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Abstract
This note is concerned with inverse wave scattering in one and two dimensional 
domains. It seeks to recover an unknown function based on measurements col-
lected at the boundary of the domain. For one-dimensional problem, only one point 
of the domain is assumed to be accessible. For the two dimensional domain, the 
outer boundary is assumed to be accessible. It develops two iterative algorithms, 
in which an assumed initial guess for the unknown function is updated. The first 
method uses a set of sampling functions to formulate a moment problem for the cor-
rection to the assumed value. This method is applied to both one-dimensional and 
two dimensional domains. For two dimensional Helmholtz equation, it relies on a 
new effective filtering technique which is another contribution of the present work. 
The second method uses a direct formulation to recover the correction term. This 
method is only developed for the one-dimensional case. For all cases presented here, 
the correction to the assumed value is obtained by solving an over-determined linear 
system through the use of least-square minimization. Tikhonov regularization is also 
used to stabilize the least-square solution. A number of numerical examples are used 
to show their applicability and robustness to noise.

Keywords Helmholtz equation · Moment problem · Tailored filtering · Tikhonov 
regularization · Least-square solution

Mathematics Subject Classification 45Q05 · 35j05 · 34L25

 * M. Tadi 
 tadi@ccsu.edu

 Miloje Radenkovic 
 miloje.radenkovic@ucdenver.edu

1 Department of Engineering, Central Connecticut State University, New Britain, CT 06053, USA
2 Department of Electrical Engineering, University of Colorado Denver, Denver, CO 80204, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-021-09638-8&domain=pdf


2458 M. Tadi, M. Radenkovic 

1 3

1 Introduction

In this note, we introduce two new methods for inverse wave scattering in one and 
two dimensional domains. This problem appears very naturally in various appli-
cations including acoustics (Colten et al. 2000), quantum mechanics (Lagaris and 
Evangelakis 2011; Sacks and Jaemin 2009), nondestructive testing of materials 
(Jamil et al. 2013), magnetic resonance imaging (Fessler 2010), and optics (Belai 
et al. 2008).

It is well-known that this class of problems are highly ill-posed (Colten and 
Kress 1991) and various methods have been developed to overcome it. These 
methods include singular value decomposition (Capozzoli et  al. 2017), direct 
sampling methods (Kang et al. 2020), inexact Newton method (Desmal and Bağci 
2015), multiple forward method (Tadi et al. 2011), meshless method (2006) (Jin 
and Zheng 2006), level set method (2008) (Irishina et al. 2008), dual reciprocity 
(Marin et al. 2006), generalized inverse , proper solution space (Hamad and Tadi 
2019), and iterative methods which treats the integral formulation of the scatter-
ing problem (Barcelo et al. 2016) and (Novikov 2015). Although this problem has 
been approached by a number of researchers (Mueller and Siltanen 2012) (also 
references therein), the research in developing computational algorithms is still 
underway due to the complexity of the problem (Klibanov and Romanov 2015).

For this particular problem in one dimension, recent results include (Bugarija 
et  al. 2020) where the unknown function is assumed to be piecewise constant 
Thanh and Klibanov (2020) where a globally convergent numerical method is 
presented, and Klibanov et al. (2018) where a one-dimensional model is used for 
land-mind detection. The purpose of this paper is to develop two numerical meth-
ods. One method is based on using a set of sampling functions to formulate a 
moment problem. We have developed this method to solve a Cauchy problem that 
appears in stable operation of Tadi (2019). In this paper, We develop this method 
for one-dimensional and two-dimensional domains. For the one-dimensional 
domain, only the boundary of the domain is accessible for collecting measure-
ments. For the two-dimensional domain, the external boundary of the domain is 
used to collect the data. When applying the sampling function method to a 2-D 
domain, the effect of noise in the data becomes crucial. In this paper, we also 
develop a new tailored filtering technique that is very effective in eliminating the 
noise in the data. This filtering technique has it’s roots in an inversion method 
based on proper solution space (Tadi 2017).

The second method uses a perturbation technique, i.e., (Eshkuvatov 2018) to 
relate the unknown function directly to the measurements provided for the inver-
sion. Using this method, it is also possible to include the effect of nonlinear term 
that appears in the equation for the error field.

In Sect. 2, we present the method based on the use of sampling functions. In 
Sect.  3, we present the direct formulation. In Sect.  4, we present the sampling 
method for 2-D Helmholtz equation. In Sect. 5, we present the new tailored filter-
ing technique, and in Sect. 6, we choose a specific set of sampling functions and 
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develop the direct method for 2-D Helmholtz equation. In Sect. 7 we use a num-
ber of numerical results to study the applicability of the present methods.

Notation For the one dimensional problems, Sects. 2 and 3, the domain is a straight 
line � = [0, 1] where the outer point at x = 0 is accessible. In order to impose non-
reflecting boundary condition it is extended to � = [−1, 2] . For Sects. 4, 5, and 6, �(�) 
is a closed bounded 2-dimensional domain. Subscript ()x denotes differentiation with 
respect to x (in 1-D case). Subscript ()n denotes the outward normal derivative for 2-D 
domains. In Sects. 2 and 3, the field is a complex quantity and ℜ() and ℑ() denote the 
real and imaginary part of a complex quantity. We use the notation ()|x= to denote the 
value of the quantity at x. We use bold letters to denote vectors and matrices.

2  A moment problem

Consider the wave propagation in a one dimensional domain x ∈ � = [−1, 2] given by

where, u(x) is the electric field, k is the wave number and the unknown function, p(x), 
represents the material property. The function p(x) is unknown for x ∈ [0, 1] , and is 
assumed to be equal to a nominal value (here, p(x) = 1 ) for x ∈ [−1, 0] ∪ [1, 2] . The 
domain is excited by the source �(x − x0) with x0 ∈ [−1, 0) . Non-reflecting boundary 
conditions are imposed at the boundaries, i.e.

where i =
√
−1 , and u(0) = g is the collected measurement. The inverse problem 

of interest is the evaluation of the unknown function p(x) for x ∈ [0, 1] based on the 
measurement collected at x = 0 which is the accessible point of the domain.

One can start with an initial guess p̂(x) and obtain a background field given by

The error field, e(x) = u(x) − û(x) , is then given by

The actual unknown is related to the assumed value according to p(x) = p̂(x) + q(x) , 
and the above equation leads to

The error field is required to satisfy additional condition given by

The under braced term in Eq. (5) is the nonlinear term involving the two unknowns, 
i.e., q(x) and e(x). This term is the product of two correction terms. In fact, q = 0 

(1)uxx + k2p(x)u = �(x − x0),

(2)ux(−1) + iku(−1) = 0, ux(2) − iku(2) = 0, u(0) = g,

(3)ûxx + k2p̂(x)û = 𝛿(x − x0).

(4)exx + k2p(x)u − k2p̂(x)û = 0.

(5)exx + k2p̂e + k2qe
���

+k2qû = 0., (ex + ike)|x=−1 = 0, (ex − ike)x=2 = 0.

(6)e(0) = u(0) − û(0) = g − û(0) = ĝ.
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for x ∈ [−1, 0] ∪ [1, 2] , and is only nonzero (and unknown) for x ∈ [0, 1] . We first 
develop the formulation without this term. We can later on show that the contribu-
tion from this term can be included in the form of a series.

Consider a sampling function that is the solution of the differential equation given 
by

Multiplying Eq. (5) by �(x) and integrating the product over the region x ∈ [0, 2] 
leads to

Integrating by parts twice and using Eqs. (7) and (5) leads to

The quantities on the right hand side, denoted by � for simplicity, are known. If the 
measurements are collected for a range of frequencies, i.e., k1, k2,… , k

�
 , then we 

can write the above equation for each measurement according to

The above equation is the classical moment problem for the unknown function q(x) 
(Ang et al. 2002). It is easy to note that the functions �

�
 form a linearly independent 

set.
Remark 1 For i and j, with i ≠ j , the functions �i(x) and �j(x) are linearly inde-

pendent for x ∈ [0 ∶ 2] . To see that these functions are linearly independent one can 
consider two sampling functions �i(x) and �j(x) that satisfy Eq. (7). Multiplying the 
equation for �i(x) by �j(x) , and the equation for �j(x) by �i(x) , integrating by parts 
and subtracting them leads to

for �i(0) = �j(0) = 0 . If �i(x) = ��j(x) for a constant � , then ki = kj which is a 
contradiction.

The unknown function q(x) is only nonzero within x ∈ [0, 1] . Assuming an 
expansion of the form q(x) =

∑N

j=1
cj(x)�j

placing the unknown values �j in a vector � , and the terms on the right hand side in a 
vector � leads to a matrix equation given by

(7)𝜓xx + k2p̂𝜓 = 0.,𝜓|x=−1 = 𝜓0, (𝜓x − ik𝜓)x=2 = 0.

(8)∫
2

0

𝜓
[
exx + k2p̂e + k2qû

]
dx = 0.

(9)k2 ∫
2

0

𝜓 ûqdx = (𝜓ex)|x=0 − (𝜓xe)|x=0 = 𝛾 .

(10)∫
2

0

𝜓
�
ûqdx = 𝛾

�
∕k2

�
, � = 1,… , L.

(k2
i
− k2

j
)∫

2

0

p̂(x)𝜓i(x)𝜓j(x)dx = 0,

(11)∫
1

0

𝜓
�
û

N∑
j=1

cj(x)𝜏jdx = 𝛾
�
∕k2

�
, � = 1, 2,… , L.
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Least-square solution of the above linear system can be solved after introducing Tik-
honov regularization according to

where, the parameter � is the weight for the Tikhonov regularization, and �  is the 
matrix representing the first derivative operator. Once the above linear system is 
solved for � , then the assumed value can be updated according to p̂(x) = p̂(x) + q(x) . 
We next formulate a different algorithm that can lead to a similar linear system for 
the correction term.

3  A direct formulation

Consider the error equation given in Eq. (5)

Instead of the above equation, an approximate solution can be obtained by consider-
ing a homotopy-perturbation approximation given by

where, p̄(x) = p̂(x) − 1 , and for H = 1 we recover Eq. (5). Seeking a solution in the 
form of e = e0 +He1 +H

2e2 +… , leads to

Using variation of parameters, the zeroth order solution is given by

and, the first order solution is given by

(12)�� = �,A
�j =

[
∫

1

0

û(x)𝜓
�
(x)cj(x)dx

]
,� = 1, 2,… , L, j = 1, 2,… ,N.

(13)

[
�

��

]

⏟⏟⏟
�

� =

[
�

0

]

⏟⏟⏟
�

, � =
[
�
T
�
]−1

�
T�,

exx + k2p̂e + k2qe + k2qû = 0., (ex + ike)|x=−1 = 0, (ex − ike)x=2 = 0.

(14)e0
xx
+ k2e0 − exx − k2e = H

[
e0
xx
+ k2e0 + k2(p̄ + q)e + k2qû

]

(15)H
0 ∶ e0

xx
+ k2e0 = −k2qû, (e0

x
+ ike0)|x=−1 = 0, (e0

x
− ike0)|x=2 = 0

(16)H
1 ∶ e1

xx
+ k2e1 = −k2(p̄ + q)e0, e1|x=−1 = e1|x=2 = 0,

(17)H
2 ∶ e2

xx
+ k2e2 = −k2(p̄ + q)e1, e2|x=−1 = e2|x=2 = 0,…

(18)e0 =
ik

2
eik(2−x) ∫

2

−1

q(𝜂)û(𝜂)eik(𝜂−2)d𝜂 + k ∫
x

−1

q(𝜂)û(𝜂) sin k(𝜂 − x)d𝜂,
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Higher order terms can also be computed in a similar way. Note that the zeroth order 
solution depends on q, linearly. The first order solution depends on q, quadratically, 
and so on.

Evaluating the zeroth-order solution, i.e. Eq. (18), at x = 0 leads to1

The second integral drops because q = 0 for x ∈ [−1, 0] . Assuming a similar expan-
sion for the unknown q leads to

For the range of frequencies k1, k2,… , k
�
 , the above equation leads to

for � = 1, 2,… , L and j = 1, 2,… ,N . Also, the right-hand-side quantities ĝ are 
stored in �̂ . Similar to Eq. (12), the coefficient matrix � is rank deficient. A least-
square solution can be obtained after introducing Tikhonov regularization.

We can similarly include the higher-order terms. Taking the first two terms, i.e., 
e = e0 + e1 leads to

Replacing e0 in the above equation according to Eq. (18), leads to a quadratic system 
of equations for q, (or, � ). However, it would be easier to set up an iteration. One can 
first use the zeroth order solution and, using Eq. (22), obtain e0(x) . Denoting this 
solution with �0 , the above equation leads to

(19)
e1 = −

k sin k(x + 1)

sin 3k ∫
2

−1

(p̄ + q)e0(𝜂) sin k(𝜂 − 2)d𝜂

+ k ∫
x

−1

(p̄ + q)e0(𝜂) sin k(𝜂 − x)d𝜂.

(20)e(0) = e0(0) =
ik

2
e2ik ∫

2

−1

q(𝜂)û(𝜂)eik(𝜂−2)d𝜂 = ĝ.

(21)

ik

2
e2ik ∫

2

−1

[
N∑
j=1

cj(𝜂)𝜏j

]
û(𝜂)eik(𝜂−2)d𝜂 = ĝ, or,

N∑
j=1

𝜇j𝜏j = ĝ,

where, 𝜇j =
ik

2
e2ik ∫

2

−1

cj(𝜂)û(𝜂)e
ik(𝜂−2)d𝜂.

(22)�� = �̂, E
�j =

ik
�

2
e2ik� ∫

2

−1

cj(𝜂)û(𝜂)e
ik

�
(𝜂−2)d𝜂,

ex=0 =
ik

2
e2ik ∫

2

−1

q(𝜂)û(𝜂)eik(𝜂−2)d𝜂 −
k sin k

sin 3k ∫
2

−1

(p̄ + q)e0(𝜂) sin k(𝜂 − 2)d𝜂.

1 Note that, for nonzero û(x) , the kernel functions eik1(�−2) and eik2(�−2) are linearly independent in [0 : 2] 
for k

1
≠ k

2
.
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Assuming a similar expansion for q(x) according to q(x) =
∑N

j=1
cj(x)�j leads to a 

similar linear system given by,

where the entries in the matrix � are given by

where, Eq. (23) is used for a sequences of frequencies, k1, k2,… , k
�
 . Similar 

to Eq. (13), least-square solution can be obtained after introducing Tikhonov 
regularization.

4  Moment method for 2‑D Helmholtz equation

We next apply the method developed in Sect. refs2 to a 2-D Helmholtz equation. For 
this problem we assume that all of the boundary is accessible for collecting meas-
urements. Let � ∈ R2 be a closed bounded set. Consider a 2-D Helmholtz equation 
given by

where Dirichlet and Neumann boundary conditions are given at the boundary of � , 
denoted by ��.

Measurements in the form of normal derivative at the boundaries can be collected 
and provided for the purpose of inversion. One can assume an initial value for the 
unknown function, i.e., p̂(�) and, using the Dirichlet boundary conditions, obtain the 
background field satisfying the system

Subtracting the background field from Eq. (26), one can obtain the error field, 
e(�) = u(�) − û(�) , given by

(23)
∫

2

−1

[
ik

2
e2ikû(𝜂)eik(𝜂−2) −

k sin k

sin 3k
𝜖0(𝜂) sin k(𝜂 − 2)

]
q(𝜂)d𝜂

= ĝ +
k sin k

sin 3k ∫
2

−1

p̄𝜖0(𝜂) sin k(𝜂 − 2)d𝜂.

(24)�� = �, 𝜈
�
= ĝ

�
+

k
�
sin k

�

sin 3k
�

∫
2

−1

p̄𝜖0(𝜂) sin k
�
(𝜂 − 2)d𝜂,

(25)F
�j = ∫

2

−1

[
ik

�

2
e2ik� û(𝜂)eik� (𝜂−2) −

k
�
sin k

�

sin 3k
�

𝜖0(𝜂) sin k
�
(𝜂 − 2)

]
cj(𝜂)d𝜂,

(26)𝛥u(�) + k2p(�)u(�) = 0 � ∈ 𝛺 ⊂ R2,

(27)u(�) = �(�), ∇nu(�) = �(�), � ∈ ��.

(28)𝛥û + k2p̂(�)û = 0, � ∈ 𝛺, û(�) = 𝜎(�), � ∈ 𝜕𝛺.

(29)𝛥e + k2
[
p(�)u − p̂(�)û

]
= 0, � ∈ 𝛺.
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Since the background field satisfies the Dirichlet boundary condition, the boundary 
conditions for the error field are given by e = 0,∀� ∈ �� , and ∇ne = ∇nu − ∇nû , 
where ∇n denotes the normal derivative. A linearized version of the above equation 
is given by

We can now consider a sampling function that is the solution to the Helmholtz equa-
tion given by

where �(�) is an arbitrary boundary condition. Using Green’s second identity leads 
to

where the right-hand-side is known. Similar to Eq. (9), Eq. (33) constitute a moment 
problem. Choosing a set of linearly independent functions for the boundary condi-
tions �

�
 leads to

where the kernels û(�)𝜉
�
 are linearly indenpendent2. Note that the under braced term 

includes the data which may often be noisy. Therefore, the right-hand-side requires 
that we integrate functions that are contaminated with noise. In the next section we 
develop a method that can filter out the noise. Assuming a similar expansion for the 
correction term q(�) , according to q =

∑
j=1 �j(�)�j leads to

As is expected the coefficient matrix is non-square and rank deficient. Similar to Eq. 
(13), after introducing Tikhonov regularization, we can obtain a stable least-square 
solution for � . We next develop a method that can effectively filter out the noise in 
the data.

(30)𝛥e + k2p̂(�)e + k2q(�)û = 0, � ∈ 𝛺.

(31)𝛥𝜉 + k2p̂(�)𝜉 = 0, � ∈ 𝛺, 𝜉(�) = 𝜛(�), ∀� ∈ 𝜕𝛺,

(32)∫�

[��e − e��]dA = ∮
[
�∇ne − e∇n�

]
ds, or

(33)∫𝛺

[𝜉û(�)]qdA = −
1

k2 ∮
[
𝜛∇ne

]
ds = 𝜇,

(34)∫𝛺

[
𝜉
�
û(�)

]
qdA = −

1

k2 ∮
[
𝜛

�
∇ne

]
�����

ds = 𝜇
�
,� = 1, 2,… , L,

(35)�� = �, D
�j = ∫𝛺

[
𝜉
�
(�)û(�)𝜁j(�)

]
dA.

2 The Helmholtz equation in Eq. (31) is well-posed for k2 away from the eigenvalues of the Laplace 
operator. Therefore, �i(�) and �j(�) are linearly independent for two linearly independent boundary condi-
tions i.e., �i(�) and �j(�) , � ∈ ��.
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5  Tailored filtering

The moment problem in Eq. (34) for the 2-D helmholtz equation requires the inte-
gration of the given data that maybe noisy. The data is given in the form of the 
normal derivative at the boundary in Eq. (27). Therefore, in the present iterative 
algorithm, the given data appear as the additional boundary condition for the error 
equation given in Eq. (30). We repeat this equation here for clarity

Additional condition for this equation is given by ∇ne = ∇nu
���

−∇nû for � ∈ �� , 

where it includes the under braced term which is the noisy data. To formulate a tai-
lored filter for the above equation we note that both q(�) = 0 and e(�) = 0 for 
� ∈ �� . Since, k2q(�)û(�) =

∑N

j=1
𝜒j(�)𝜗j where �j(�) = 0 for � ∈ �� with �j being 

unknown. We can conclude that the error field has an expansion given by 
e(�) =

∑N

j=1
�j(�)�j where �j are unknowns and the functions �j(�) satisfy the Helm-

holtz equations given by3

Choosing a set of linearly independent functions �j(�) , leads to a set of linearly 
independent solutions �j(�) . It is then reasonable to expect that the given bound-
ary condition for the error field ∇ne(�) live in the space generated by ∇n�j(�) , 
j = 1, 2,… ,N . In other words,

where the functions �j(�) are computed, and ∇ne is the known noisy function. Multi-
plying the above equation by �i(�) and computing the appropriate interproduct leads 
to a linear system given by

Using singular-value-decomposition (Lay et al. 2016), the above linear system can 
be solved for the coefficients �j . In the actual calculations, we can use the filtered 
data, 

∑N

j=1
∇n�j(�)�j instead of the noisy data ∇ne.

𝛥e + k2p̂(�)e + k2q(�)û = 0, � ∈ 𝛺, e(�) = 0, � ∈ 𝜕𝛺.

(36)𝛥𝜀j + k2p̂(�)𝜀j + 𝜒j(�) = 0, � ∈ 𝛺, 𝜀j(�) = 0, � ∈ 𝜕𝛺.

(37)
N∑
j=1

∇n�j(�)�j = ∇ne, � ∈ ��,

(38)∫��

[
�i(�)

N∑
j=1

∇n�j(�)

]
d��j = ∫��

�i(�)∇ned�

3 In actuality, the functions �j(�) should satisfy the nonhomogeneous Helmholtz equation given by 
��j + k2p(�)� + �j(�) = 0 . However, at this stage p(�) is unknown, and we are using p̂(�) instead. As the 
iteration proceeds, p̂(�) converges to p(�).
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6  A direct formulation using sampling functions

In this section we use a specific set sampling functions to formulate a direct method 
that does not require integration of the data at the boundary. Consider a sampling 
function that is the solution to the Helmholtz equation given by

where �(� − �0) is the delta function centered at �0 . The above equation is the 
Green’s function for the variable wave number Helmholtz equation. We use an 
approximate method to obtain the solution which is presented in the appendix. 
Applying the Green’s second identity to the above equation and using Eq. (30) leads 
to

Using the property of the delta function and the boundary conditions, the above 
equation leads to the value of the error at �0 according to

Now, consider domain close to a boundary as depicted in Fig. 1. One can use a 
third-order one-sided first-derivative of the error at the boundary according to

where dx is the equal spacing between the points. Using Eq. (41), one can relate the 
unknown q(�) to the gradient of the error at the boundary according to

(39)𝛥𝜉
�
+ k2p̂(�)𝜉 = 𝛿(� − �0), � ∈ 𝛺, 𝜉(�) = 0, ∀� ∈ 𝜕𝛺

(40)∫�

[
e��

�
− �

�
�e

]
d� = ∮

[
e∇n�� − �

�
∇ne

]
ds.

(41)e(�0) = −k2 ∫𝛺

𝜉(�)q(�)û(�)d�.

(42)ex =
1

6dx

[
−11e(x1) + 18e(x2) − 9e(x3) + 2e(x4)

]
,

∆e+ k2p̂(x)e+ k2q(x)û = 0

e = 0
ex = data

• • • •
x1 x2 x3 x4

Fig. 1  On-sided first-derivative finite-difference nodes at a boundary
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The above equation relates the unknown correction term q(�) to the known quantity 
which is the gradient of the error field at the boundary. Note that the error at the 
boundary is equal to zero, i.e., e(x0) = 0 . Evaluating the above equation for L loca-
tions (i.e., � = 1, 2,… , L ) on the boundary, and assuming a similar expansion for 
the correction term q =

∑
j=1 �j(�)�j leads to

and the gradient of the error ∇ne(�) , � ∈ �� at the boundaries are placed in the 
vector � on the right hand side. Similar to Eq. (13), the above equation can now 
be solved after the introduction of Tikhonov regularization through least-square 
minimization.

7  Numerical examples and implementations

So far, we have introduced two computational algorithms to study inverse wave scat-
tering. We have presented two methods for the one-dimensional inverse wave scatter-
ing. For the one-dimensional case, the measurements are collected at one point on the 
boundary. For the one-dimensional cases the noise in the data is introduced using a 
random number generator. Since the data is a scalar value, one can collect a few meas-
urement for the same frequency and average the value. We are introducing 1% noise for 
the numerical results involving one-dimensional case. For the 2-D problems, measure-
ments are in the form of functions and filtering out the noise will be crucial. We are 
introducing a new method to filter out the noise. We first consider the one-dimensional 
problem.

We can divide the domain � = [−1, 2] into equal intervals and use a second order 
finite difference approximation to solve various working equations. The point x = 0 is 
accessible, and is used to collect data. The excitation �(x − x0) is placed at x0 = −0.5 . 
To excite the system, we can use L = 20 different values of frequencies, starting with 
k1 = 1.2 , and with increments �k = 0.14.

7.1  Example 1

Assume that the interest is to recover the unknown function given by

The unknown function is equal to the background outside the region of interest, 
i.e., p(x) = 1 for x ∈ [−1, 0] ∪ [1, 2] and unknown for x ∈ [0, 1] . One can start with 

(43)ex = −
k2

6dx ∫𝛺

[
18𝜉(x2) − 9𝜉(x3) + 2𝜉(x4)

]
q(�)û(�)d�.

(44)
�� = �, F

�j = −
k2

6dx ∫𝛺

𝛶
�
(�)𝜁j(�)û(�)d�, where

𝛶
�
=
[
18𝜉

�
(x2) − 9𝜉

�
(x3) + 2𝜉

�
(x4)

]
,

(45)p(x) = 1 + 7 exp

[
−
(x − 0.25)4

0.00002

]
+ 7 exp

[
−
(x − 0.65)4

0.00002

]
.
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a nominal value for p̂(x) = 1 , obtain the background fields, and obtain the errors 
e(0) = g0 for all frequencies. Boundary conditions for the sampling functions are 
given by �j(−1) = (0.67k

�
,−(�∕0.8)) , for � = 1, 2,… , L . This choice is arbitrary. 

We just need to generate a set of sampling functions, �j(x) , that are linearly inde-
pendent. Once the sampling functions are computed, then the right-hand-side in 
Eq. (10) can be computed. The correction to the assumed value is the unknown, 
and an appropriate finite dimensional approximation is given by q =

∑N

j=1
cj(x)�j 

where cj(x) = sin(j�x) , for j = 1, 2,… ,N . Choosing N = 20 , one can compute 
the coefficient matrix in the linear system in Eq. (12). As is expected this matrix 
is rank deficient. Figure  2 presents the normalized eigenvalues of the symmetric 
matrix [ℜ(�)Tℜ(�) +ℑ(�)Tℑ(�)] . We can also check the performance of the 
direct method in Sect.  refs3, by considering the rank of the coefficient matrix in 
Eq. (22). Figure 2 also presents the normalized eigenvalues of the symmetric matrix 
[ℜ(�)Tℜ(�) +ℑ(�)Tℑ(�)].

Combining the two linear systems, we can solve the linear system after the intro-
duction of Tikhonov regularization through the use of Least-square minimization. Fig-
ure 3 shows the recovered function when � = 0.5E − 4 with 1% noise. It also show the 
recovered function when the first-order nonlinear term is included in the direct method, 
i.e., Eq. (24). Figure 4 presents the reduction in the error as a function of the number 
of iterations. The inclusion of the first-order nonlinear term improves the rate of the 
reduction in the error.

7.2  Example 2

we next consider the evaluation of an unknown function given by

p(x) = 1 + 7 exp

[
−(x − .16)4

0.00001

]
+ 7 exp

[
−(x − .42)4

0.00001

]
+ 3.5 exp

[
−(x − .72)4

0.00001

]
.
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Fig. 2  Normalized eigenvalues of the linear part for the two methods
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Using both formulations and including the first-order term from the nonlinear con-
tribution, Fig. 5 presents the recovered function and Fig. 6 shows the � = .6E − 4 . 
This example involves three targets, and the combined methods can recover a close 
estimate of it. For both examples, the accuracy of the recovered function is better for 
the region that is closer to the accessible point of the domain.

7.3  Example 3

We next consider a 2-D domain � = [0, 1] × [0, 1] and study the inverse evalua-
tion of a wave function, given in Eq. (26). Assume that the unknown function is 
given by

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  0.2  0.4  0.6  0.8  1

P
(x

)

X

Recovered
Actual

Non

Fig. 3  Actual and the recovered unknown function for example 1 with linear formulation. It also presents 
the results where the first-order nonlinear term is included
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Fig. 4  Error as a function of the number of iterations for example 1
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The boundary can be exposed to an incoming wave given by

(46)
p(x, y) = 1 + g(x)f (y) + f (x)g(y),

g(s) = exp

[
−(s − .23)4

.00002

]
, f (s) = exp

[
−(s − .77)4

.00002

]
.

(47)
u(x, 0) = cos(k(x cos(�))), u(x, 1) = cos(k(x cos(�) + sin(�))),

u(0, y) = cos(k(y sin(�)), u(1, y) = cos(k(cos(�) + y sin(�))),

-1
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n=9000

n=930
n=30

Fig. 5  Actual and the recovered unknown function for example 2. It also presents the recovered function 
after intermediate iterations, � = .6E − 4
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where k = 3 and � =
�

3.4
 . One can generate the data. For this example, we assume 

that data can be collected with no noise (Creedon et al. 2011). In this section, we 
study the reduction in the error which is the difference between the given data and 
the calculated value at a given iteration.

To generate the sampling functions, �
�
(�) , given in Eq. (31), one needs to provide 

linearly independent set of functions for the boundary conditions �
�
(�) = �

�
(�) , for 

� ∈ �� . We can use a combination of cubic-B splines (Tadi 2009), and (Christensen 
2010). For the Bessel functions, we can use

Note that Jn(0) = 0 , and the values of �j are obtained by imposing Jn(1) = 0 . And, 
for n = 0 , we can use the functions (1 − x) − J0(x) . Using combinations of cubic-B 
splines and Bessel functions we can generate the boundary conditions �

�
 needed 

to generate the sampling functions �
�
(�) . In this example, we are using 121 linearly 

independent set of functions, �
�
 for � = 1, 2,… , 121 . To approximate the correc-

tions term q(�) , we can again use sine functions according to

where, �
�
(�) = 0 ∀� ∈ �� , for � = 1, 2,… ,N , with L = M2 . Note that the unknown 

wave number is considered to be known at the boundaries therefore, we have 
q(�) = 0,∀� ∈ �� . For this example, we are using M = 14 , which leads to L = 196 . 
We can now proceed and generate the linear system given in Eq. (35). As is expected 
the coefficient matrix is non-square and rank deficient. Figure 6 shows the normal-
ized eigenvalues of the symmetric matrix �T

� . We are normalizing the eigenvalues 
with respect to the highest eigenvalue.

For only one set of data, i.e., k1 = 3 , there are about 20 significant eigenvalues out 
of 196. If we can provide additional measurements and augment the linear system in 
Eq. (35), the number of significant eigenvalues in this matrix can be increased. Pro-
viding data for 4 different frequencies, i.e., k1 = 3 , k2 = 4 , k3 = 5 , k4 = 6 , the linear 
matrix is Eq. (35) leads to

As we include the data for additional frequencies, the number of significant eigen-
values in this matrix increases. We next proceed to recover the unknown wave num-
ber. In order to obtain a stable inversion, we still need to introduce Tikhonov reg-
ularization, similar to Eq. (13). Figure  7 shows the actual unknown function and 

(48)Error = ∫𝜕𝛺

[
∇nu(�) − ∇nû(�)

]2
d� ∀� ∈ 𝜕𝛺.

(49)Jn(�jz) =
1

� ∫
�

0

cos(n� − �jz sin �)d�, n = 1, 2,… , 5, j = 1, 2,… , 10.

(50)
�
�
(�) = sin(i�x)sin(j�y),

i = 1, 2,… ,M, j = 1, 2,… ,M, � = (i − 1)M + j,

(51)

⎡⎢⎢⎢⎣

�k1

�k2

�k3

�k4

⎤⎥⎥⎥⎦
� =

⎡⎢⎢⎢⎣

�k1

�k2

�k3

�k4

⎤⎥⎥⎥⎦
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Fig. 8 shows the recovered function after 200 iteration. Figure 9 considers the cross-
section along the line x + y = 1 and compares the actual function with the recovered 
function along this line.

7.4  Example 4

We next consider a case where the data is noisy and use the direct method presented 
in Sect.  6. We need to apply the tailored filter presented in Sect.  5. Consider the 
problem of recovering a wave number given by
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Fig. 7  The actual unknown function p(x, y)
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Fig. 8  The recovered unknown function p(x, y)
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which is shown in Fig. 10. One can assume an initial guess, obtain background field 
and arrive at Eq. (30). The noisy data appears in the additional boundary condition 
given by ∇ne = ∇nu

���
−∇nû for � ∈ �� . The proper space to project the noisy 

term, ∇ne , can be obtained by first solving the set of Helmholtz equations given in 

(52)
p(x, y) = 1 + g(x)f (y) + f (x)g(y),

g(s) = exp

[
−(s − .25)4

.000025

]
, f (s) = exp

[
−(s − .75)4

.000025

]
,
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Fig. 9  A cross-section of the recovered unknown function p(x, y) for y = 1 − x
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Fig. 10  Unknown function for example 4
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Eq. (36) where �j(�) , j = 1, 2,… ,N is a set of linearly independent functions with 
�j(�) = 0 for � ∈ �� . Using the same sine functions given in Eq. (50) with M = 14 
leads to a set of linearly independent functions �j(�) , with j = 1, 2,… , 156 . There-
fore, the proper space to project the noisy term ∇ne(�) is given by

Consider the lower part of the boundary where y = 0 and x ∈ [0, 1] . The noisy 
boundary condition is given by �e

�y
 at x = 0 . We can project this function according to

Solving for the components �j leads to a linear system given by

where the coefficient matrix is symmetric and rank deficient. Singular value decom-
position can be easily used to solve this system. Once we have the parameters �j , 
then for the calculations we can use the filtered data according to Eq. (54).

Figure 11 shows the function ∇ne(�) for y = 0 and x ∈ [0 ∶ 1] , lower boundary, 
or �e(x,y)

�y
|y=0 for x ∈ [0∶1] . The figure compares the uncorrupted data and the noisy 

data which has 3% noise added. It also presents the filtered data.
We next proceed to recover the unknown function using this filter. We can use a 

similar boundary condition given in Eq. (46). Using nine sets of data with k1 = 3. , 
k2 = 3.4 , k3 = 4. , k4 = 5. , k5 = 5.4 , k6 = 5.8 , k7 = 6. , k8 = 6.3 , and k9 = 6.5 . We 

(53)
[
∇n�1(�),∇n�2(�),… ,∇n�156(�)

]
, � ∈ ��.

(54)
�e

�y
|x=0 =

N∑
j=1

[
��j

�y
|x=0

]
�j

(55)∫
1

0

[
��i

�y
|x=0

] N∑
j=1

[
��j

�y
|x=0

]
dx�j = ∫

1

0

[
��i

�y
|x=0

]
�e

�y
|x=0dx,
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Fig. 11  Noise free, Noisy, and filtered data ∇ne(x, 0) , for example 4
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use three angles for the incoming waves given by �1 =
�

3.4
 , �2 =

�

4.4
 , and �3 =

�

6.9
 to 

generate 9 sets of linearly independent boundary conditions. Figures 12, 13 shows 
the recovered function after 300 iterations and Fig. 14 shows a cross-section of the 
function. It compares the recovered function with the actual value along the long 
x + y = 1.

7.5  Example 5

We next consider the recovering of an unknown function given by
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Fig. 12  Recovered function for example 4 with � = .2E − 4
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which is shown in Fig. 15. Using the same number of collected data as in example 4, 
Fig. 16 shows the recovered function after 300 iterations, and Fig. 16 compares the 
recovered function over the cross-section x = y.

Over-all the results can be improved by using higher frequencies, which in gen-
eral requires finer mesh. We also need to investigate various sampling functions. 
The present method can also be naturally combined with our previous method 
based on proper solution space (Hamad and Tadi 2019), since both treat the 

(56)
p(x, y) = 1 + f (x)g(y) + g(x)f (y),

g(s) = exp

[
−(s − .23)2

.008

]
, f (s) = exp

[
−(s − .77)4

.00002

]
,
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Fig. 14  Unknown function for example 5
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linearized error field to obtain a correction term to an assumed initial guess for 
the unknown function. All of these issues will be addressed in our future work.

8  Conclusion

In this note we presented two methods for inverse wave scattering. We also pre-
sented a new method for filtering noisy data. For one dimensional problems the 
present method is able to recover a close estimate of the unknown function based 
on data collected at one point on the boundary. For two dimensional problems the 
presented method can recover a reasonable approximation of the unknown function 
with up to 3% noise. This method can be combined with our previous method. The 
accuracy of the recovered function can also be improved by introducing additional 
data and/or using finer computational mesh. All of these issues will be addressed in 
our future work.

Appendix

To obtain an approximate solution for the Helmholtz equation in Eq. (39) we can 
rewrite it according to

where p̄(�) = p̂(�) − 1 . We can then consider a similar perturbation approximation 
and obtain the solution as a series given by � = �0 + �1 + �2 + �3 +… where

(57)𝛥𝜉 + k2𝜉 + p̄(�)𝜉e = 𝛿(� − �0), 𝜉 = 0, � ∈ 𝜕𝛺,
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Fig. 16  Recovered function for example 5 along a cross-section y = x after 300 iterations, with 
� = .1E − 4
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Note that p̂(�) is zero for most of the region, and the above series converges very 
fast. In all calculations presented here, we are including four terms in the series.
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