth factor [unitless]
f tot Tax rate factor for off-taker [fraction]
f tow Tax rate factor for owner [fraction]

Power rating and fuel limit parameters

bfaf Amount of available fuel for fuel type f [MMBTU]

b̄σ
t Maximum power rating for technology t [kW]

Efficiency parameters

η+bt Efficiency of charging storage system b using technology t [fraction]
η-b Efficiency of discharging storage system b [fraction]
ηac Absorption chiller efficiency [fraction]
ηb Boiler efficiency [fraction]
ηec Electric chiller efficiency [fraction]
ηg+ Efficiency of charging electrical storage using grid power [fraction]

Storage parameters

w̄bkW
b Maximum power output of storage system b [kW]

wbkW
b Minimum power output of storage system b [kW]

w̄bkWh
b Maximum energy capacity of storage system b [kWh]

wbkWh
b Minimum energy capacity of storage system b [kWh]

wd
b Decay rate of storage system b [1/h]

w
mcp
b Minimum percent state of charge of storage system b [fraction]

w0
b Initial percent state of charge of storage system b [fraction]

Fuel burn parameters

mfb
t y-intercept of the fuel rate curve for technology t [MMBTU/h]

mfbm
t Fuel burn rate y-intercept per unit size for technology t [MMBTU/kWh]

mfm
t Slope of the fuel rate curve for technology t [MMBTU/kWh]

CHP thermal performance parameters

ktet Thermal energy production of CHP technology t per unit electrical
output

[unitless]

k
tp
t Thermal power production of CHP technology t per unit power

rating
[unitless]
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3.2 Variables

Boundary conditions

X se
b,0 Initial state of charge for storage system b [kWh]

Continuous variables

XbkW
b Power rating for storage system b [kW]

XbkWh
b Energy rating for storage system b [kWh]

Xde
de Peak electrical power demand allocated to tier e and time-of-use

demand period d
[kW]

Xdfs
bh Power discharged from storage system b during time step h [kW]

Xdn
mn Peak electrical power demand allocated to tier n during month m [kW]

X f
th Fuel burned by technology t in time step h [MMBTU/h]

X fb
th y-intercept of fuel burned by technology t in time step h [MMBTU/h]

X
g
uh Power purchased from the grid for electrical load in demand tier u

during time step h
[kW]

X
gts
h Electrical power delivered to storage by the grid in time step h [kW]

Xmc Annual utility minimum charge adder [$]

X
pi
t Production incentive collected for technology t [$]

Xplb Peak electrical demand during look back periods [kW]

X
ptg
tuh Exports from production to the grid by technology t in demand tier

u during time step h
[kW]

X
pts
bth Power from technology t used to charge storage system b during

time step h
[kW]

X
ptw
th Thermal power from technology t sent to waste or curtailed during

time step h
[kW]

X
rp
th Rated production of technology t during time step h [kW]

Xσ
t Power rating of technology t [kW]

Xσ s
tks Power rating of technology t allocated to subdivision k, segment s [kW]

X se
bh State of charge of storage system b at the end of time step h [kWh]

X
stg
uh Exports from storage to the grid in demand tier u during time step h [kW]

X
tp
th Thermal production of technology t in time step h [kW]

X
tpb
th y-intercept of thermal production of CHP technology t in time step h [kW]

Binary variables

Zσ s
tks 1 If technology t in subdivision k, segment s is chosen; 0 otherwise [unitless]

Z to
th 1 If technology t is operating in time step h; 0 otherwise [unitless]
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3.3 Objective function

(̂R) minimize
∑

t∈T ,k∈Kc,s∈Stk

(

ccmts · Xσ s
tks + ccbts · Zσ s

tks

)

︸ ︷︷ ︸

Generating Technology Capital Costs

+
∑

b∈B

(

ckWb · XbkW
b +

(

ckWh
b + comb

b

)

· XbkWh
b

)

︸ ︷︷ ︸

Storage Capital Costs

+(1 − f tow) · f om ·
(

∑

t∈T
comσ
t · Xσ

t

︸ ︷︷ ︸

FixedO & MCosts

+
∑

t∈T f,h∈H
comp
t · X rp

th

︸ ︷︷ ︸

VariableO & MCosts

)

+(1 − f tot) · � ·
∑

f∈F
cuf ·

∑

t∈T f ,h∈H
f pft · X f

th

︸ ︷︷ ︸

Fuel Charges

+(1 − f tot) · f e ·
(

� ·
∑

u∈U p,h∈Hg

cguh · Xg
uh

︸ ︷︷ ︸

Grid Energy Charges

+
∑

d∈D,e∈E
crde · Xde

de

︸ ︷︷ ︸

Time-of-Use Demand Charges

+
∑

m∈M,n∈N
crmmn · Xdn

mn

︸ ︷︷ ︸

Monthly Demand Charges

+ cafc + Xmc
︸ ︷︷ ︸

Fixed Charges

−� ·
(

∑

h∈Hg

(

∑

u∈U sb

ceuh · X stg
uh +

∑

t∈T ,u∈U s
t

ceuh · Xptg
tuh

))

︸ ︷︷ ︸

Energy Export Payment

)

−(1 − f tow) ·
∑

t∈T
Xpi
t

︸ ︷︷ ︸

Production Incentives

The objective function is the same as that in (R) and minimizes energy life cycle
cost, i.e., capital costs, O&M costs, and utility costs; it maximizes (by subtracting)
payments for energy exports and other incentives.

3.4 Constraints

We mathematically present and describe the constraints that we modify from Ogun-
modede et al. (2021) to account for combined heat and power. For ease of presentation,
we exclude initial conditions and other minor exceptions.
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3.4.1 Fuel constraints

� ·
∑

t∈Tf ,h∈H
X f
th ≤ bfaf ∀ f ∈ F (1a)

X f
th = mfm

t · f pth · X rp
th + mfb

t · Z to
th ∀t ∈ T f\T CHP, h ∈ H (1b)

X f
th = mfm

t · X tp
th ∀t ∈ T ht \ T CH P , h ∈ H (1c)

X f
th = f fath ·

(

X fb
th + f pth · mfm

t · X rp
th

)

∀t ∈ T CH P , h ∈ H (1d)

mfbm
t · Xσ

t − M · (1 − Z to
th) ≤ X fb

th ∀t ∈ T CHP, h ∈ H (1e)

Constraints (1) enforce the fuel requirements for the combustion-powered technolo-
gies in REopt Lite. Constraint (1a) limits the available quantity of each fuel type per
annum; we assume that while multiple technologies (e.g., natural gas boilers and CHP
systems) may share the same fuel type, each technology may burn at most one type
of fuel. Constraint (1b) enforces both a fixed consumption rate per hour of opera-
tional time and a variable burn rate per unit of energy produced for each electric,
non-CHP technology. Constraint (1c) applies logic similar to that in constraint (1b)
for non-CHP heating technologies, but removes the fixed fuel consumption rate dur-
ing operation. Constraint (1d) defines fuel consumption for CHP systems using both
a per-operating-hour rate and a per-unit-production rate, but, unlike constraint (1b),
the hourly burn rate is a decision variable; constraint (1e) sets this decision vari-
able to a fixed proportion of the system’s power rating if it is operating, and to zero
otherwise.

3.4.2 Thermal production constraints

X tpb
th ≤ min

{

ktpt · Xσ
t ,M · Z to

th

}

∀t ∈ T CHP, h ∈ H (2a)

X tpb
th ≥ ktpt · Xσ

t − M · (1 − Z to
th) ∀t ∈ T CHP, h ∈ H (2b)

f hath · f htth ·
(

ktet · f pth · X rp
th + X tpb

th

)

= X tp
th ∀t ∈ T CHP, h ∈ H (2c)

Constraints (2a)–(2b) limit the fixed component of thermal production of CHP
technology t in time step h to the product of the thermal power production per unit of
power rating and the power rating itself if the technology is operating, and 0 if it is not.
Constraint (2c) relates the thermal production of a CHP technology to its constituent
components, where the relationship includes a term that is proportional to electrical
power production in each time step.
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3.4.3 Storage system constraints

Boundary Conditions and Size Limits

X se
b,0 = w0

b · XbkWh
b ∀b ∈ B (3a)

wbkWh
b ≤ XbkWh

b ≤ w̄bkWh
b ∀b ∈ B (3b)

wbkW
b ≤ XbkW

b ≤ w̄bkW
b ∀b ∈ B (3c)

Constraint (3a) initializes a storage system’s state of charge using a fraction of
its energy rating; constraints (3b) and (3c) limit the storage system size under the
implicit assumption that a storage system’s power and energy ratings are independent.
These constraints are identical to those given in (R), but work in conjunction with
significantly modified storage constraints that directly follow.

Storage Operations

Xpts
bth +

∑

u∈U s
t

Xptg
tuh ≤ f pth · f lt · X rp

th ∀b ∈ Be, t ∈ T e, h ∈ Hg (3d)

Xpts
bth ≤ f pth · f lt · X rp

th ∀b ∈ Be, t ∈ T e, h ∈ H \ Hg (3e)

Xpts
bth ≤ f pth · X tp

th ∀b ∈ Bth, t ∈ Tb \ T CHP, h ∈ H (3f)

Xpts
bth + Xptw

th ≤ X tp
th ∀b ∈ Bh, t ∈ T CHP, h ∈ H (3g)

X se
bh = X se

b,h−1 + � ·
(

∑

t∈T e

(η+bt · Xpts
bth) + ηg+ · Xgts

h − Xdfs
bh /η-b

)

∀b ∈ Be, h ∈ Hg (3h)

X se
bh = X se

b,h−1 + � ·
(

∑

t∈T e

(η+bt · Xpts
bth) − Xdfs

bh /η-b

)

∀b ∈ Be, h ∈ H \ Hg (3i)

X se
bh = X se

b,h−1 + � ·
⎛

⎝

∑

t∈Tb
η+bt · Xpts

bth − Xdfs
bh /η-b − wd

b · X se
bh

⎞

⎠

∀b ∈ Bth, h ∈ H (3j)

X se
bh ≥ w

mcp
b · XbkWh

b ∀b ∈ B, h ∈ H (3k)

Constraints (3d) and (3e) restrict the electrical power that charges storage and is
exported to the grid (in the former case), or that charges storage only (in the latter
case, when grid export is unavailable) from each technology in each time step relative
to the amount of electricity produced. Constraint (3f) provides an analogous restriction
to that of constraint (3e) for thermal production, and constraint (3g) provides the same
restriction for the thermal production of CHP systems. Constraints (3h), (3i), and (3j)
balance state of charge for each storage system and time period for three specific
cases, respectively: (i) available grid-purchased electricity, (ii) lack of grid-purchased
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electricity, and (iii) thermal storage, in which we account for decay. Constraint (3k)
ensures that minimum state-of-charge requirements are not violated.

Charging Rates

XbkW
b ≥

∑

t∈Tb
Xpts
bth + Xgts

h + Xdfs
bh ∀b ∈ Be, h ∈ Hg (3l)

XbkW
b ≥

∑

t∈Tb
Xpts
bth + Xdfs

bh ∀b ∈ Be, h ∈ H \ Hg (3m)

XbkW
b ≥

∑

t∈Tb
Xpts
bth + Xdfs

bh ∀b ∈ Bth, h ∈ H (3n)

X se
bh ≤ XbkWh

b ∀b ∈ B, h ∈ H (3o)

Constraints (3l) and (3m) require that a battery’s power rating must meet or exceed
its rate of charge or discharge; the latter constraint considers the case in which the
grid is not available. Constraint (3n) reflects the power requirements for the thermal
system. Constraint (3o) requires a storage system’s energy level to be at or below the
corresponding rating.

Cold and hot thermal loads

∑

t∈T cl

f pth · X tp
th +

∑

b∈Bc

Xdfs
bh = δch · ηec +

∑

b∈Bc
,t∈T cl

Xpts
bth ∀h ∈ H (4a)

∑

t∈T CHP

X tp
th +

∑

t∈T ht\T CHP

f pth · X tp
th +

∑

b∈Bh

Xdfs
bh = δhh · ηb

+
∑

t∈T CHP

Xptw
th +

∑

b∈Bh,t∈T ht

Xpts
bth +

∑

t∈T ac

X tp
th/η

ac ∀h ∈ H (4b)

Constraints (4a) and (4b) balance cold and hot thermal loads, respectively, by equat-
ing the power production and the power from storage with the sum of the demand, the
power to storage, and, in the case of cold loads, from the absorption chillers as well.
Here, for legacy reasons, we have scaled the power by the efficiency of the respective
technology; based on our variable definitions, we could have equivalently adjusted
these by a coefficient of performance.

3.4.4 Production constraints

X rp
th ≤ b̄σ

t · Z to
th ∀t ∈ T , h ∈ H (5a)

f td
t

· Xσ
t − X rp

th ≤ b̄σ
t · (1 − Z to

th) ∀t ∈ T , h ∈ H (5b)

X tp
th ≤ Xσ

t ∀t ∈ T \ T e, h ∈ H (5c)
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Constraint set (5) ensures that the rated production lies between a minimum turn-
down threshold and a maximum system size; constraints (5a) and (5b) are copied
from Ogunmodede et al. (2021), while constraint (5c) is new. Constraint (5a) restricts
system power output to its rated capacity when the technology is operating, and to
0 otherwise. Constraint (5b) ensures a minimum power output while a technology is
operating; otherwise, the constraint is dominated by simple bounds on production.
Constraint (5c) ensures that the thermal production of non-CHP heating and cooling
technologies does not exceed system size.

The remainder of the formulation largely mimics that of (R) given in Ogunmodede
et al. (2021), and is provided in the appendix (along with additional notation).

4 Solutionmethodology

The mathematical formulation in Section3 extends the model given in Ogunmodede
et al. (2021) to incorporate combined heat and power, which entails the introduction of
more technologies and the corresponding constraints to control them, including bal-
ancingmultiple loads, i.e., cold thermal, hot thermal, and electrical. As such, instances
of (̂R) are more difficult to solve. In order to improve tractability and to enable the
model’s use in theweb-based tool described inMishra et al. (2021), we reformulate the
model by: (i) introducing tailored data structures; (ii) efficiently handling data; and,
(iii) reformulating with a more streamlined set of variables. The improvements are
made relative to the implementation of the formulation given in Cutler et al. (2017),
and which we term (R̄).

4.1 Introducing tailored data structures

Reducing the instantiation of parameters and variables through the judicious use of
sets is critical to mitigating otherwise large instances who size would preclude them
from being solved in a practical amount of time. Brown and Dell (2007) (§4) point
towards small examples, while Klotz and Newman (2013b) explain theoretical and
computational difficulties associated with large models. Formulation (̂R) employs
subsets and indexed sets to ensure that only appropriate decision variables appear in
the objective function and in the constraints, either as a sum and/or according to a
constraint qualifier. This reduces the size of the model, both in terms of the number
of variables and in terms of the number of constraints an instance contains.

For example, the set T represents all available technologies; the subset T e contains
only electricity producing technologies. Similarly, B represents the set of storage
systems; the subset Be contains only electrical energy storage systems. Constraint
(3d) highlights the efficiency of using subsets to limit electrical power dispatched to
charge storage and export to the grid for electricity-producing technologies and storage
systems.

Xpts
bth +

∑

u∈ U s
t

Xptg
tuh ≤ f pth · f lt · X rp

th ∀b ∈ Be, t ∈ T e, h ∈ Hg (3d)
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The original formulation used sets, rather than subsets, controlling the terms that
appeared in the constraints using binary indicator parameters. Not only did this intro-
duce unnecessary parameters, it inducedmore terms in the constraint, and an increased
number of constraints overall.

A construct similar to subsets that also limits the number of variables and constraints
appearing in a model instance is indexed sets that restrict the size of a set to relevant
elements based on another set. Constraint (3f), reformulated from the original model,
provides an example in which the set of technologies considered is restricted to those
associated with storage, resulting in a qualifier Tb, rather than a constraint based on
each element in the entire set of technologies, T :

Xpts
bth ≤ f pth · X tp

th ∀b ∈ Bth, t ∈ Tb \ T CHP, h ∈ H (3f)

Similar to the case in which subsets replace larger sets, the case in which indexed
sets replace larger sets precludes the need for binary parameters, and reduces both the
number of terms a constraint contains, and the number of constraints overall in a given
formulation instance.

4.2 Efficiently handling data

Data used to populate (̂R) are drawn from myriad sources, including user-specified
inputs, and had been introduced into the original model at disjoint stages during its
development, resulting in (i) complex calculations to determine various parameter val-
ues; (ii) superfluous variables representing calculations consisting of both parameters
and variables; and, (iii) arbitrarily high variable bounds, resulting in potential numeri-
cal stability issues (in the case of simple bounds, see Klotz and Newman (2013a)), and
in weak linear programming relaxations (in the case of big-m values, see Camm et al.
(1990)). In order to preclude variables with unnecessarily and arbitrarily high bounds,
we reduce the values using physical limitations, appropriate for a givenmodel instance.

Constraint (1a) provides an example of a simple variable bound on X f
th :

� ·
∑

t∈Tf ,h∈H
X f
th ≤ bfaf ∀ f ∈ F (1a)

The maximum fuel limit, bfaf , had been an arbitrarily large value by default in the orig-
inal formulation. In order to reduce the size of the feasible region and to control the
discrepancy in the orders of magnitude between the largest and smallest non-zero val-
ues in a problem instance (thus, reducing the potential for numerical stability issues),
we suggest a reasonable default value based on physical attributes of the system:

bfaf =
∑

h∈H
f fath · mfbm

t · b̄σ
t + f fath · f Pth · mfm

t · b̄σ
t t ∈ T CHP

bfaf = |H| · mfm
t · b̄σ

t ∀t ∈ T ht \ T CHP

bfaf =
∑

h∈H
mfm

t · f Pth · b̄σ
t + mfb

t ∀t ∈ T f \ (T ht ∪ T CHP)
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where the first constraint pertains to a CHP technology, the second to a boiler, and the
third to a diesel generator, respectively.

An example that illustrates a reduction in big-m values follows. Constraint (7a)
permits nonzero power ratings only for the selected technology and corresponding
subdivision in each class:

Xσ
t ≤ M ·

∑

s∈Stk

Zσ s
tks ∀c ∈ C, t ∈ Tc, k ∈ Kt (7a)

Here, the big-m value for the system size can be given by the product of the number of
hours in a day and the peak hourly load, assuming there is no economic incentive for
exporting energy greater than the peak hourly load; this quantity would conservatively
meet daily load, i.e., in the absence of other technologies, including storage devices:

M = b̄σ
t = max

h∈H
{24 · δdh}

Table 1 highlights the list of values we tailor throughout formulation (̂R).

4.3 Reformulation with streamlined variables

Mixed-integer programs can assume a variety of mathematically equivalent formula-
tions. However, some render instances that are more easily solved than others, in large
part owing not to obvious theoretical characteristics, but to a practitioner’s understand-
ing of a solver’s ability to exploit certain mathematical structures (Trick 2005). It is in
this spirit that we examine (R̄) for possible improvements in the mathematical formu-
lation. Specifically, in the original formulation, (R̄), a set j ∈ J informed destinations
for electrical power, e.g., site demand, storage, curtailment, or the grid, and determined
the relevance of a technology for a particular constraint. Correspondingly, a decision
variable, Ŷ rp

t jhsu , appearing in the original model represented the rated production of
technology t at destination j during time step h in segment s from pricing tier u, in
which elements t in the set T represented all dispatchable technologies, including
electricity from the grid. Separately, the decision variable Ŷ g

jheun was defined as elec-
trical power from the grid dispatched to destination j , in time step h, for demand bin
e, in pricing tier u, and monthly peak demand tier n, and a constraint ensured that
rated production by the utility was equal to grid purchases:

∑

s∈S
Ŷ rp
t jhsu =

∑

e∈E,n∈N
Ŷ g
jheun ∀ j ∈ J , u ∈ U , h ∈ H, t ∈ T : t = ‘Grid’

Formulation (̂R) assumes that electricity from the grid has unlimited availability,
removing the need for the above-mentioned constraint. In turn, we note that we can
eliminate sets U , S, and J from a variable representing production for the following
reasons, respectively: (i) grid purchases are represented by a separate decision variable,
so we can excise the utility from the collection of technologies T , and we can remove
the utility-specific pricing tier index u from rated production; (ii) the set of segments
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Table 1 Tailored values, i.e., appropriately sized variable bounds and “big-m values,” where those above
the dotted line represent explicit right-hand-side “b”-values, while those below represent coefficients on
binary variables that are either traditional big-m values or are potential replacements for said values based
on improvements to user-specified inputs

Constraints Input parameter Tailored value Bound rationale

(1a) bfaf � · ∑

h∈H
( f fath · mfbm

t · b̄σ
t + f fath · f

p
th · mfm

t · b̄σ
t ) Per (1d) and (1e)†

� · |H| · mfm
t · b̄σ

t Per (1c)†

� · (
∑

h∈H
mfm
t · f

p
th · b̄σ

t + |H| · mfb
t ) Per (1b)†

(3b) w̄bkW
b

w̄bkWh
b
� Practical

(3c) w̄bkWh
b

∑

h∈H
δdh ∀b ∈ Be Practical

∑

h∈H
δhh ∀b ∈ Bh Practical

∑

h∈H
δch ∀b ∈ Bc Practical

(6b) ı̄σt b̄σ
t Practical

(8e), (8f) δ̄
gs
u � · ∑

h∈H
δdh Practical

(1e) M mfbm
t · b̄σ

t Practical

(2a), (2b) M b̄σ
t · ktpt Practical

(5a), (5b), (7a) b̄σ
t max

h∈H {	 · δdh} ∀t ∈ T e Practical

max
h∈H {
 · δhh} ∀t ∈ T ht \ T CHP Practical

max
h∈H {
 · δch} ∀t ∈ T ec Practical

∑

h∈H
δch + w̄bkWh

b
�

∀t ∈ T ac Practical

(6a) ı̄t
∑

h∈H
� · i rt · f

pi
t · f

p
th · f lit · b̄σ

t Practical

(6b) M b̄σ
t − ı̄σt Practical

(9b) inv
∑

t∈Tv

f dt · b̄σ
t Per net metering limit

(10a) δ̄tu|U | max
m∈M

{

∑

h∈Hm

δdh

}

Practical

(11a) δ̄mt|N | max
m∈M

{

∑

h∈Hm

δdh

}

Practical

(12a) δ̄t|E | max
d∈D

{

∑

h∈Hd

δdh

}

Practical

†The tailored values hold for all relevant instances as given by the constraint qualifiers, e.g., the first
expression in the third column of the table is valid ∀t ∈ T CHP, the second ∀t ∈ T ht \ T CHP and the third
∀t ∈ T f \ (T ht ∪ T CHP). Constraint qualifiers for the other expressions are either explicitly stated or are
self-explanatory; some tailored values may be invariant by one or more indices, e.g., the tailored value for
(8e) and (8f) holds ∀u ∈ U
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s ∈ S is only utilized for system sizing decisions; and, (iii) the set of destinations is
now informed solely by the technology type. This results in the transformation of the
more complicated variable Ŷ rp

t jhsu into the much simplified rated production variable,

X rp
th , where the latter variable is related to system size as follows:

Xσ
t ≤ b̄σ

t ·
∑

s∈Stk

Zσ s
tks ∀c ∈ C, t ∈ Tc, k ∈ Kt (7a)

X rp
th = Xσ

t ∀t ∈ T td, h ∈ H (7b)

X rp
th ≤ f edth · Xσ

t ∀t ∈ T \ T td, h ∈ H (7c)

We replace the set of destinations J with variables that represent power flows to
the grid (Xptg

tuh) and to storage (Xpts
bth). The relationships between these variables are

enforced as follows:

Xpts
bth +

∑

u∈U s
t

Xptg
tuh ≤ f pth · f lt · X rp

th ∀b ∈ Be, t ∈ T e, h ∈ Hg (3d)

Xpts
bth ≤ f pth · f lt · X rp

th ∀b ∈ Be, t ∈ T e, h ∈ H \ Hg (3e)

And to remove destination j from the original variable Ŷ g
jheun containing it, we

employ a decision variable for the flow of electricity from the grid to storage (Xgts
h ):

∑

u∈Up

Xg
uh ≥ Xgts

h ∀h ∈ Hg (8c)

Without the indices e and n, we enforce peak demand by billing period via constraints
(11d) and (12d):

∑

n∈N
Xdn
mn ≥

∑

u∈Up

Xg
uh ∀m ∈ M, h ∈ Hm (11d)

∑

e∈E
Xde
de ≥ max

h∈Hd

{

∑

u∈Up

Xg
uh, δ

lp · Xplb

}

∀d ∈ D (12d)

Finally, constraints (8a) and (8b) balance load using the rated production and grid
purchasing variables described above. Figure3 provides a network flow representa-
tion of electrical load balancing under the reformulation, with PV and storage as the
technologies, and a grid connection.

The revised formulation contains significantly fewer variables. In Fig. 3, the blue
nodes represent sources and the red nodes represent destinations. While inflows and
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Fig. 3 A network flow representation of electrical load balancing in the reformulated model, using a PV
system and a battery as the on-site technologies

outflows are balanced for the technologies and utility, constraints (8a) and (8b) enforce
flow balance for the node labeled “Site Load” in periods with utility connectiv-
ity and with an outage, respectively. Constraints (3d) and (3e) enforce nonnegative
flows from PV to site load with and without a grid connection, respectively. Con-
straints (8c) and (8d) provide an analogous restriction on flows to site load from the
utility and the battery, respectively.

One demonstration of the increased efficiency of our reformulation is the presence
of at most one arc between each pair of nodes in Fig. 3, whereas in a representation
of the previous formulation, each arc departing from PV would have had one copy
for each segment s, and each arc departing from the utility would have had at least
one additional copy due to the presence of both rated-production and grid-purchase
decision variables for the utility, regardless of the number of redundant copies due to
additional sets in both cases.

5 Data and results

We derive data for the 12 cases against which we evaluate our performance-enhancing
techniques from a test set developed by the National Renewable Energy Laboratory.
Each case contains combined heat and power and a boiler, and also some combination
of solar photovoltaics, electric chillers, absorption chillers, along with different forms
of energy storage such as batteries and thermal (hot and cold) energy storage; we solve
for a year’s worth of dispatch decisions at hourly fidelity. In order to fully exercise
the model attributes formulated mathematically and explained in Section 3, the case
studies differ in the building type, total electrical energy pricing tiers (|U |), monthly
peak demand tiers (|N |), time-of-use demand periods (|D|), and whether standby
charges apply. (We note that standby charges occur only if CHP technologies are not
allowed to reduce peak demand; see constraint (11d) and constraint (12d).)
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Table 2 Problem statistics for the 12 cases on which we perform computational experiments comparing
model (R̄) and model (̂R)

Model (R̄) Model (̂R)

Number of Reduction (%) in Density of A-matrix ·103 (%) 1 log10(k/k
′)

Case variables constraints variables constraints Model (R̄) Model (̂R) Model (R̄) − Model (̂R)

1 333,030 481,914 31.6 36.3 1.03 1.37 5

2 333,030 481,914 28.9 36.3 1.03 1.35 5

3 333,030 481,914 28.9 36.3 1.03 1.35 5

4 490,738 665,255 33.9 43.4 0.72 1.06 5

5 701,038 691,661 55.0 46.8 0.53 1.09 5

6 841,148 691,817 61.5 46.8 0.58 1.09 5

7 1,471,910 735,731 76.2 50.0 0.55 1.15 5

8 490,738 665,255 35.7 43.4 0.72 1.11 5

9 578,366 857,993 30.3 45.9 0.57 0.83 5

10 333,030 481,914 31.6 36.3 1.03 1.37 5

11 333,030 481,914 31.6 36.3 1.03 1.37 5

12 333,030 481,914 31.6 36.3 1.03 1.37 6

1Represents the difference in orders of magnitude between the largest and smallest non-zero entries in the
data, i.e., across the A-matrix, b-vector and c-vector, as calculated using log10(k/k

′), where k=max {all
entries in A-matrix, b-vector, c-vector} and k′=min {all entries in A-matrix, b-vector, c-vector}

We first present the results by comparing models (̂R) and (R̄) in terms of their
problem statistics. Secondly, we compare run-time performance. Finally, we showcase
our model’s ability to minimize the users’ dependency on the grid, especially during
peak demand, by highlighting aspects of a solution to one case.

5.1 Model statistics

Because of the complicated mathematical structure of our model and the size of our
cases, we reformulate model (R̄) as (̂R) using the methods described in Section 4.
Table2 shows the improvements in reformulation (̂R) as a percent reduction in the
number of variables and constraints. We concede that this reduction comes at the
expense of a denser A matrix, owing to a more “compact” set of constraints, but
the reduction in problem size more than offsets the increased density. That is, the
approximately 40% reduction in both the number of variables and in the number
of constraints in the reformulated model more than offsets the approximately same
increase in the density of the constraint matrix when comparing solve times of the
two models; this can be attributed to our use of simplex-based (versus interior point)
methods. Furthermore, our reformulatedmodel contains data that ismuch better scaled
than that of the original model, where the decrease between the largest and smallest
non-zero values is five (or more) orders of magnitude.
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5.2 Model performance

Model (R̄) is implemented in Mosel (FICO 2021b) while model (̂R) is implemented
in AMPL (Fourer et al. 2004); the difference in modeling language is the result of a
legacy formulation versus a convenient instrument that enabled us to easily implement
the enhancements we describe in Section 4, respectively. They are both solved using
default algorithmic settings in Xpress V8.8.0 (FICO 2021a) on a Dell Power Edge
R410 server with two Intel Xeon E5520s at 2.27 GHz 28GB RAM, and 1TB HDD.
We display problem characteristics associated with each case, and provide the corre-
sponding performance in terms of percent optimality gap achieved within a 10-minute
time limit, which was deemed to be appropriate given that our model is embedded in a
web-based tool. Table 3 shows that, in each case, model (̂R) performs better than (R̄)
by achieving a tighter optimality gap. For each case in which the model finds a feasible
solution, the gaps average more than 28% for model (R̄), whereas the corresponding
average gap is slightly greater than 2% for these same cases with model (̂R). For Case
9, the only one that exercises every possible technology combined with both hot and
cold thermal energy storage, (R̄) cannot find a feasible solution within the time limit,
while (̂R) finds a solution with a 2.65% optimality gap. Case 7 is another extreme that
reaches only a 99.3% gap using (R̄), whereas (̂R) is able to reach a 1.11% optimality
gap within the time limit. On average (excluding case 9), the overall gap improves by
about 88% using formulation (̂R).

Because our formulation is an extension ofmodel (R) in Ogunmodede et al. (2021),
we also test those cases (i.e., without CHP) and find that our implementation out-
performs the original with solution times that average between 30 and 60 seconds,
amounting to a reduction of as much as two orders of magnitude (using the same
software and hardware).

5.3 Model dispatch strategy

We examine the solution determined by (̂R) for Case 9 which prescribes the systems
shown in Table4.

Figure4 displays how the technologies are dispatched to meet hourly site require-
ments while reducing electrical power consumption from the utility relative to the
business-as-usual scenario, which only employs the utility, the boiler, and the electric
chiller to meet the electrical, heating, and cooling loads, respectively.

Typically, in an electrical demand graph (see Fig. 4a), there are five high-demand
periods representing the afternoon and evening of each weekday. However, due to
Christmas day occurring onMonday of the respective week, there are four. The dashed
line highlights the business-as-usual scenario in which the hospital’s cooling load is
entirely met by the electric chiller. The optimized solution for Case 9 exhibits battery
discharge, PV, andCHP—reducing the peak utility consumption to 212 kW tomeet the
majority of the electrical load. Figure4b highlights the dispatch strategy of the CHP
and the boiler systems.As part of peak-shaving, the absorption chiller is used instead of
the electric chiller, and CHP is run at capacity. The heat provided by CHP cannot meet
both the load consumed by the absorption chiller and the site heating load; therefore,
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Table 3 Results comparing solution quality obtained from model (R̄) and model (̂R) within a 10-min time
limit, using AMPL and Mosel Xpress default settings

2Gap (%)

Case 1Technologies included |U | |N | |D| Standby charges Building type (R̄) (̂R)

1 CHP, BOIL 1 1 30 No Hospital 12.6 0.93

2 CHP, BOIL 1 1 30 No Hospital 15.7 3.26

3 CHP, BOIL, TES 1 1 30 No Hospital 17.6 4.12

4 CHP, BOIL, PV, BES 1 1 30 No Hospital 15.8 4.32

5 CHP, BOIL, PV, BES 1 5 12 No Hospital 35.1 1.32

6 CHP, BOIL, PV, BES 2 2 12 No Hospital 46.6 0.46

7 CHP, BOIL, PV, BES 5 1 12 No Hospital 99.3 1.11

8 CHP, BOIL, PV, BES 1 1 30 Yes Hospital 8.70 0.71

9 CHP, BOIL, PV, EC, BES, TES, AC 1 1 30 No Hospital – 2.65

10 CHP, BOIL 1 1 30 No Large office 11.2 0.59

11 CHP, BOIL 1 1 30 No Large hotel 26.8 0.97

12 CHP, BOIL 1 1 30 No Apartment 22.5 6.72

1BOIL: Boiler, EC: Electric Chiller, TES: Thermal Energy Storage, BES: Battery Electrical Storage, AC:
Absorption Chiller, PV: Solar Photovoltaics.
2The gap is reported within a 10-minute time limit and is calculated as:

(

Upper bound-Lower bound
Upper bound

)

· 100
Table 4 Model (̂R)’s technology mix for Case 9

Power Energy

Technology [kW] [kWh] [gal]

CHP 789 – –

PV 1400 – –

Boiler 1696 – –

Absorption chiller 512 – –

Electric chiller 324 – –

Battery energy storage 180 616 –

Chilled water thermal energy storage – – 19

the boilermakes up the difference. Figure4c demonstrates the dispatch strategies of the
absorption chiller, electric chiller and the chilled water thermal storage system serving
the cooling demand. The use of the absorption chiller reduces the dependence of the
system on the existing electric chiller, thereby reducing the total electricity usage. The
solution associated with model (̂R) represents a 22% savings over business-as-usual.
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(a) Case 9 Electrical Demand

(b) Case 9 Heating Demand

(c) Case 9 Cooling Demand

Fig. 4 Dispatch summary for one week within Case 9, in which the technologies reduce peak electrical
power consumption from the utility while meeting all hourly site loads

6 Conclusions

We examine a mixed-integer program that designs and dispatches renewable energy
technologies and combined heat and power with a grid option. Instances of our mixed-
integer program contain hundreds of thousands of variables and constraints, rendering
an initial instantiation of our model intractable. To improve performance, we tailor
data structures, efficiently handle data, and streamline the formulation through variable
redefinition. These enhancements result in solutions within about 2% of optimality,
on average, for the cases we test within a ten-minute time limit, rendering use of
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the model appropriate for a web-based tool. Without the enhancements, instances
generally remain at optimality gaps well above 10% within the same time limit.

Future work could entail implementing a decomposition procedure to further expe-
dite solutions, and employing the model in international settings such as emerging
markets of sub-Saharan Africa where opportunities for combined heat and power
could enhance economic growth. Additionally, experimental work in thermal science
might reveal that a more detailed combined heat and power representationmight better
reflect the operations of this technology. Finally, domestic implementation calls for
myriad variations of the model and its output, such as considering alternate objective
functions that would encompass resiliency and efficiency, and examining a diversity
of solutions that would capture intangibles.
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Appendix

We provide here additional notation not given (or used) in the body of the document,
but that appears in the following constraints.

Sets

K Subdivisions of power rating
S Power rating segments
V Net metering regimes

Subsets and indexed sets

Mlb Look-back months considered for peak pricing
Tu ⊆ T Technologies that may access electrical energy sales pricing tier u
Uc ⊆ U s Electrical energy curtailment pricing tiers
Unm ⊆ U s Electrical energy sales pricing tiers used in net metering
U s ⊆ U Electrical energy sales pricing tiers

Parameters for costs and their functional forms

camc Utility annual minimum charge [$]

Power rating and fuel limit parameters

b σ
c Minimum power rating for technology class c [kW]

b σ s
tks Minimum power rating for technology t , subdivision k, segment s [kW]

b̄σ s
tks Maximum power rating for technology t , subdivision k, segment s [kW]

Binary variables

Zdmt
mn 1 if tier n has allocated demand during month m; 0 otherwise [unitless]

Zdt
de 1 if tier e has allocated demand during time-of-use period d; 0 otherwise [unitless]

Znmil
v 1 if generation is in net metering interconnect limit regime v; 0 otherwise [unitless]

Z
pi
t 1 if production incentive is available for technology t ; 0 otherwise [unitless]

Zut
mu 1 if demand tier u is active in month m; 0 otherwise [unitless]

The following constraints, when combined with those given in Section 3, form
the monolith (̂R) that considers combined heat and power technologies in addition
to the original renewable technologies. These constraints and their corresponding
descriptions are taken directly from Ogunmodede et al. (2021) and are included here
for completeness.

Production incentives

Xpi
t ≤ min

{

ı̄t · Zpi
t ,

∑

h∈H
� · i rt · f pit · f pth · f lit · X rp

th

}

∀t ∈ T (6a)

Xσ
t ≤ ı̄σt + M · (1 − Zpi

t ) ∀t ∈ T (6b)

Constraint (6a) calculates total production incentives, if available, for each technology.
Constraint (6b) sets an upper bound on the size of system that qualifies for production
incentives, if production incentives are available.
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Power rating

Xσ
t ≤ b̄σ

t ·
∑

s∈Stk

Zσ s
tks ∀c ∈ C, t ∈ Tc, k ∈ Kt (7a)

∑

t∈Tc,s∈Stk

Zσ s
tks ≤ 1 ∀c ∈ C, k ∈ K (7b)

∑

t∈Tc
Xσ
t ≥ b σ

c ∀c ∈ C (7c)

X rp
th = Xσ

t ∀t ∈ T td, h ∈ H (7d)

X rp
th ≤ f edth · Xσ

t ∀t ∈ T \ T td, h ∈ H (7e)

b σ s
tks · Zσ s

tks ≤ Xσ s
tks ≤ b̄σ s

tks · Zσ s
tks ∀t ∈ T , k ∈ Kt , s ∈ Stk (7f)

∑

s∈Stk

Xσ s
tks = Xσ

t ∀t ∈ T , k ∈ Kt (7g)

Constraint (7a) permits nonzero power ratings only for the selected technology and
corresponding subdivision in each class. Constraint (7b) allows atmost one technology
to be chosen for each subdivision in each class. Constraint (7c) limits the power rating
to the minimum allowed for a technology class. Constraint (7d) prevents renewable
technologies from turning down; rather, they must provide output at their nameplate
capacity. Constraint (7e) limits rated production from all non-renewable technologies
to be less than or equal to the product of the power rating and the derate factor for
each time period. Constraint (7f) imposes both lower and upper limits on power rating
of a technology, allocated to a subdivision in a segment, and constraint (7g) sums the
segment sizes to the total for a given technology and subdivision.

Load balancing and grid sales

∑

t∈T e

( f pth · f lt · X rp
th) +

∑

b∈Be

Xdfs
bh +

∑

u∈Up

Xg
uh =

∑

t∈T e

(
∑

b∈Be

Xpts
bth +

∑

u∈U s
t

Xptg
tuh)

+
∑

u∈U sb

X stg
uh + Xgts

h +
∑

t∈T ec

X tp
th/η

ec + δdh ∀h ∈ Hg (8a)

∑

t∈T e

( f pth · f lt · X rp
th) +

∑

b∈Be

Xdfs
bh =

∑

b∈Be
,t∈T e

⎛

⎝Xpts
bth +

∑

u∈U c

Xptg
tuh

⎞

⎠

+
∑

t∈T ec

X tp
th/η

ec + δdh ∀h ∈ H \ Hg (8b)

∑

u∈Up

Xg
uh ≥ Xgts

h ∀h ∈ Hg (8c)

∑

b∈Be

Xdfs
bh ≥

∑

u∈U sb

X stg
uh ∀h ∈ Hg (8d)
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� ·
∑

h∈Hg

⎛

⎝X stg
uh +

∑

t∈Tu
Xptg
tuh

⎞

⎠ ≤ δ̄
gs
u ∀u ∈ U sb ∩ Unm (8e)

� ·
∑

h∈Hg
,t∈Tu

Xptg
tuh ≤ δ̄

gs
u ∀u ∈ Unm \ U sb (8f)

Constraint (8a) balances load by requiring that the sum of power (i) produced, (ii)
discharged from storage, and (iii) purchased from the grid is equal to the sum of (i)
the power charged to storage, (ii) the power sold to the grid from in-house production
or storage, (iii) the power charged to storage directly from the grid, (iv) any additional
power consumed by the electric chiller (where this is an additional term relative to the
original model (R)), and (v) the electrical load on site. Constraint (8b) provides an
analogous load-balancing requirement for hours in which the site is disconnected from
the grid due to an outage (and contains the same additional term relative to the original
model (R)). Constraint (8c) restricts charging of storage from grid production to the
grid power purchased for each hour. Similarly, constraint (8d) restricts the sales from
the electrical storage system to its rate of discharge in each timeperiod.Constraints (8e)
and (8f) restrict the annual energy sold to the grid at net-metering rates; only one
of these is implemented in each case according to user-specified options. While a
collection of pre-specified technologies may contribute to net-metering rates in both
cases, constraint (8e) allows storage to contribute to net-metering while constraint (8f)
does not.

Rate tariff constraints

Net Metering

∑

v∈V
Znmil

v = 1 (9a)

∑

t∈Tv

f dt · Xσ
t ≤ inv · Znmil

v ∀v ∈ V (9b)

� ·
∑

h∈Hg

⎛

⎝

∑

u∈Unm,t∈Tu
Xptg
tuh +

∑

u∈Unm∩U sb

X stg
uh

⎞

⎠ ≤ � ·
∑

u∈Up
,h∈Hg

Xg
uh (9c)

Constraint (9a) limits the net metering to a single regime at a time. Constraint (9b)
restricts the sum of the power rating of all technologies to be less than or equal to the
net metering regime. Constraint (9c) ensures that energy sales at net-metering rates
do not exceed the energy purchased from the grid.

Monthly Total Demand Charges

� ·
∑

h∈Hm

Xg
uh ≤ δ̄tuu · Zut

mu ∀m ∈ M, u ∈ Up (10a)

Zut
mu ≤ Zut

m,u−1 ∀u ∈ Up : u ≥ 2,m ∈ M (10b)
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δ̄tuu−1 · Zut
mu ≤ � ·

∑

h∈Hm

Xg
u−1,h ∀u ∈ Up : u ≥ 2,m ∈ M (10c)

Constraint (10a) limits the quantity of electrical energy purchased from the grid in a
given month from a specified pricing tier to the maximum available. Constraint (10b)
forces pricing tiers to be charged in a specific order, and constraint (10c) forces one
pricing tier’s purchases to be at capacity if any charges are applied to the next tier.

Peak Power Demand Charges: Months

Xdn
mn ≤ δ̄mt

n · Zdmt
mn ∀n ∈ N ,m ∈ M (11a)

Zdmt
mn ≤ Zdmt

m,n−1 ∀n ∈ N : n ≥ 2,m ∈ M (11b)

δ̄mt
n−1 · Zdmt

mn ≤ Xdn
m,n−1 ∀n ∈ N : n ≥ 2,m ∈ M (11c)

∑

n∈N
Xdn
mn ≥

∑

u∈Up

Xg
uh ∀m ∈ M, h ∈ Hm (11d)

Constraint (11a) limits the energy demand allocated to each tier to no more than the
maximum demand allowed. Constraint (11b) forces monthly demand tiers to become
active in a prespecified order. Constraint (11c) forces demand to be met in one tier
before the next demand tier. Constraint (11d) defines the peak demand to be greater
than or equal to all of the demands across the time horizon, where an equality is
actually induced by the sense of the objective function.Auser-defined option precludes
CHP technology production from reducing peak demand; if selected, constraint (11d)
becomes:

∑

n∈N
Xdn
mn ≥

∑

u∈Up

Xg
uh +

∑

t∈T CHP

⎛

⎝ f pth · f lt · X rp
th −

∑

b∈Bh

Xpts
bth −

∑

u∈U s
t

Xptg
tuh

⎞

⎠

∀m ∈ M, h ∈ Hm .

Peak Power Demand Charges: Time-of-Use Demand and Ratchet Charges

Xde
de ≤ δ̄te · Zdt

de ∀e ∈ E, d ∈ D (12a)

Zdt
de ≤ Zdt

d,e−1 ∀e ∈ E : e ≥ 2, d ∈ D (12b)

δ̄te−1 · Zdt
de ≤ Xde

d,e−1 ∀e ∈ E : e ≥ 2, d ∈ D (12c)

∑

e∈E
Xde
de ≥ max

{

∑

u∈Up

Xg
uh, δ

lp · Xplb

}

∀d ∈ D, h ∈ Hd (12d)

Xplb ≥
∑

n∈N
Xdn
mn ∀m ∈ Mlb (12e)

Constraints (12a)-(12d) correspond to constraints (11a)-(11d), respectively, but pertain
to a type of charge not related to monthly use, but rather to time of use within a month.
These ratchet charges are implemented using constraints (12d). The charge applied for

123



1638 J. Hirwa et al.

each time-of-use period is a linearizable function of the greater of the peak electrical
demand during that period (as given by the first term on the right-hand side of (12d))
and a fraction of the peak demand that occurs over a collection of months (known as
look-back months) during the year (as given by the second term on the right-hand side
of (12d)). Constraint (12e) ensures the peak demand over the set of look-back months
is no lower than the peak demand for each look-back month. In this way, charges are
based not only on use in a given month, but also on a fraction of use over the last
several months, and becomes relevant when this latter use is high relative to current
use. If CHP technologies are not allowed to reduce peak demand, constraint (12d)
becomes:

∑

e∈E
Xde
de ≥

∑

u∈Up

Xg
uh +

∑

t∈T CHP

⎛

⎝ f pth · f lt · X rp
th −

∑

b∈Bh

Xpts
bth −

∑

u∈U s
t

Xptg
tuh

⎞

⎠

∀d ∈ D, h ∈ Hd .

Minimum utility charge

Xmc ≥ camc −
⎛

⎝� ·
∑

u∈Up,h∈Hg

cguh · Xg
uh

︸ ︷︷ ︸

Grid Energy Charges

+
∑

d∈D,e∈E
crde · Xde

de

︸ ︷︷ ︸

Time-of-Use Demand Charges

+
∑

m∈M,n∈N
crmmn · Xdn

mn

︸ ︷︷ ︸

Monthly Demand Charges

− � ·
⎛

⎝

∑

h∈Hg

⎛

⎝

∑

u∈U sb

ceuh · X stg
uh +

∑

t∈T ,u∈U s
t

ceuh · Xptg
tuh

⎞

⎠

⎞

⎠

⎞

⎠

︸ ︷︷ ︸

Energy Export Payment

(13)

Constraint (13) enforces a minimum payment to the utility provider, which is a fixed
constant less charges incurred from grid energy, time-of-use demand and monthly
demand payments, plus sales from exports to the grid.

Non-negativity

Xplb, Xmc ≥ 0 (14a)

Xσ
t , Xpi

t ≥ 0 ∀t ∈ T (14b)

Xptg
tuh ≥ 0 ∀u ∈ U , t ∈ Tu, h ∈ H (14c)
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X stg
uh , Xg

uh ≥ 0 ∀u ∈ U , h ∈ H (14d)

Xde
de ≥ 0 ∀d ∈ D, e ∈ E (14e)

Xdn
mn ≥ 0 ∀m ∈ M, n ∈ N (14f)

Xgts
h ≥ 0 h ∈ H (14g)

XbkW
b , XbkWh

b ≥ 0 b ∈ B (14h)

Xσ s
tks ≥ 0 ∀t ∈ T , k ∈ K, s ∈ Stk (14i)

Xpts
bth ≥ 0 ∀b ∈ B, t ∈ T , h ∈ H (14j)

X se
bh, X

dfs
bh ≥ 0 ∀b ∈ B, h ∈ H (14k)

X rp
th, X

f
th, X

fb
th, X

tpb
th , X tp

th, X
ptw
th ≥ 0 ∀t ∈ T , h ∈ H (14l)

Integrality

Znmil
v ∈ {0, 1} ∀v ∈ V (15a)

Zσ s
tks ∈ {0, 1} ∀t ∈ T , k ∈ K, s ∈ Stk (15b)

Zpi
t ∈ {0, 1} ∀t ∈ T (15c)

Z to
th ∈ {0, 1} ∀t ∈ T , h ∈ H (15d)

Zdt
de ∈ {0, 1} ∀d ∈ D, e ∈ E (15e)

Zdmt
mn ∈ {0, 1} ∀m ∈ M, n ∈ N (15f)

Zut
mu ∈ {0, 1} ∀m ∈ M, u ∈ U (15g)

Finally, constraints (14) ensure all of the variables in our formulation assume non-
negative values. In addition to non-negativity restrictions, constraints (15) establish
the integrality of the appropriate variables.
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