
Vol.:(0123456789)

Optimization and Engineering (2022) 23:1057–1083
https://doi.org/10.1007/s11081-021-09621-3

1 3

RESEARCH ARTICLE

Scalable algorithms for designing CO2 capture and storage
infrastructure

Caleb Whitman1 · Sean Yaw1 · Brendan Hoover2 · Richard Middleton2

Received: 24 June 2020 / Revised: 11 March 2021 / Accepted: 11 March 2021 / Published online: 27 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
CO2 capture and storage (CCS) is a climate change mitigation strategy that aims
to reduce the amount of CO2 vented into the atmosphere from industrial processes.
Designing cost-effective CCS infrastructure is critical in meeting CO2 emission
reduction targets and is a computationally challenging problem. We formalize the
computational problem of designing cost-effective CCS infrastructure and detail
the fundamental intractability of designing CCS infrastructure as problem instances
grow in size. We explore the problem’s relationship to the ecosystem of network
design problems, and introduce three novel algorithms for its solution. We evaluate
our proposed algorithms against existing exact approaches for CCS infrastructure
design and find that they all run in dramatically less time than the exact approaches
and generate solutions that are very close to optimal. Decreasing the time it takes to
determine CCS infrastructure designs will support national-level scenario analysis,
undertaking risk and sensitivity assessments, and understanding the impact of gov-
ernment policies (e.g., tax credits for CCS).

Keywords  Carbon capture and storage · Network design · Integer linear program ·
Fixed charge flow network

 *	 Sean Yaw
	 sean.yaw@montana.edu

	 Brendan Hoover
	 brendan.hoover@netl.doe.gov

	 Richard Middleton
	 rsm@lanl.gov

1	 School of Computing, Montana State University, Bozeman, MT, USA
2	 Los Alamos National Laboratory, Los Alamos, NM 87544, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-021-09621-3&domain=pdf

1058	 C. Whitman et al.

1 3

1  Introduction

CO2 capture and storage (CCS) is the process of capturing CO2 emissions from
industrial sources, such as coal-fired and natural gas power plants, transporting the
CO2 via a dedicated pipeline network, and injecting it into geological reservoirs
for the purpose of combating climate change and economic benefit (e.g., enhanced
oil recovery, tax credits). CCS is a key technology in all climate change mitigation
plans that limit global temperatures below 2 ◦ C of warming. To have a meaning-
ful impact, this will involve optimizing infrastructure deployments for hundreds of
sources and reservoirs, and thousands of kilometers of pipeline networks.

Deploying CCS infrastructure on a massive scale requires careful and compre-
hensive planning to ensure investments are made in a cost-effective manner (Smit
2014). At its core, designing CCS infrastructure is an optimization problem that
aims to determine the most cost-effective locations and quantities of CO2 to capture,
route via pipeline, and inject for storage. Designing CCS infrastructure can natu-
rally be formulated as a Mixed Integer Linear Program (MILP) that aims to mini-
mize total cost, while capturing and injecting a target amount of CO2. The MILP is
parameterized with a candidate pipeline network constructed from a weighted cost
surface, and economic and capacity data about the possible source and sink loca-
tions. We show in this research that designing CCS infrastructure is a generalization
of the well-studied NP-Hard fixed charge network flow (FCNF) problem (Guisewite
and Pardalos 1990). This means that optimal algorithms for designing CCS infra-
structure do not efficiently scale as scenarios grow in size.

The intractability of designing CCS infrastructure impacts CCS infrastructure
design studies in three ways. First, CCS infrastructure studies are moving from local
scale projects with tens of sources and sinks to regional and national scale projects
with thousands of sources and sinks. For instances of this size, MILP implementa-
tions have not been successful at executing in a reasonable time period (e.g., 40%
gap after 72 h). Second, many CCS infrastructure studies explore impacts of min-
ute changes to input parameters that arise due to uncertainty (e.g., reservoir specific
storage potential or injectivity). Studies of this type require ensemble runs, where
thousands of differently parameterized instances are generated and solved, with
results feeding the generation of more instances. Finally, studies are being proposed
that consider continuous reservoir regions instead of discrete point locations. To
solve these problems, the infrastructure design algorithm will need to be run many
sequential times where, between runs, discrete reservoir locations are moved based
on the previous iteration’s solution. It is not possible to rely on MILP formulations
to solve these types of problems. New optimization techniques need to be developed
to address the problem of designing CCS infrastructure for massive deployments.

In this research, we introduce the CCS Infrastructure Design (CID) problem and
develop custom optimization algorithms for it. We prove that CID is a generalization
of the well-studied FCNF problem and characterize its computational complexity.
We then introduce three fast algorithms for the CID problem. Finally, we evaluate
the performance of the algorithms on realistic datasets and find that they reduce run-
ning time compared to an optimal MILP, with a minimal increase in solution costs.

1059

1 3

Scalable algorithms for designing CO2 capture and storage…

Reducing the time it takes to determine CCS infrastructure designs will support
national-level scenarios, undertaking risk and sensitivity assessments, and under-
standing the impact of government policies (e.g., tax credits for CCS).

The rest of this paper is organized as follows. We formalize the problem in Sect. 2
and characterize its computational complexity. Section 3 discusses related work.
Our three algorithms are presented in Sect. 4. Experimental results are presented in
Sect. 5 and we conclude in Sect. 6.

2 � Problem formulation

Given a set of CO2 emitters (sources), geological reservoirs, and a candidate pipeline
network, the goal of the CCS Infrastructure Design (CID) problem is to determine,
in a cost-minimal fashion, which sources to capture from, which reservoirs to inject
into, and which (and what diameter) pipelines to build to capture a pre-determined
system-wide quantity of CO2.

The sources and reservoirs are parameterized with an economic model consist-
ing of fixed costs to open locations (millions of dollars), and variable costs to utilize
the locations (dollars per tonne of CO2 captured/injected). These costs vary based
on the ease of injection at that particular site. Candidate pipeline routes are con-
structed from a weighted cost surface (Hoover et al. 2020; Middleton et al. 2012;
Yaw et al. 2019). Pipelines have construction and per-tonne utilization costs depend-
ent on their geographic location and the quantity of CO2 they transport. Pipelines
can intuitively be represented as a number of discrete pipeline sizes (i.e. diameters)
and their associated costs and capacities. Pipeline costs include construction and
operation costs (e.g., pumping stations, maintenance). In a mixed integer linear pro-
gram (MILP) formulation, this representation requires an integer variable for each
possible pipeline edge/size pair, which results in a large number of variables and
quickly leads to intractable formulations. To reduce the number of integer variables
used in the MILP formulation, pipelines can be represented as a smaller set of lin-
ear functions (called trends) of pipeline capacity versus cost. The composition of
these trends forms a pipeline capacity versus cost function that is increasing, piece-
wise linear, and subadditive. An example of two trends approximating the non-lin-
ear pipeline capacity versus cost function is presented in Fig. 1. The pipeline costs
that the trends approximate were determined using the National Energy Technology
Laboratory’s CO2 Transport Cost Model (National Energy Technology Laboratory
2018). The increasing and subadditivity properties of the cost function enforces that
a pipeline of a given capacity is cheaper than multiple pipelines of smaller capacities
or a pipeline of a larger than necessary capacity. It is also assumed that the capac-
ity of the largest pipeline trend is arbitrarily large. Using pipeline trends instead of
explicit diameters allows for simpler formulations compared to the discrete formula-
tion while still ensuring that the cost model is realistic (Middleton 2013). All fixed
construction costs are annualized by way of a capital recovery factor that accounts
for project financing. The CID problem based on linearized pipelines is formulated
as an MILP below:

1060	 C. Whitman et al.

1 3

Instance input parameters

Fsrc
i

Annualized fixed cost to open source i ($M/yr)
Fres
j

Annualized fixed cost to open reservoir j ($M/yr)
Vsrc
i

Variable cost to capture CO2 from source i ($/tCO2)
Vres
j

Variable cost to inject CO2 in reservoir j ($/tCO2)
S Set of sources
R Set of reservoirs
I Set of vertices (sources, reservoirs, and pipeline junctions)
K Set of candidate pipeline edges
C Set of pipeline capacity trends
Qsrc

i
Annual CO2 production rate at source i (tCO2/yr)

Qres
j

Total capacity of reservoir j (tCO2)
Qmax

kc
Max annual capacity of pipeline k with trend c (tCO2/yr)

Qmin
kc

Min annual capacity of pipeline k with trend c (tCO2/yr)
�kc Variable transport cost on pipeline k with trend c ($/tCO2)
�kc Annualized fixed cost for pipeline k with trend c ($M/yr)
L Length of project (years)
T Target CO2 capture amount for project (tCO2/yr)

MILP decision variables

si ∈ {0, 1} Indicates if source i is opened
rj ∈ {0, 1} Indicates if reservoir j is opened
ykc ∈ {0, 1} Indicates if pipeline k with trend c is opened
ai ∈ ℝ

≥0 Annual CO2 captured at source i (tCO2/yr)
bj ∈ ℝ

≥0 Annual CO2 injected in reservoir j (tCO2/yr)

Fig. 1   Two linear trends approximating the cost of a pipeline given the transportation volume

1061

1 3

Scalable algorithms for designing CO2 capture and storage…

pkc ∈ ℝ
≥0 Annual CO2 in pipeline k with trend c (tCO2/yr)

The MILP is driven by the objective function:

Subject to the following constraints:

Where constraint 1 ensures that a pipeline is built before transporting CO2 and that
the pipeline’s capacity is appropriate for the amount of flow. Constraint 2 enforces
conservation of flow at each internal vertex. Constraint 3 ensures a source is opened
before capturing CO2 and that the captured amount is limited by the source’s maxi-
mum production. Constraint 4 limits lifetime storage for each reservoir by its maxi-
mum capacity, and constraint 5 ensures the total system-wide capture amount meets
the target.

2.1 � Computational complexity

CID generalizes the Fixed Charge Network Flow (FCNF) problem: Consider a
directed graph with edge capacities and fixed edge costs. Purchasing an edge incurs
its fixed cost and allows it to host any amount of flow up to its capacity. A subset of
the vertices are designated as sources and have an associated amount of flow they
are able to supply. Likewise, a subset of the vertices are designated as sinks (analo-
gous to reservoirs in the CID problem) and have an associated amount of flow they
demand. The goal of the FCNF problem is to determine a least-cost set of edges that

min

capture cost

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∑
i∈S

(Fsrc
i
si + Vsrc

i
ai) +

transport cost

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∑
k ∈ K

c ∈ C

(�kcpkc + �kcykc) +

storage cost

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∑
j∈R

(Fres
j
rj + Vres

j
bj)

(1)Qmin
kc

ykc ≤ pkc ≤ Qmax
kc

ykc, ∀k ∈ K, ∀c ∈ C

(2)
�

k ∈ K ∶

src(k) = n

�
c∈C

pkc −
�

k ∈ K ∶

dest(k) = n

�
c∈C

pkc =

⎧
⎪⎨⎪⎩

an if n ∈ S

−bn if n ∈ R

0 otherwise

, ∀n ∈ I

(3)ai ≤ Qsrc
i
si, ∀i ∈ S

(4)bjL ≤ Qres
j
rj, ∀j ∈ R

(5)
∑
i∈S

ai ≥ T

1062	 C. Whitman et al.

1 3

allows sufficient flow to be routed from the sources to the sinks to satisfy all of the
sink demand (Kim and Pardalos 1999).

Theorem 1  There is no � ln |V|-approximation algorithm for the FCNF problem,
where 0 < 𝛾 < 1 is some constant, unless P = NP.

Proof  This complexity result is via an approximation-preserving reduction from the
Dominating Set problem: Given a graph G = (V ,E) , find a minimum sized U ⊆ V
such that for each vertex v in V ⧵ U , there is some vertex u in U such that the edge
(u, v) is in E.

Let G = (V ,E) be an instance of Dominating Set where |V| = n . G reduces to an
FCNF instance G� = (V �,E�) as follows: For each vertex v in V, make a new vertex
vin . Make a directed edge with cost zero and capacity one from the new vertex to the
original one (the dotted red edges in Fig. 2). For every edge e = (u, v) in E, make the
directed edges (u, vin) and (v, uin) with cost zero and capacity one (the solid black
edges in Fig. 2). Create a new vertex s and for each vertex v in V, make the directed
edge (s, v) with cost one and infinite capacity (the dashed green edges in Fig. 2). Let
the original vertices V be the sinks and each have a demand of one. Let s be the sin-
gle source and let its supply be |V|. Figure 2 shows the reduction from Dominating
Set to FCNF.

Suppose that U ⊆ V is a dominating set of G with |U| = k . For each vertex in
V ⧵ U , associate it with one neighbor that is in U. In this way, each vertex u in U
is associated with a set of neighbors Nu that are in V ⧵ U . U can now be translated
into a source-sink flow of cost k in G′ . For each vertex u in U, push |Nu| + 1 units
of flow from the source s to u. One unit of that flow will be consumed by u and the
additional |Nu| units of flow will be distributed to the neighbors in Nu . Consider a
vertex v in V ⧵ U . This vertex has been associated with a single neighbor vertex u
that is in U. Since v and u are neighbors in G, the directed edges (u, vin) and (vin, v)
are in G′ and form a path from u to v. The capacity of this path is one, so one unit
of flow can be pushed to each vertex v in V ⧵ U from its associated neighbor vertex
u in U. Therefore, this flow will satisfy all demand in G′ and its cost will be k since
the only costs incurred are the fixed unit costs for sending flow to the nodes directly
connected to source s (i.e. the vertices in U).

Suppose there is a flow solution to G′ of cost k. This means that every vertex in V
receives one unit of flow from source s. Let U be the set of vertices receiving flow

Fig. 2   Dominating Set reduction to the FCNF problem where each edge is weighted as (cost, capacity)

1063

1 3

Scalable algorithms for designing CO2 capture and storage…

directly from source s. Since the only costs incurred in the flow network are on ver-
tices receiving flow directly from source s, |U| = k . Consider a vertex v in V ⧵ U .
Suppose that v was able to forward flow to another vertex in V ′ . This would require
v receiving more than one unit of flow, since v’s demand for one unit needs to be
satisfied. There are only two directed edges into v: (vin, v) and (s, v). Since v is not
in U, the directed edge (s, v) is not carrying any flow. Since the capacity of (vin, v) is
one, all of the flow carried on this edge must be used to satisfy v’s demand. There-
fore, there is no excess flow available for v to forward to another vertex in V ′ . This
means that every vertex in V ⧵ U must be receiving flow from a neighbor that is in
U, which means that U is a dominating set of V.

Since any dominating set in G of size k corresponds to a flow in G′ of cost k
and conversely, inapproximability results the Dominating Set problem hold for the
FCNF problem. It was shown by Raz and Safra (1997) that there exists a constant,
0 < 𝛾 < 1 , such that the Dominating Set problem cannot be approximated within
a factor of � ln |V| unless P = NP , thus this result holds for the FCNF problem as
well. 	� ◻

Corollary 1  The CID problem has the same inapproximability result as the FCNF
problem.

Proof  CID generalizes the classic FCNF problem by allowing parallel edges repre-
senting different pipeline sizes. Other apparent differences between CID and FCNF
are not actually generalizations of the FCNF model: Source and reservoir costs
and capacities can be pushed to a new edge between the original source/reservoir
and a new node. Also, allowing only a subset of the demand to be captured can be
enforced with a new source node that feeds the original sources and a new reservoir
node connected to the original reservoirs with the required demand (i.e. the target
CO2 capture amount).

As such, CID cannot be easier to approximate than FCNF.
	� ◻

Because of this complexity result, we pursue fast suboptimal algorithms for CID
in Sect. 4.

3 � Related work

Variations on the CID problem have been studied and numerous approaches have
been developed to intelligently design CCS infrastructure. SimCCS is an economic-
engineering optimization tool for designing CCS infrastructure and is the premier
CCS infrastructure modelling tool (Middleton and Bielicki 2009; Middleton et al.
2020; Yaw and Middleton 2018). SimCCS concurrently optimizes selection of
sources, reservoirs, and pipeline routes. One of the key features unique to SimCCS
relative to other CCS infrastructure design models is the integration of routing based

1064	 C. Whitman et al.

1 3

on geographical features (e.g., population density, topography, existing rights of
way) (van den Broek et al. 2009; Gale et al. 2001; Morbee et al. 2011). Put another
way, SimCCS uses a MILP solver to solve the CID problem stated in Sect. 2 whereas
other CCS infrastructure design models can only solve simplified versions of the
CID problem.

No work has been done trying to develop suboptimal solutions to the CID prob-
lem in faster running time than solving the MILP formulations. However, extensive
work has been done in the context of the FNCF problem, which is a special case of
the CID problem, as discussed in Sect. 2. FCNF is itself a variant of the minimum
concave network flow (MCNF) problem, where the edge cost function is concave.
Due to the economies of scale property inherent to concave cost functions, MCNF
problems arise in a variety of applications ranging from offshore platform drill-
ing (Glover 2005) to traffic networks (Poorzahedy and Rouhani 2007). Algorithms
developed for MCNF problems can generally be categorized as: exact algorithms,
genetic algorithms, simulated annealing algorithms, slope scaling heuristics, and/or
greedy heuristics.

MCNF is an NP-Hard problem and cannot, in general, be solved optimally in
polynomial time. However, useful instances of MCNF can still be solved optimally
and, exact methods have been widely explored for these cases (Fontes and Gonalves
2012). Gallo et al. created a branch and bound procedure as one of the original
algorithms for solving MCNF (Gallo et al. 1980). Since then, numerous studies
have used a combination of relaxation, bounding, and cutting to find exact solu-
tions (Fontes and Gonalves 2012; Hochbaum and Segev 1989; Kliewer and Timajev
2005; Khang and Fujiwara 1991; Crainic et al. 2005; Gallo et al. 1980; Kowalski
et al. 2014; Dang et al. 2011).

Optimal techniques have also been developed for the FCNF problem relying on
Benders decompositions (Costa 2005) and branch-and-cut techniques (Ortega and
Wolsey 2003; Gendron and Larose 2014). Other approaches include cutting-plane
and Lagrangian relaxation (Gendron 2011).

Genetic algorithms have been extensively studied to search for high quality solu-
tions to MCNF problems. Fontes and Gonalves introduced one of the first genetic
algorithms followed by a local search to improve results (Fontes and Gonalves
2007). Yan et al. developed a genetic algorithm that preforms better than several
local search algorithms (Yan et al. 2005). Xie and Jia used a hybrid minimum cost
flow and genetic algorithm (Xie and Jia 2012). Smith and Walters solved a variation
of the problem where the base graph is a tree (Smith and Walters 2000).

Simulated annealing methods randomly explore the search space and gradually
increase the probability of exploring edges that led to low cost solutions. Altipar-
mak and Karaoglan used a hybrid of simulated annealing and a tabu search strat-
egy (Altiparmak and Karaoglan 2008). Yaghini et al. solved a multi-commodity
flow network variant (Yaghini et al. 2012). Dang et al. used a variant of simulated
annealing called deterministic annealing method to solve instances with high arc
densities (Dang et al. 2011).

Slope scaling heuristics iteratively solve relaxed versions of the initial solution,
updating costs after each iteration to find better approximations (Crainic et al. 2005;
Gendron et al. 2018; Ekiolu et al. 1970; Kim and Pardalos 1999; Lamar et al. 1990).

1065

1 3

Scalable algorithms for designing CO2 capture and storage…

Crainic et al. developed a slope scaling heuristic which relaxes the solution by
replacing the fixed and variable costs with a single variable cost. To avoid becom-
ing stuck in local optima, they introduce a long-term memory procedure, which
perturbs the solution based on previous flow values and significantly improves
results (Crainic et al. 2005). Gendron et al. improved this algorithm by introducing
an additional iterative linear program approach (Gendron et al. 2018). Due to the
success of slope scaling heuristics in many application areas, we employ this tech-
nique in the design of the algorithm presented in Sect. 4.2.

Greedy heuristics are a popular technique for finding MCNF and FCNF solutions.
Early heuristics relied on local searches with various adding, dropping, and swap-
ping strategies (Billheimer and Gray 1973; Monteiro and Fontes 2005; Guisewite
and Pardalos 1991). Later approaches often implemented memory via a tabu search
to avoid getting stuck in local optima (Altiparmak and Karaoglan 2008; Bazlamacci
and Hindi 1996; Kim et al. 2006; Poorzahedy and Rouhani 2007). Guisewite and
Pardalos explored several local search heuristics based on finding a set of shortest
paths between a single source and multiple sinks (Guisewite and Pardalos 1991).
One such heuristic finds all shortest paths between the source and sinks and then
selects the smallest number of cheapest paths that satisfy flow requirements. We fol-
low a similar approach in the design of the algorithm presented in Sect. 4.1, with the
main difference being that our algorithm recalculates the shortest paths after each
path is selected, to take advantage of already used edge capacity. We chose this tech-
nique in an effort to explore provable performance and a potential approximation
algorithm.

4 � Algorithms

Existing approaches to solving CCS infrastructure design type problems rely on
exact techniques, specifically solving MILPs like the one detailed in Sect. 2. The
running time of MILP solvers does not scale linearly with linearly increasing input
size. Large instances (e.g., thousands of vertices and pipeline components) cannot
be solved by MILPs in a reasonable time, which motivates the search for sub-opti-
mal techniques with better running time performance. In this section, we present
three algorithms for CID.

4.1 � Greedy add

The first algorithm we introduce iteratively builds a solution by greedily selecting
cheap (source, reservoir) pairs, as well as the cheapest appropriately sized pipelines
connecting them. This algorithm is presented in Algorithm 1 and detailed below
with references to the applicable lines of Algorithm 1.

First, for each (source, reservoir) pair, the maximum amount of CO2 that is able
to be transferred between the pair is determined. This value is calculated as the

1066	 C. Whitman et al.

1 3

minimum of the source’s uncaptured production, the reservoir’s unused capacity,
and the amount of the target capture remaining (line 4).

Second, the (source, reservoir) pair’s capture and storage costs are calculated.
Fixed costs are only included if the source or reservoir has not yet been opened
(lines 6-11). Variable costs are included based on the amount of CO2 that was deter-
mined to be transferred between the source and reservoir (line 5).

Third, the cheapest path between the source and reservoir for the amount of CO2
that will be transferred is calculated. To calculate the cheapest path, the pipeline
network first needs to be parameterized with costs that reflect the cost to transport
that amount of CO2 along each pipeline component. These costs need to take into
account the following considerations:

1.	 Unused pipeline capacity that has already been purchased.
2.	 Upgrade costs associated with moving from one trend to a higher capacity trend.
3.	 Changes to the variable costs for CO2 already being transported along that pipe-

line component associated with changing pipeline trends.
4.	 Cost savings associated with downsizing pipeline capacities due to redirecting

CO2 (i.e. pushing CO2 in the opposite direction of CO2 already being transported).

Parameterizing the pipeline network with costs is done in lines 13-27. Each pipeline
component e = (u, v) is sequentially considered as a directed edge. Depending on the
pipeline trend already purchased and existing CO2 flow on e or e� = (v, u) , there are
three possibilities for the new pipeline’s required volume and the existing pipeline’s
cost:

1.	 e is already hosting CO2 (lines 14-16). In this case, the new volume of CO2 on
e will be the existing volume plus the new amount being transported. The old
pipeline cost is the old cost of e.

2.	 e′ is already hosting CO2 (lines 17-19). Pipelines cannot transport CO2 in both
directions. If e′ is already hosting CO2, adding flow in the opposite direction on e
represents redirecting CO2 that was traveling from v to u. If e′ is hosting less CO2
than the amount being transported, the new volume of CO2 on e will be the new
amount minus the amount e′ is currently hosting. If e′ is hosting more CO2 than
the amount being transported, the new volume of CO2 on e′ would be the amount
e′ is currently hosting minus the new amount. In either case, the magnitude of the
difference is the new volume of CO2, so line 18 captures both with the absolute
value. In both cases, the old pipeline cost is the old cost of e′.

3.	 Neither e nor e′ is already hosting CO2 (lines 20-22). In this case, the new vol-
ume of CO2 on e will be the new amount being transported and there was no old
pipeline cost.

The cost associated with using pipeline component e is then calculated by first deter-
mining the smallest trend that will fit the new volume of CO2 (line 24). A pipeline of
sufficient capacity is always available since the maximum capacity of the largest trend
exceeds the target CO2 capture amount. The new cost of the pipeline component is

1067

1 3

Scalable algorithms for designing CO2 capture and storage…

calculated as the fixed cost for the selected trend plus the utilization cost as a factor of
the new volume of CO2 (line 25). The cost of pipeline component e is set to be the new
cost minus the old pipeline component cost (line 26). This is the cost to use pipeline
component e, factoring in already purchased pipeline infrastructure. A consequence of
this calculation is that the cost of e can be negative when e′ is hosting CO2. If redirect-
ing CO2 results in the new cost of the pipeline component being lower than the old cost
of e′ , the cost to use e will be negative. Selecting e in this case represents redirecting
some of the CO2 that was traversing e′,thereby enabling a smaller pipeline trend for
the remaining CO2, less utilization, and a cost savings. The cheapest path can then be
calculated between the source and reservoir (line 28). Since there can be negative edge
weights in the network, and possibly negative cycles, we implemented this step by set-
ting the capacity of each edge to 1 and finding the minimum-cost flow of value 1.

After the costs for each (source, reservoir) pair are calculated, the pair that cap-
tures, transports, and injects CO2 for the lowest cost per tonne is added to the solution
(lines 31-35). When the cheapest pair is selected, the infrastructure used to support the
pair is updated for future iterations (lines 38-63). For the selected source and reser-
voir, they are added to the solution and their amounts captured and stored are updated
(lines 39-40). The path between the source and reservoir is added one edge at a time
(lines 42-63). In a similar fashion as was done to parameterize the costs for the pipeline
network when finding cheapest paths, the new edge added to the solution depends on
whether or not that edge (or its reverse) was already in the solution. If the edge was
already in the solution, it will stay in the solution with a new volume of CO2 being
the old volume plus the new amount being transported (lines 43-45). If the edge in
the reverse direction is already in the solution, the edge added to the solution and its
volume of CO2 depends on if the reverse edge was hosting more or less than the new
amount of CO2 being transported (lines 46-53). If neither the edge nor the reverse
direction edge is already in the solution, the edge is added with a volume of CO2 being
the new amount being transported (lines 54-56).

This process then repeats until the target quantity of CO2 is captured. The running
time for Algorithm 1 is driven by lines 2-36. The running time for the algorithm is
O((|S||R|)2(|K||C| + ShortestPath)) , where |S| is the number of sources, |R| is the
number of reservoirs, |K| is the number of pipeline components, |C| is the number
of trends, and ShortestPath is the running time for the shortest path algorithm used.
Line 2 repeats until the capture target is met by maximizing the transfer between some
(source, reservoir) pair at each iteration of the algorithm. Since the transfer between
each pair is maximized, it cannot be revisited in future iterations. This means that line
2 cannot repeat more than |S||R| times. Line 3 repeats |S||R| times. Line 13-27 runs in
|K||C| time and line 28 runs in whatever the running time is of the selected shortest path
algorithm. When there are a reasonable number of trends, the shortest path algorithm
at line 28 will dominate the running time. A preliminary version of this algorithm
appeared in a poster at ACM’s e-Energy conference in 2019 (Whitman et al. 2019).

1068	 C. Whitman et al.

1 3

Algorithm 1 Greedy Add

Input: Sources S, Reservoirs R, Candidate Pipelines K, Capture Target T
Output:S′ ⊆ S,R′ ⊆ R,K′ ⊆ K

1: S′, R′,K′ = ∅; captured = 0; minCost = ∞; minSet = ∅
2: while captured < T do
3: for (src, res) ∈ S ×R do
4: c = min(src.remainingProduction, res.remainingCapacity, T − captured)
5: cost = c · (src.variableCost + res.variableCost)
6: if src.captured = 0 then
7: cost += src.fixedCost
8: end if
9: if res.stored = 0 then
10: cost += res.fixedCost
11: end if
12:
13: for directed edge e = (u, v) in K do
14: if e = (u, v) in K′ then
15: vol = e.transported + c
16: oldCost = e.costInK′

17: else if e′ = (v, u) in K′ then
18: vol = |c - e′.transported|
19: oldCost = e′.costInK′

20: else
21: vol = c
22: oldCost = 0
23: end if
24: trend = smallestTrendWithCapacity(vol)
25: newCost = trend.fixedCost + trend.variableCost · vol
26: e.setCost(newCost - oldCost)
27: end for
28: path = shortestPathInK(src, res)
29: cost += path.cost
30:
31: cost /= c
32: if cost < minCost then
33: minCost = cost
34: minSet = {src, res, path, c}
35: end if
36: end for
37:
38: Let src, res, path, and c be the references contained in minSet
39: S′.add(src), R′.add(res)
40: src.captured += c, res.stored += c, captured += c
41:
42: for directed edge e = (u, v) in path do
43: if e = (u, v) in K′ then
44: newEdge = e
45: vol = e.transported + c
46: else if e′ = (v, u) in K′ then
47: if e′.transported < c then
48: newEdge = e
49: vol = c - e′.transported
50: else
51: newEdge = e′

52: vol = e′.transported - c
53: end if
54: else
55: newEdge = e
56: vol = c
57: end if
58: K′.remove(e), K′.remove(e′)
59: trend = smallestTrendWithCapacity(vol)
60: newEdge.transported = vol
61: newEdge.costInK′ = trend.fixedCost + trend.variableCost · vol
62: K′.add(newEdge)
63: end for
64: end while
65: return {S′, R′,K′}

1069

1 3

Scalable algorithms for designing CO2 capture and storage…

4.2 � Iterative LP

The second algorithm we introduce iteratively solves linear programs that result
from removing all integer variables from the mixed integer linear program formu-
lated in Sect. 2. Removing integer variables allows the resulting linear programs
to be solved optimally in polynomial running time. However, the integer variables
in the original mixed integer linear program formulation provided the mechanism
to charge the fixed cost based on the binary decision of whether infrastructure was
used or not. Each type of infrastructure entity (i.e. source, pipeline, or reservoir) in
the CID problem has a fixed utilization cost F and variable utilization cost V. This
means that the total cost for an entity is Fw + Vx , where w indicates if the entity is in
use and x is the continuous amount of CO2 processed by the entity. To approximate
fixed costs with only continuous variables, entity costs are reformulated by remov-
ing the fixed utilization component and changing the variable utilization coefficient
from V to F

x̂
+ V  , where x̂ is an estimate of what the value of x will be when the lin-

ear program is solved. Therefore, the closer x is to x̂ , the closer the reformulated cost
is to the true cost. This results in the following linear program, where â , p̂ , and b̂ are
the estimated capture, transportation, and injection amounts:

Subject to constraints 2 and 5 from Sect. 2 and the following modified constraints:

These constraints are similar to constraints 1, 3, and 4 from Sect. 2. Constraint 7
limits the maximum capacity of a pipeline. Constraint 8 limits the amount captured
at each source by its maximum production, and constraint 9 limits lifetime storage
for each reservoir by its maximum capacity.

An iterative scheme is used to generate estimated â , p̂ , and b̂ values: The esti-
mated values are all initially set to one and the linear program is solved, resulting in
solution values for a, p, and b. For each subsequent iteration, the estimated â , p̂ , and

(6)min

capture cost

�������������������������

∑
i∈S

(
Fsrc
i

âi
+ Vsrc

i

)
ai +

transport cost

�������������������������������

∑
k ∈ K

c ∈ C

(
𝛼kc +

𝛽kc

p̂kc

)
pkc +

storage cost

���������������������������

∑
j∈R

(
Fres
j

b̂j

+ Vres
j

)
bj

(7)0 ≤ pkc ≤ Qmax
kc

, ∀k ∈ K, ∀c ∈ C

(8)ai ≤ Qsrc
i
, ∀i ∈ S

(9)bjL ≤ Qres
j
, ∀j ∈ R

1070	 C. Whitman et al.

1 3

b̂ values are set to equal the previous iteration’s a, p, and b values. In this way, if an
infrastructure entity’s utilization remains identical across iterations, its total cost will
accurately reflect the correct fixed and variable costs, since (F∕x̂ + V)x = F + Vx
when x = x̂ . However, there is no guarantee that the utilization values will stabilize
between iterations, so we cannot depend on this process by itself to return high-
quality solutions.

Two procedures, motivated by Crainic et al. (2005), are used to explicitly search
for improved solutions, instead of just aiming to accurately reflect costs. Both of
these procedures incentivize use of specific infrastructure based on usage in pre-
vious iterations of the algorithm. The intensification procedure prioritizes heavily-
used infrastructure to improve existing solutions. The diversification procedure pri-
oritizes seldom used infrastructure to encourage exploration of new solutions. Both
of these procedures modify the â , p̂ , and b̂ values based on utilization statistics from
previous iterations. The relevant utilization statistics are the same for each family of
variables in the linear program (i.e. a, p, and b), so they can all be represented with
a generic variable x:

This algorithm is presented in Algorithm 2 and detailed below. The algorithm alter-
nates between intensification (lines 8-18) and diversification (lines 21-31) phases
until the maximum number of iterations is exceeded (line 2). In the intensifica-
tion phases, entities that are already extensively deployed are defined as entities xi
where numxi

n ≥ �x
n
+

1

2
�x
n
 (line 10). For these entities, x̂i is set to 1∕(1 − rat

xi
n) (line

11) which makes the cost coefficient in the objective function for entity xi equal
to F(1 − rat

xi
n) + V  . On the other hand, uncommonly deployed entities are defined

as entities xi where numxi
n < 𝜇x

n
 (line 12). For these entities, x̂i is set to 1∕(2 − rat

xi
n)

(line 13) which makes the cost coefficient in the objective function for entity xi equal

avg
xi
n Average value of xi in first n iterations

max
xi
n Maximum value of xi in first n iterations

rat
xi
n Equal to avg

xi
n ∕max

xi
n

num
xi
n Number of times xi was non-zero in first n iterations

�x
n

Average number of non-zero x�s in first n iterations

�x
n

Standard deviation of number of non-zero x�s in n iterations

1071

1 3

Scalable algorithms for designing CO2 capture and storage…

to F(2 − rat
xi
n) + V  . All other entities have x̂i is set to 1 (line 15), which makes the

cost coefficient in the objective function for entity xi equal to F + V  . This results in
incentivizing the use of extensively deployed entities (since 1 − rat

xi
n ≤ 1 ), disincen-

tivizing the use of uncommonly deployed entities (since 2 − rat
xi
n ≥ 1).

In the diversification phases, extensively and uncommonly deployed entities are
defined in the same way as in the intensification phases. For extensively deployed
entities, x̂i is set to 1∕(1 + rat

xi
n) (line 24) which makes the cost coefficient in the

objective function for entity xi equal to F(1 + rat
xi
n) + V  . For uncommonly deployed

entities, x̂i is set to 1∕ratxin (line 26) which makes the cost coefficient in the objec-
tive function for entity xi equal to F ⋅ rat

xi
n + V  . All other entities have x̂i is set to

1 (line 28), which makes the cost coefficient in the objective function for entity xi
equal to F + V  . This results in incentivizing the use of uncommonly deployed enti-
ties (since ratxin ≤ 1 ), disincentivizing the use of extensively deployed entities (since
1 + rat

xi
n ≥ 1).

This algorithm alternates between intensification and diversification phases until
the maximum number of iterations is exceeded (line 2). At each iteration, â , p̂ , and
b̂ are determined and the linear program described above is formulated and solved
(lines 33-34). The resulting solution is used to update the utilization statistics and
the next iteration begins (line 42). Changing from intensification phases to diver-
sification phases and back is done whenever solution costs fail to improve within
some threshold number of iterations (lines 3-5 and 35-41). Once the target number
of iterations is completed, the set of sources, reservoirs, and pipeline components
from the last iteration is returned. Finally, the real cost of this infrastructure must be
calculated, since the cost used in the algorithm is not the actual cost, but the scaled
cost defined in the objective of the linear program in Sect. 4.2.

The running time for each iteration of Algorithm 2 is driven by the formula-
tion and solving of the linear program in lines 33-34. The linear program has
O(|S| + |K||C| + |R|) variables and O(|K||C| + |I| + |S| + |R|) constraints, where
|S| is the number of sources, |R| is the number of reservoirs, |K| is the number of
pipeline components, |C| is the number of trends, and |I| is the number of vertices
in the pipeline network. The running time is then O(numIterations ⋅ |LP|), where
numIterations is the number of iterations enforced in line 2 and |LP| is the running
time associated with constructing and solving the linear program solver.

1072	 C. Whitman et al.

1 3

Algorithm 2 Iterative LP

Input: Sources S, Reservoirs R, Candidate Pipelines K, Capture Target T
Parameters: maxIterations, improvingThreshold
Output: S′ ⊆ S,R′ ⊆ R,K′ ⊆ K

1: S′, R′,K′ = ∅; minCost = ∞; phase = 1; unimproved = 0
2: for n < maxIterations do
3: if unimproved ≥ improvingThreshold then
4: phase ∗= −1
5: end if
6: if phase == 1 then
7: // Intensification
8: for each family of variables x ∈ {a, b, p} do
9: for each i do
10: if numxi

n−1 ≥ µx
n−1 + 1

2σ
x
n−1 then

11: x̂i =
(
1− ratxi

n−1

)−1

12: else if numxi
n−1 < µx

n−1 then

13: x̂i =
(
2− ratxi

n−1

)−1

14: else
15: x̂i = 1
16: end if
17: end for
18: end for
19: else
20: // Diversification
21: for each family of variables x ∈ {a, b, p} do
22: for each i do
23: if numxi

n−1 ≥ µx
n−1 + 1

2σ
x
n−1 then

24: x̂i =
(
1 + ratxi

n−1

)−1

25: else if numxi
n−1 < µx

n−1 then

26: x̂i =
(
ratxi

n−1

)−1

27: else
28: x̂i = 1
29: end if
30: end for
31: end for
32: end if
33: Formulate linear program from Section 4.2 as LP
34: {SLP , RLP ,KLP } = LP.solve()
35: if cost(SLP , RLP ,KLP) < minCost then
36: minCost = cost(SLP , RLP ,KLP)
37: {S′, R′,K′} = {SLP , RLP ,KLP }
38: unimproved = 0
39: else
40: unimproved += 1
41: end if
42: Update utilization statistics: ratxi

n = avg
xi
n

max
xi
n

,numxi
n , µx

n, σ
x
n

43: end for
44: return {S′, R′,K′}

1073

1 3

Scalable algorithms for designing CO2 capture and storage…

4.3 � LP‑greedy hybrid

The third algorithm we introduce is a hybrid of the first two algorithms. This algo-
rithm is presented in Algorithm 3 and detailed below. First, an initial solution is
generated by Algorithm 2 (line 1). The unit cost to transfer the maximum amount
of CO2 between each (source, reservoir) pair in the solution is then calculated (lines
4-29). Calculating this cost is done in a similar fashion to what was done in Sect. 4.1
when finding the cheapest path for a (source, reservoir) pair: First, the maximum
amount of CO2 transferable between the (source, reservoir) pair in the solution is
calculated as the minimum of the CO2 captured at the source and injected at the
reservoir (line 5). Second, the capture and storage costs associated with that amount
of CO2 is calculated as the sum of the utilization costs (line 6) and applicable fixed
costs (lines 7-12). Third, the shortest path in the solution between the (source, res-
ervoir) pair is calculated by first parameterizing a network with the cost savings of
removing this pair from the solution (lines 14-23). This is done by considering each
directed edge in the solution that is hosting more CO2 than the maximum transfer-
able amount (lines 15-16). The cost of a new pipeline hosting the original amount of
CO2 minus the maximum transferable amount is calculated (lines 17-20). The cost
of this edge in the cost network is set to be the difference between the cost of the
pipeline in the solution and the new pipeline cost (line 21). The cheapest path for the
(source, reservoir) pair is calculated by finding the shortest path in the cost network
(line 24). These capture, transport, and storage costs and summed and the cost per
ton of CO2 calculated and recorded (line 27).

Once the pairwise costs of each (source, reservoir) pair is calculated, the cheap-
est (per ton of CO2) reservoir for each source is identified (lines 31-35) and the most
expensive pair is selected (line 36). The rationale for this step is that selecting the
most expensive (source, reservoir) pair from the list of all pairs will likely select a
pair with high transportation cost (i.e. physically distant from each other) that would
not actually pair together to transfer CO2 instead of a pair that would reasonably pair
together. Instead, the list of cheapest pairs will reflect more likely pairings, of which
we select the most expensive one for removal.

The most expensive of the cheapest, for each source, (source, reservoir) pairs is
removed from the solution (lines 38-59). A pair is removed from the solution by
removing the maximum transferable amount of CO2 from the source and reser-
voir (lines 38-46). The cost and volume of CO2 on each edge in the cheapest path
between the (source, reservoir) pair is then calculated and updated (lines 48-59).

Finally, the cheapest replacement (source, reservoir) pairs are then added back
to the solution using Algorithm 1 (line 62). Before Algorithm 1 is run, the solution
variables in Algorithm 1 ( S′ , R′ , K′ ) are set to be the S′ , R′ , and K′ values from this

1074	 C. Whitman et al.

1 3

algorithm (line 61). This process is repeated for a fixed number of iterations and
improves the solution by replacing expensive (source, reservoir) pairs with cheaper
ones.

The driver of the running time for each iteration of Algorithm 3 is not as clear
as the preceding algorithms. Algorithm 2 is run only once, in line 1. Lines 4-29
takes O(|S||R|(|K||C| + ShortestPath)) , where |S| is the number of sources, |R| is the
number of reservoirs, |K| is the number of pipeline components, |C| is the number of
trends, and ShortestPath is the running time for the shortest path algorithm used. Line
62 calls Algorithm 1, which runs in O((|S||R|)2(|K||C| + ShortestPath)) time, with
possibly a different shortest path algorithm than Algorithm 3. In practice though,
Algorithm 1 does not need to run many iterations, since the amount of captured CO2
is still very close to the target. So, it is unlikely that Algorithm 1 will actually run for
close to |S||R| iterations in its line 2, whereas lines 4-29 in Algorithm 1 will run in
Θ(|S||R|(|K||C| + ShortestPath)) time each iteration. Nonetheless, the running time is
O(numIterations + |S||R|(|K||C| + ShortestPath) + (|S||R|)2(|K||C| + ShortestPath)) ,
where numIterations is the number of iterations enforced in line 2.

1075

1 3

Scalable algorithms for designing CO2 capture and storage…

Algorithm 3 LP-Greedy Hybrid

Input: Sources S, Reservoirs R, Candidate Pipelines K, Capture Target T
Parameters: maxIterationsHybrid,maxIterationsLP, improvingThreshold
Output: S′ ⊆ S,R′ ⊆ R,K′ ⊆ K

1: {S′, R′,K′} = IterativeLP(S,R,K, T,maxIterationsLP, improvingThreshold)
2: for n < maxIterationsHybrid do
3: srcSnkPairCosts = ∅
4: for (src, res) ∈ S′ ×R′ do
5: c = min(src.captured, res.stored)
6: cost = c · (src.variableCost + res.variableCost)
7: if c = src.captured then
8: cost += src.fixedCost
9: end if
10: if c = res.stored then
11: cost += res.fixedCost
12: end if
13:
14: N = ∅
15: for directed edge e = (u, v) in K′ do
16: if e.transported ≥ c then
17: vol = e.transported - c
18: oldCost = e.costInK′

19: trend = smallestTrendWithCapacity(vol)
20: newCost = trend.fixedCost + trend.variableCost · vol
21: N .addEdgeWithCost(e, oldCost − newCost)
22: end if
23: end for
24: path = shortestPathInN(src, res)
25: cost += path.cost
26:
27: cost /= c
28: srcSnkPairCosts.add((src, res, path, c, cost))
29: end for
30:
31: cheapestSourcePairs = ∅
32: for src ∈ S′ do
33: (src, res, path, c, cost) = srcSnkPairCosts.cheapestCostForSrc(src)
34: cheapestSourcePairs.add((src, res, path, c, cost))
35: end for
36: Let (src, res, path, c, cost) be most expensive entry in cheapestSourcePairs
37:
38: src.captured -= c
39: if src.captured = c then
40: S′.remove(src)
41: end if
42:
43: res.stored -= c
44: if res.stored = c then
45: R′.remove(res)
46: end if
47:
48: for directed edge e = (u, v) in path do
49: if e.transported > c then
50: vol = e.transported - c
51: trend = smallestTrendWithCapacity(vol)
52: e.transported = vol
53: e.costInK′ = trend.fixedCost + trend.variableCost · vol
54: else
55: e.transported = 0
56: e.costInK′ = ∞
57: K′.remove(e)
58: end if
59: end for
60:
61: Set GreedyAdd solution variables (S′, R′, K′) to reference these S′, R′, K′ values
62: {S′, R′,K′} = GreedyAdd(S,R,K, T)
63: end for
64: return {S′, R′,K′}

1076	 C. Whitman et al.

1 3

5 � Results

For the algorithms presented in Sect. 4 to be useful in realistic applications, they
must both (1) solve instances significantly faster than optimal MILP approaches
and (2) find solutions whose costs are close to optimal. In this section, we present
results from testing the GreedyAdd, IterativeLP, and Hybrid algorithms on real CCS
datasets. These algorithms were implemented and integrated with the SimCCS CCS
infrastructure optimization software. Optimal MILPs were formulated using Sim-
CCS and the MILP presented in Sect. 2. The MILP implemented does not incorpo-
rate any enhancements (e.g., Benders decomposition) which could result in a lower
execution time. Initial experiments suggested that parameterizing the IterativeLP
algorithm to run for 200 iterations and to switch between intensification and diversi-
fication phases after 5 iterations of not improving the cost of the solution lead to the

Fig. 3   Sample CCS infrastructure design with 40 possible sources and 40 possible reservoirs. Selected
sources and reservoirs are larger and in dark red (sources) and dark blue (reservoirs). The purple edges
are the candidate network and the selected edges are green. (Color figure online)

Table 1   Scenario sizes Average number Average number Number of trends
Scenario of Vertices of edges per edge

20 72.1 105.6 2
40 163.4 245.3 2
80 332.1 507.6 2
160 647.4 1005.1 2

1077

1 3

Scalable algorithms for designing CO2 capture and storage…

highest quality solutions in the quickest time. The Hybrid algorithm was parameter-
ized with the same values for its execution of IterativeLP and was set to run through
the component removal/addition process for 100 iterations. Results presented were
produced running the algorithms implemented in SimCCS on a machine running
Fedora 30 with an Intel Core i7-2450 processor running at 2.1 GHz using 32 GB of
RAM. The optimal MILPs were solved on this machine using IBM’s CPLEX opti-
mization tool, version 12.10.

Source and reservoir data were provided by the Great Plains Institute in sup-
port of the National Petroleum Council’s 2019 Carbon Capture, Use, and Storage
study (National Petroleum Council 2019). This study involved a ground up eco-
nomic analysis of hundreds of potential source locations and resulted in the most
modern CO2 capture database to date covering a vast geographic region and many

Fig. 4   Average running time (logarithmic scale) versus input instance size

Fig. 5   Average solution cost versus input instance size

1078	 C. Whitman et al.

1 3

industries. Reservoir data includes both storage without direct economic benefit
(i.e. deep saline formation storage) as well as storage that incurs a direct economic
benefit (i.e. enhanced oil recovery1). This data spans most of the contiguous United
States and has a total of 150 potential sources and 270 potential sinks. Candidate
pipeline routes were generated in SimCCS using its novel network generation algo-
rithms (Yaw et al. 2019). A sample infrastructure design is presented in Fig. 3.

The motivation for developing new CCS infrastructure design algorithms is the
massive time requirement for solving optimal MILPs and input instances grow large.
To evaluate the running time of the algorithms, four scenarios were considered
that set the number of available sources and sinks as 20, 40, 80, or 160. For each

Fig. 6   Percent increase in average solution cost compared to optimal solution versus input instance size

Table 2   Percent deviation from
optimal cost

Scenario

20 (%) 40 (%) 80 (%) 160 (%)

GreedyAdd Min 2.73 0.11 4.42 2.55
Avg 5.65 5.80 6.70 4.95
Max 15.11 9.49 14.36 20.92

IterativeLP Min 0.61 4.36 10.15 0.38
Avg 4.05 7.20 12.77 7.58
Max 14.42 12.69 19.55 21.37
Min 0.43 4.24 7.08 0.16

Hybrid Avg 3.15 6.87 10.02 6.72
Max 8.17 12.5 14.53 20.22

1  Enhanced oil recovery is the process of injecting CO2 into oil fields to increase production. Oil fields
will pay for CO2 for this purpose, so the capture facility will collect proceeds from sale of CO2 to the oil
field.

1079

1 3

Scalable algorithms for designing CO2 capture and storage…

scenario, 10 instances were generated that randomly selected the appropriate num-
ber of sources and sinks from the full available set. The average sizes of the result-
ing scenarios is presented in Table 1. The variation of instance sizes within each
scenario is less than 10%.

Target capture amounts for each individual instance were set as the maximum
amount of CO2 able to be captured and stored, calculated as the minimum of the
total capturable CO2 and total annual reservoir storage capacity. The running time
required for each algorithm on each scenario is recorded as the average of the run-
ning time over the 10 instances. Figure 4 presents the average running time required
for each algorithm in each scenario. Note the logarithmic scale y-axis. Error bars
representing the minimum and maximum values are presented to illustrate the vari-
ability in running time. For some algorithms and scenarios (e.g., GreedyAdd and

Fig. 7   Average time it takes for CPLEX to find a lower cost solution than the algorithm (logarithmic
scale) versus input instance size

Fig. 8   CPLEX optimality gap when CPLEX found a lower cost solution than the algorithm versus input
instance size

1080	 C. Whitman et al.

1 3

IterativeLP), very little variation was found. All three algorithms substantially
reduce running time compared to solving the MILP optimally. For the largest sce-
nario, this improvement is near two orders of magnitude for the worst algorithm
(GreedyAdd) and four orders of magnitude for the best (IterativeLP). It is also appar-
ent that for larger scenarios, IterativeLP is significantly faster than both GreedyAdd
and Hybrid. This performance difference is likely attributable to the rapid speed
even very large linear programs can be solved.

Though reducing the running time it takes to solve CCS infrastructure design
problems is the primary objective of these algorithms, quick solutions are not ben-
eficial if the quality of the solution is very poor. To evaluate the quality of the solu-
tion, the cost of the infrastructure designs from the running time experiment were
compared. The true cost of the infrastructure that does not include any scaling fac-
tors used by the algorithms to manipulate costs was calculated and is reported here.
Figure 5 presents average true solution costs of the infrastructure designs found by
each algorithm in each scenario. Error bars representing the minimum and maxi-
mum values across all algorithms are presented to illustrate the variability in solu-
tion costs. Variability is very similar across the algorithms, and is much larger than
the differences in the average values, so only the largest maximum and smallest
minimum for each scenario is displayed. Solutions costs increase as the size of the
input instances increase, since more infrastructure incurs a higher cost. Costs for all
algorithms stay fairly close to the optimal costs.

Figure 6 presents the average percent each algorithm’s costs increased over the
optimal cost. Error bars representing the minimum and maximum values across all
algorithms are presented to illustrate the variability in solution costs. Variability is
very similar across the algorithms, and is much larger than the differences in the
average values, so only the largest maximum and smallest minimum for each sce-
nario is displayed. The average, minimum, and maximum percent deviation over
optimal for each algorithm in each scenario is provided in Table 2. All algorithms
found solutions that were less than 13% more expensive than the cost of the optimal
solution. Aside from some variability seen with small instances, GreedyAdd finds
solutions with better costs than IterativeLP and Hybrid.

This evaluation suggests that all three algorithms can greatly reduce running
time while keeping solution costs close to optimal. One final interesting question is
to consider the process for actually solving optimal MILPs. CPLEX tends to very
quickly converge on good solutions and spends the majority of its time closing the
final gap. Even if the algorithms presented here run in less time than it takes CPLEX
to terminate, it is possible that CPLEX will find a solution that is better than the
algorithm’s solution in less time than the algorithm took. Figure 7 presents the time
it takes CPLEX to generate a solution whose value is better than the solution that
GreedyAdd found. Note the logarithmic scale y-axis. Error bars representing the
minimum and maximum values are presented to illustrate the variability in time.
This was only presented for GreedyAdd since it was the algorithm that consistently
found the lowest cost solutions. For the largest scenario, it takes CPLEX on aver-
age approximately 4.75 min before its solution has a lower cost than GreedyAdd’s
solution.

1081

1 3

Scalable algorithms for designing CO2 capture and storage…

Figure 8 presents the optimality gap that CPLEX had when it found a lower cost
solution than the solution that GreedyAdd found. The optimality gap is the gap
between the best integer solution found and the best relaxed solution in the remain-
ing search space. As such, it does not correspond to the gap with the actual optimal
solution, but instead it is the gap with current best lower bound on the optimal mini-
mum cost. Error bars representing the minimum and maximum values are presented
to illustrate the gap variability. For the largest scenario, the optimality gap was on
average 20% when CPLEX’s solution surpassed GreedyAdd’s solution, even though
the eventual gap with the optimal solution was on average 5% (Fig. 6).

Even though all algorithms greatly reduce running time compared to optimally
solving MILPs, they do so to a varying degree and with a varying impact on solu-
tion costs. This presents a different use case for each algorithm. GreedyAdd is the
most accurate, consistently staying within 7% of optimal. This suggests that Greedy-
Add will work well for small to mid-ranged scenarios, consistently providing reli-
ably good solutions. It also has the advantage of not requiring special software
(e.g., CPLEX) to solve linear programs. Finally, GreedyAdd would be much more
straightforward to parallelize than the other algorithms, which could open to door to
constructing a high-performance computing workflow. IterativeLP is the fastest and
also achieves high accuracy for some scenarios. Many CCS studies are proposing a
high-level screening phase that will run thousands of instances reflecting the uncer-
tainty involved in many of the economic and physical parameters. Having a tool like
IterativeLP available, that can quickly give rough cost estimates, would enable this
high-level screening. Hybrid is able to improve on the solutions chosen and could
even be adapted to work as a refinement tool on other CCS infrastructure design
algorithms.

6 � Conclusion

In this research, we presented three algorithms for the CID problem demonstrated
experimentally that they are fast with minimal loss in solution quality for realistic
CCS data. These algorithms represent viable approaches for approximating CCS
infrastructure designs for large scenarios. We explored the trade-offs between the
algorithms and suggested specific use cases for each. This enables organizations to
better explore scenarios that were previously hindered by the intractability of solv-
ing MILPs optimally.

Future practical work could focus on more testing and improving the high varia-
bility seen in the IterativeLP algorithm. Testing should take place on other data sets.
Scenarios fed by other data sets may see differences in network structure, requiring
modifications of each algorithm. In addition, further improvements should look at
reducing the solution costs for all algorithms.

Future theoretical work could look at developing algorithms with theoretical per-
formance guarantees (i.e. approximation algorithms). Such algorithms would be
of interest to the larger community given the CID problem’s relationship with the

1082	 C. Whitman et al.

1 3

FCNF problem, but would also provide insight into CCS infrastructure designs that
cannot be compared to an optimal solution.

Funding  This research was partially funded by the Great Plains Institute (GPI) through the State Carbon
Capture Work Group.

References

Altiparmak F, Karaoglan I (2008) An adaptive Tabu-simulated annealing for concave cost transportation
problems. J Oper Res Soc 59:331–341

Bazlamacci CF, Hindi KS (1996) Enhanced adjacent extreme-point search and Tabu search for the mini-
mum concave-cost uncapacitated transshipment problem. J Oper Res Soc 47:1150–1165

Billheimer JW, Gray P (1973) Network design with fixed and variable cost elements. Transp Sci
7(1):49–74

Costa AM (2005) A survey on benders decomposition applied to fixed-charge network design problems.
Comput Oper Res 32(6):1429–1450

Crainic TG, Gendron B, Hernu G (2005) A slope scaling/lagrangean perturbation heuristic with long-
term memory for multicommodity capacitated fixed-charge network design. J Heuristics 10:525–545

Dang C, Sun Y, Wang Y, Yang Y (2011) A deterministic annealing algorithm for the minimum concave
cost network flow problem. Neural networks? Off J Int Neural Netw Soc 24:699–708

Ekiolu B, Ekiolu SD, Pardalos PM (1970) Solving large scale fixed charge network flow problems. In:
Equilibrium problems and variational models, pp 163–183

Fontes DB, Gonalves JF (2007) Heuristic solutions for general concave minimum cost network flow
problems. Networks 50:67–76

Fontes DB, Gonalves JF (2012) Solving concave network flow problems. FEP working papers 475
Gale J, Christensen NP, Cutler A, Torp TA (2001) Demonstrating the Potential for Geological Storage of

CO2 ?: The Sleipner and GESTCO projects. Environ Geosci 8(3):160–165
Gallo G, Sandi C, Sodini C (1980) An algorithm for the min concave cost flow problem. Eur J Oper Res

4:248–255
Gendron B (2011) Decomposition methods for network design. Proc Soc Behav Sci 20:31–37
Gendron B, Larose M (2014) Branch-and-price-and-cut for large-scale multicommodity capacitated

fixed-charge network design. EURO J Comput Optim 2(1–2):55–75
Gendron B, Hanafib S, Todosijevib R (2018) Matheuristics based on iterative linear programming

and slope scaling for multicommodity capacitated fixed charge network design. Eur J Oper Res
268:78–81

Glover F (2005) Parametric ghost image processes for fixed-charge problems: a study of transportation
networks. J Heuristics 11:307–336

Guisewite G, Pardalos P (1990) Minimum concave-cost network flow problems: applications, complex-
ity, and algorithms. Ann Oper Res 25:75–99

Guisewite GM, Pardalos PM (1991) Algorithms for the single-source uncapacitated minimum concave-
cost network flow problem. J Global Optim 1:245–265

Hochbaum DS, Segev A (1989) Analysis of a flow problem with fixed charges. Networks 19(3):291–312
Hoover B, Yaw S, Middleton R (2020) Costmap: an open-source software package for developing cost

surfaces using a multi-scale search kernel. Int J Geogr Inf Sci 34(3):520–538
Khang DB, Fujiwara O (1991) Approximate solutions of capacitated fixed-charge minimum cost network

flow problems. Networks 21:47–58
Kim D, Pardalos PM (1999) A solution approach to the fixed charge network flow problem using a

dynamic slope scaling procedure. Oper Res Lett 24(4):195–203
Kim D, Pan X, Pardalos PM (2006) Enhanced adjacent extreme-point search and Tabu search for the

minimum concave-cost uncapacitated transshipment problem. Comput Econ 27:273–293
Kliewer G, Timajev L (2005) Relax-and-cut for capacitated network design. Eur Symp Algorithms

3669:47–58

1083

1 3

Scalable algorithms for designing CO2 capture and storage…

Kowalski K, Lev B, Shen W, Tu Y (2014) A fast and simple branching algorithm for solving small scale
fixed-charge transportation problem. Oper Res Perspect 1:1–5

Lamar BW, Sheffi Y, Powell WB (1990) A capacity improvement lower bound for fixed charge network
design problems. Oper Res 38(4):704–710

Middleton RS (2013) A new optimization approach to energy network modeling: anthropogenic CO2
capture coupled with enhanced oil recovery. Int J Energy Res 37(14):1794–1810

Middleton RS, Bielicki JM (2009) A scalable infrastructure model for carbon capture and storage: Sim-
CCS. Energy Policy 37(3):1052–1060

Middleton RS, Kuby MJ, Bielicki JM (2012) Generating candidate networks for optimization: the CO2
capture and storage optimization problem. Comput Environ Urban Syst 36(1):18–29

Middleton RS, Yaw SP, Hoover BA, Ellett KM (2020) SimCCS: an open-source tool for optimizing CO2
capture, transport, and storage infrastructure. Environ Model Softw 124:104560

Monteiro MSR, Fontes DBMM (2005) Locating and sizing bank-branches by opening, closing or main-
taining facilities. Oper Res Proc 2005:303–308

Morbee J, Serpa J, Tzimas E (2011) Optimal planning of CO2 transmission infrastructure: the JRC
InfraCCS tool. In: 10th international conference on greenhouse gas control technologies. Energy
Procedia 4:2772 – 2777

National Energy Technology Laboratory (2018) FE/NETL CO2 transport cost model. https://​www.​netl.​
doe.​gov/​resea​rch/​energy-​analy​sis/​searc​hpubl​icati​ons/​vuede​tails?​id=​543

National Petroleum Council (2019) Meeting the dual challenge: a roadmap to at-scale deployment of
carbon capture, use, and storage

Ortega F, Wolsey LA (2003) A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-
charge network flow problem. Networks 41(3):143–158

Poorzahedy H, Rouhani O (2007) Hybrid meta-heuristic algorithms for solving network design problem.
Eur J Oper Res 182:578–596

Raz R, Safra S (1997) A sub-constant error-probability low-degree test, and a sub-constant error-proba-
bility PCP characterization of NP. In: ACM STOC

Smit B (2014) Computational carbon capture. In: ACM e-Energy 2014 keynote
Smith DK, Walters GA (2000) An evolutionary approach for finding optimal trees in undirected net-

works. Eur J Oper Res 102:593–602
van den Broek M, Brederode E, Ramrez A, Kramers L, van der Kuip M, Wildenborg T, Faaij A, Turken-

burg W (2009) An integrated GIS-markal toolbox for designing a CO2 infrastructure network in the
netherlands. Energy Procedia 1(1):4071–4078, greenhouse Gas Control Technologies 9

Whitman C, Yaw S, Middleton RS, Hoover B, Ellett K (2019) Efficient design of CO2 capture and stor-
age infrastructure. Proceedings of the tenth ACM international conference on future energy systems,
Association for Computing Machinery, New York, NY, USA, e-Energy 19:383–384

Xie F, Jia R (2012) Nonlinear fixed charge transportation problem by minimum cost flow-based genetic
algorithm. Comput Ind Eng 63:763–778

Yaghini M, Momeni M, Sarmadi M (2012) A simplex-based simulated annealing algorithm for node-arc
capacitated multicommodity network design. Appl Soft Comput 12:2997–3003

Yan S, Shin Juang D, Rong Chen C, Shen Lai W (2005) Global and local search algorithms for concave
cost transshipment problems. J Global Optim 33:123–156

Yaw S, Middleton RS (2018) SimCCS. https://​github.​com/​simccs/​SimCCS
Yaw S, Middleton RS, Hoover B (2019) Graph simplification for infrastructure network design. In; Com-

binatorial optimization and applications, pp 576–589

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://www.netl.doe.gov/research/energy-analysis/searchpublications/vuedetails?id=543
https://www.netl.doe.gov/research/energy-analysis/searchpublications/vuedetails?id=543
https://github.com/simccs/SimCCS

	Scalable algorithms for designing CO2 capture and storage infrastructure
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 Computational complexity

	3 Related work
	4 Algorithms
	4.1 Greedy add
	4.2 Iterative LP
	4.3 LP-greedy hybrid

	5 Results
	6 Conclusion
	References

