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Abstract
CO2 capture and storage (CCS) is a climate change mitigation strategy that aims 
to reduce the amount of CO2 vented into the atmosphere from industrial processes. 
Designing cost-effective CCS infrastructure is critical in meeting CO2 emission 
reduction targets and is a computationally challenging problem. We formalize the 
computational problem of designing cost-effective CCS infrastructure and detail 
the fundamental intractability of designing CCS infrastructure as problem instances 
grow in size. We explore the problem’s relationship to the ecosystem of network 
design problems, and introduce three novel algorithms for its solution. We evaluate 
our proposed algorithms against existing exact approaches for CCS infrastructure 
design and find that they all run in dramatically less time than the exact approaches 
and generate solutions that are very close to optimal. Decreasing the time it takes to 
determine CCS infrastructure designs will support national-level scenario analysis, 
undertaking risk and sensitivity assessments, and understanding the impact of gov-
ernment policies (e.g., tax credits for CCS).
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1  Introduction

CO2 capture and storage (CCS) is the process of capturing CO2 emissions from 
industrial sources, such as coal-fired and natural gas power plants, transporting the 
CO2 via a dedicated pipeline network, and injecting it into geological reservoirs 
for the purpose of combating climate change and economic benefit (e.g., enhanced 
oil recovery, tax credits). CCS is a key technology in all climate change mitigation 
plans that limit global temperatures below 2  ◦ C of warming. To have a meaning-
ful impact, this will involve optimizing infrastructure deployments for hundreds of 
sources and reservoirs, and thousands of kilometers of pipeline networks.

Deploying CCS infrastructure on a massive scale requires careful and compre-
hensive planning to ensure investments are made in a cost-effective manner  (Smit 
2014). At its core, designing CCS infrastructure is an optimization problem that 
aims to determine the most cost-effective locations and quantities of CO2 to capture, 
route via pipeline, and inject for storage. Designing CCS infrastructure can natu-
rally be formulated as a Mixed Integer Linear Program (MILP) that aims to mini-
mize total cost, while capturing and injecting a target amount of CO2. The MILP is 
parameterized with a candidate pipeline network constructed from a weighted cost 
surface, and economic and capacity data about the possible source and sink loca-
tions. We show in this research that designing CCS infrastructure is a generalization 
of the well-studied NP-Hard fixed charge network flow (FCNF) problem (Guisewite 
and Pardalos 1990). This means that optimal algorithms for designing CCS infra-
structure do not efficiently scale as scenarios grow in size.

The intractability of designing CCS infrastructure impacts CCS infrastructure 
design studies in three ways. First, CCS infrastructure studies are moving from local 
scale projects with tens of sources and sinks to regional and national scale projects 
with thousands of sources and sinks. For instances of this size, MILP implementa-
tions have not been successful at executing in a reasonable time period (e.g., 40% 
gap after 72 h). Second, many CCS infrastructure studies explore impacts of min-
ute changes to input parameters that arise due to uncertainty (e.g., reservoir specific 
storage potential or injectivity). Studies of this type require ensemble runs, where 
thousands of differently parameterized instances are generated and solved, with 
results feeding the generation of more instances. Finally, studies are being proposed 
that consider continuous reservoir regions instead of discrete point locations. To 
solve these problems, the infrastructure design algorithm will need to be run many 
sequential times where, between runs, discrete reservoir locations are moved based 
on the previous iteration’s solution. It is not possible to rely on MILP formulations 
to solve these types of problems. New optimization techniques need to be developed 
to address the problem of designing CCS infrastructure for massive deployments.

In this research, we introduce the CCS Infrastructure Design (CID) problem and 
develop custom optimization algorithms for it. We prove that CID is a generalization 
of the well-studied FCNF problem and characterize its computational complexity. 
We then introduce three fast algorithms for the CID problem. Finally, we evaluate 
the performance of the algorithms on realistic datasets and find that they reduce run-
ning time compared to an optimal MILP, with a minimal increase in solution costs. 
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Reducing the time it takes to determine CCS infrastructure designs will support 
national-level scenarios, undertaking risk and sensitivity assessments, and under-
standing the impact of government policies (e.g., tax credits for CCS).

The rest of this paper is organized as follows. We formalize the problem in Sect. 2 
and characterize its computational complexity. Section  3 discusses related work. 
Our three algorithms are presented in Sect. 4. Experimental results are presented in 
Sect. 5 and we conclude in Sect. 6.

2 � Problem formulation

Given a set of CO2 emitters (sources), geological reservoirs, and a candidate pipeline 
network, the goal of the CCS Infrastructure Design (CID) problem is to determine, 
in a cost-minimal fashion, which sources to capture from, which reservoirs to inject 
into, and which (and what diameter) pipelines to build to capture a pre-determined 
system-wide quantity of CO2.

The sources and reservoirs are parameterized with an economic model consist-
ing of fixed costs to open locations (millions of dollars), and variable costs to utilize 
the locations (dollars per tonne of CO2 captured/injected). These costs vary based 
on the ease of injection at that particular site. Candidate pipeline routes are con-
structed from a weighted cost surface  (Hoover et al. 2020; Middleton et al. 2012; 
Yaw et al. 2019). Pipelines have construction and per-tonne utilization costs depend-
ent on their geographic location and the quantity of CO2 they transport. Pipelines 
can intuitively be represented as a number of discrete pipeline sizes (i.e. diameters) 
and their associated costs and capacities. Pipeline costs include construction and 
operation costs (e.g., pumping stations, maintenance). In a mixed integer linear pro-
gram (MILP) formulation, this representation requires an integer variable for each 
possible pipeline edge/size pair, which results in a large number of variables and 
quickly leads to intractable formulations. To reduce the number of integer variables 
used in the MILP formulation, pipelines can be represented as a smaller set of lin-
ear functions (called trends) of pipeline capacity versus cost. The composition of 
these trends forms a pipeline capacity versus cost function that is increasing, piece-
wise linear, and subadditive. An example of two trends approximating the non-lin-
ear pipeline capacity versus cost function is presented in Fig. 1. The pipeline costs 
that the trends approximate were determined using the National Energy Technology 
Laboratory’s CO2 Transport Cost Model (National Energy Technology Laboratory 
2018). The increasing and subadditivity properties of the cost function enforces that 
a pipeline of a given capacity is cheaper than multiple pipelines of smaller capacities 
or a pipeline of a larger than necessary capacity. It is also assumed that the capac-
ity of the largest pipeline trend is arbitrarily large. Using pipeline trends instead of 
explicit diameters allows for simpler formulations compared to the discrete formula-
tion while still ensuring that the cost model is realistic (Middleton 2013). All fixed 
construction costs are annualized by way of a capital recovery factor that accounts 
for project financing. The CID problem based on linearized pipelines is formulated 
as an MILP below:
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Instance input parameters

Fsrc
i

Annualized fixed cost to open source i ($M/yr)
Fres
j

Annualized fixed cost to open reservoir j ($M/yr)
Vsrc
i

Variable cost to capture CO2 from source i ($/tCO2)
Vres
j

Variable cost to inject CO2 in reservoir j ($/tCO2)
S Set of sources
R Set of reservoirs
I Set of vertices (sources, reservoirs, and pipeline junctions)
K Set of candidate pipeline edges
C Set of pipeline capacity trends
Qsrc

i
Annual CO2 production rate at source i (tCO2/yr)

Qres
j

Total capacity of reservoir j (tCO2)
Qmax

kc
Max annual capacity of pipeline k with trend c (tCO2/yr)

Qmin
kc

Min annual capacity of pipeline k with trend c (tCO2/yr)
�kc Variable transport cost on pipeline k with trend c ($/tCO2)
�kc Annualized fixed cost for pipeline k with trend c ($M/yr)
L Length of project (years)
T Target CO2 capture amount for project (tCO2/yr)

MILP decision variables

si ∈ {0, 1} Indicates if source i is opened
rj ∈ {0, 1} Indicates if reservoir j is opened
ykc ∈ {0, 1} Indicates if pipeline k with trend c is opened
ai ∈ ℝ

≥0 Annual CO2 captured at source i (tCO2/yr)
bj ∈ ℝ

≥0 Annual CO2 injected in reservoir j (tCO2/yr)

Fig. 1   Two linear trends approximating the cost of a pipeline given the transportation volume
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pkc ∈ ℝ
≥0 Annual CO2 in pipeline k with trend c (tCO2/yr)

The MILP is driven by the objective function:

Subject to the following constraints:

Where constraint 1 ensures that a pipeline is built before transporting CO2 and that 
the pipeline’s capacity is appropriate for the amount of flow. Constraint 2 enforces 
conservation of flow at each internal vertex. Constraint 3 ensures a source is opened 
before capturing CO2 and that the captured amount is limited by the source’s maxi-
mum production. Constraint 4 limits lifetime storage for each reservoir by its maxi-
mum capacity, and constraint 5 ensures the total system-wide capture amount meets 
the target.

2.1 � Computational complexity

CID generalizes the Fixed Charge Network Flow (FCNF) problem: Consider a 
directed graph with edge capacities and fixed edge costs. Purchasing an edge incurs 
its fixed cost and allows it to host any amount of flow up to its capacity. A subset of 
the vertices are designated as sources and have an associated amount of flow they 
are able to supply. Likewise, a subset of the vertices are designated as sinks (analo-
gous to reservoirs in the CID problem) and have an associated amount of flow they 
demand. The goal of the FCNF problem is to determine a least-cost set of edges that 

min

capture cost

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∑
i∈S

(Fsrc
i
si + Vsrc

i
ai) +

transport cost

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∑
k ∈ K

c ∈ C

(�kcpkc + �kcykc) +

storage cost

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∑
j∈R

(Fres
j
rj + Vres

j
bj)

(1)Qmin
kc

ykc ≤ pkc ≤ Qmax
kc

ykc, ∀k ∈ K, ∀c ∈ C

(2)
�

k ∈ K ∶

src(k) = n

�
c∈C

pkc −
�

k ∈ K ∶

dest(k) = n

�
c∈C

pkc =

⎧
⎪⎨⎪⎩

an if n ∈ S

−bn if n ∈ R

0 otherwise

, ∀n ∈ I

(3)ai ≤ Qsrc
i
si, ∀i ∈ S

(4)bjL ≤ Qres
j
rj, ∀j ∈ R

(5)
∑
i∈S

ai ≥ T
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allows sufficient flow to be routed from the sources to the sinks to satisfy all of the 
sink demand (Kim and Pardalos 1999).

Theorem  1  There is no � ln |V|-approximation algorithm for the FCNF problem, 
where 0 < 𝛾 < 1 is some constant, unless P = NP.

Proof  This complexity result is via an approximation-preserving reduction from the 
Dominating Set problem: Given a graph G = (V ,E) , find a minimum sized U ⊆ V  
such that for each vertex v in V ⧵ U , there is some vertex u in U such that the edge 
(u, v) is in E.

Let G = (V ,E) be an instance of Dominating Set where |V| = n . G reduces to an 
FCNF instance G� = (V �,E�) as follows: For each vertex v in V, make a new vertex 
vin . Make a directed edge with cost zero and capacity one from the new vertex to the 
original one (the dotted red edges in Fig. 2). For every edge e = (u, v) in E, make the 
directed edges (u, vin) and (v, uin) with cost zero and capacity one (the solid black 
edges in Fig. 2). Create a new vertex s and for each vertex v in V, make the directed 
edge (s, v) with cost one and infinite capacity (the dashed green edges in Fig. 2). Let 
the original vertices V be the sinks and each have a demand of one. Let s be the sin-
gle source and let its supply be |V|. Figure 2 shows the reduction from Dominating 
Set to FCNF.

Suppose that U ⊆ V  is a dominating set of G with |U| = k . For each vertex in 
V ⧵ U , associate it with one neighbor that is in U. In this way, each vertex u in U 
is associated with a set of neighbors Nu that are in V ⧵ U . U can now be translated 
into a source-sink flow of cost k in G′ . For each vertex u in U, push |Nu| + 1 units 
of flow from the source s to u. One unit of that flow will be consumed by u and the 
additional |Nu| units of flow will be distributed to the neighbors in Nu . Consider a 
vertex v in V ⧵ U . This vertex has been associated with a single neighbor vertex u 
that is in U. Since v and u are neighbors in G, the directed edges (u, vin) and (vin, v) 
are in G′ and form a path from u to v. The capacity of this path is one, so one unit 
of flow can be pushed to each vertex v in V ⧵ U from its associated neighbor vertex 
u in U. Therefore, this flow will satisfy all demand in G′ and its cost will be k since 
the only costs incurred are the fixed unit costs for sending flow to the nodes directly 
connected to source s (i.e. the vertices in U).

Suppose there is a flow solution to G′ of cost k. This means that every vertex in V 
receives one unit of flow from source s. Let U be the set of vertices receiving flow 

Fig. 2   Dominating Set reduction to the FCNF problem where each edge is weighted as (cost, capacity)
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directly from source s. Since the only costs incurred in the flow network are on ver-
tices receiving flow directly from source s, |U| = k . Consider a vertex v in V ⧵ U . 
Suppose that v was able to forward flow to another vertex in V ′ . This would require 
v receiving more than one unit of flow, since v’s demand for one unit needs to be 
satisfied. There are only two directed edges into v: (vin, v) and (s, v). Since v is not 
in U, the directed edge (s, v) is not carrying any flow. Since the capacity of (vin, v) is 
one, all of the flow carried on this edge must be used to satisfy v’s demand. There-
fore, there is no excess flow available for v to forward to another vertex in V ′ . This 
means that every vertex in V ⧵ U must be receiving flow from a neighbor that is in 
U, which means that U is a dominating set of V.

Since any dominating set in G of size k corresponds to a flow in G′ of cost k 
and conversely, inapproximability results the Dominating Set problem hold for the 
FCNF problem. It was shown by Raz and Safra (1997) that there exists a constant, 
0 < 𝛾 < 1 , such that the Dominating Set problem cannot be approximated within 
a factor of � ln |V| unless P = NP , thus this result holds for the FCNF problem as 
well. 	�  ◻

Corollary 1  The CID problem has the same inapproximability result as the FCNF 
problem.

Proof  CID generalizes the classic FCNF problem by allowing parallel edges repre-
senting different pipeline sizes. Other apparent differences between CID and FCNF 
are not actually generalizations of the FCNF model: Source and reservoir costs 
and capacities can be pushed to a new edge between the original source/reservoir 
and a new node. Also, allowing only a subset of the demand to be captured can be 
enforced with a new source node that feeds the original sources and a new reservoir 
node connected to the original reservoirs with the required demand (i.e. the target 
CO2 capture amount).

As such, CID cannot be easier to approximate than FCNF.
	�  ◻

Because of this complexity result, we pursue fast suboptimal algorithms for CID 
in Sect. 4.

3 � Related work

Variations on the CID problem have been studied and numerous approaches have 
been developed to intelligently design CCS infrastructure. SimCCS is an economic-
engineering optimization tool for designing CCS infrastructure and is the premier 
CCS infrastructure modelling tool  (Middleton and Bielicki 2009; Middleton et  al. 
2020; Yaw and Middleton 2018). SimCCS concurrently optimizes selection of 
sources, reservoirs, and pipeline routes. One of the key features unique to SimCCS 
relative to other CCS infrastructure design models is the integration of routing based 
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on geographical features (e.g., population density, topography, existing rights of 
way) (van den Broek et al. 2009; Gale et al. 2001; Morbee et al. 2011). Put another 
way, SimCCS uses a MILP solver to solve the CID problem stated in Sect. 2 whereas 
other CCS infrastructure design models can only solve simplified versions of the 
CID problem.

No work has been done trying to develop suboptimal solutions to the CID prob-
lem in faster running time than solving the MILP formulations. However, extensive 
work has been done in the context of the FNCF problem, which is a special case of 
the CID problem, as discussed in Sect. 2. FCNF is itself a variant of the minimum 
concave network flow (MCNF) problem, where the edge cost function is concave. 
Due to the economies of scale property inherent to concave cost functions, MCNF 
problems arise in a variety of applications ranging from offshore platform drill-
ing (Glover 2005) to traffic networks (Poorzahedy and Rouhani 2007). Algorithms 
developed for MCNF problems can generally be categorized as: exact algorithms, 
genetic algorithms, simulated annealing algorithms, slope scaling heuristics, and/or 
greedy heuristics.

MCNF is an NP-Hard problem and cannot, in general, be solved optimally in 
polynomial time. However, useful instances of MCNF can still be solved optimally 
and, exact methods have been widely explored for these cases (Fontes and Gonalves 
2012). Gallo et  al. created a branch and bound procedure as one of the original 
algorithms for solving MCNF  (Gallo et  al. 1980). Since then, numerous studies 
have used a combination of relaxation, bounding, and cutting to find exact solu-
tions (Fontes and Gonalves 2012; Hochbaum and Segev 1989; Kliewer and Timajev 
2005; Khang and Fujiwara 1991; Crainic et  al. 2005; Gallo et al. 1980; Kowalski 
et al. 2014; Dang et al. 2011).

Optimal techniques have also been developed for the FCNF problem relying on 
Benders decompositions  (Costa 2005) and branch-and-cut techniques  (Ortega and 
Wolsey 2003; Gendron and Larose 2014). Other approaches include cutting-plane 
and Lagrangian relaxation (Gendron 2011).

Genetic algorithms have been extensively studied to search for high quality solu-
tions to MCNF problems. Fontes and Gonalves introduced one of the first genetic 
algorithms followed by a local search to improve results  (Fontes and Gonalves 
2007). Yan et  al. developed a genetic algorithm that preforms better than several 
local search algorithms (Yan et al. 2005). Xie and Jia used a hybrid minimum cost 
flow and genetic algorithm (Xie and Jia 2012). Smith and Walters solved a variation 
of the problem where the base graph is a tree (Smith and Walters 2000).

Simulated annealing methods randomly explore the search space and gradually 
increase the probability of exploring edges that led to low cost solutions. Altipar-
mak and Karaoglan used a hybrid of simulated annealing and a tabu search strat-
egy  (Altiparmak and Karaoglan 2008). Yaghini et  al. solved a multi-commodity 
flow network variant (Yaghini et al. 2012). Dang et al. used a variant of simulated 
annealing called deterministic annealing method to solve instances with high arc 
densities (Dang et al. 2011).

Slope scaling heuristics iteratively solve relaxed versions of the initial solution, 
updating costs after each iteration to find better approximations (Crainic et al. 2005; 
Gendron et al. 2018; Ekiolu et al. 1970; Kim and Pardalos 1999; Lamar et al. 1990). 
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Crainic et  al. developed a slope scaling heuristic which relaxes the solution by 
replacing the fixed and variable costs with a single variable cost. To avoid becom-
ing stuck in local optima, they introduce a long-term memory procedure, which 
perturbs the solution based on previous flow values and significantly improves 
results (Crainic et al. 2005). Gendron et al. improved this algorithm by introducing 
an additional iterative linear program approach  (Gendron et  al. 2018). Due to the 
success of slope scaling heuristics in many application areas, we employ this tech-
nique in the design of the algorithm presented in Sect. 4.2.

Greedy heuristics are a popular technique for finding MCNF and FCNF solutions. 
Early heuristics relied on local searches with various adding, dropping, and swap-
ping strategies  (Billheimer and Gray 1973; Monteiro and Fontes 2005; Guisewite 
and Pardalos 1991). Later approaches often implemented memory via a tabu search 
to avoid getting stuck in local optima (Altiparmak and Karaoglan 2008; Bazlamacci 
and Hindi 1996; Kim et  al. 2006; Poorzahedy and Rouhani 2007). Guisewite and 
Pardalos explored several local search heuristics based on finding a set of shortest 
paths between a single source and multiple sinks  (Guisewite and Pardalos 1991). 
One such heuristic finds all shortest paths between the source and sinks and then 
selects the smallest number of cheapest paths that satisfy flow requirements. We fol-
low a similar approach in the design of the algorithm presented in Sect. 4.1, with the 
main difference being that our algorithm recalculates the shortest paths after each 
path is selected, to take advantage of already used edge capacity. We chose this tech-
nique in an effort to explore provable performance and a potential approximation 
algorithm.

4 � Algorithms

Existing approaches to solving CCS infrastructure design type problems rely on 
exact techniques, specifically solving MILPs like the one detailed in Sect.  2. The 
running time of MILP solvers does not scale linearly with linearly increasing input 
size. Large instances (e.g., thousands of vertices and pipeline components) cannot 
be solved by MILPs in a reasonable time, which motivates the search for sub-opti-
mal techniques with better running time performance. In this section, we present 
three algorithms for CID.

4.1 � Greedy add

The first algorithm we introduce iteratively builds a solution by greedily selecting 
cheap (source, reservoir) pairs, as well as the cheapest appropriately sized pipelines 
connecting them. This algorithm is presented in Algorithm  1 and detailed below 
with references to the applicable lines of Algorithm 1.

First, for each (source, reservoir) pair, the maximum amount of CO2 that is able 
to be transferred between the pair is determined. This value is calculated as the 
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minimum of the source’s uncaptured production, the reservoir’s unused capacity, 
and the amount of the target capture remaining (line 4).

Second, the (source,  reservoir) pair’s capture and storage costs are calculated. 
Fixed costs are only included if the source or reservoir has not yet been opened 
(lines 6-11). Variable costs are included based on the amount of CO2 that was deter-
mined to be transferred between the source and reservoir (line 5).

Third, the cheapest path between the source and reservoir for the amount of CO2 
that will be transferred is calculated. To calculate the cheapest path, the pipeline 
network first needs to be parameterized with costs that reflect the cost to transport 
that amount of CO2 along each pipeline component. These costs need to take into 
account the following considerations: 

1.	 Unused pipeline capacity that has already been purchased.
2.	 Upgrade costs associated with moving from one trend to a higher capacity trend.
3.	 Changes to the variable costs for CO2 already being transported along that pipe-

line component associated with changing pipeline trends.
4.	 Cost savings associated with downsizing pipeline capacities due to redirecting 

CO2 (i.e. pushing CO2 in the opposite direction of CO2 already being transported).

Parameterizing the pipeline network with costs is done in lines 13-27. Each pipeline 
component e = (u, v) is sequentially considered as a directed edge. Depending on the 
pipeline trend already purchased and existing CO2 flow on e or e� = (v, u) , there are 
three possibilities for the new pipeline’s required volume and the existing pipeline’s 
cost: 

1.	 e is already hosting CO2 (lines 14-16). In this case, the new volume of CO2 on 
e will be the existing volume plus the new amount being transported. The old 
pipeline cost is the old cost of e.

2.	 e′ is already hosting CO2 (lines 17-19). Pipelines cannot transport CO2 in both 
directions. If e′ is already hosting CO2, adding flow in the opposite direction on e 
represents redirecting CO2 that was traveling from v to u. If e′ is hosting less CO2 
than the amount being transported, the new volume of CO2 on e will be the new 
amount minus the amount e′ is currently hosting. If e′ is hosting more CO2 than 
the amount being transported, the new volume of CO2 on e′ would be the amount 
e′ is currently hosting minus the new amount. In either case, the magnitude of the 
difference is the new volume of CO2, so line 18 captures both with the absolute 
value. In both cases, the old pipeline cost is the old cost of e′.

3.	 Neither e nor e′ is already hosting CO2 (lines 20-22). In this case, the new vol-
ume of CO2 on e will be the new amount being transported and there was no old 
pipeline cost.

The cost associated with using pipeline component e is then calculated by first deter-
mining the smallest trend that will fit the new volume of CO2 (line 24). A pipeline of 
sufficient capacity is always available since the maximum capacity of the largest trend 
exceeds the target CO2 capture amount. The new cost of the pipeline component is 



1067

1 3

Scalable algorithms for designing CO2 capture and storage…

calculated as the fixed cost for the selected trend plus the utilization cost as a factor of 
the new volume of CO2 (line 25). The cost of pipeline component e is set to be the new 
cost minus the old pipeline component cost (line 26). This is the cost to use pipeline 
component e, factoring in already purchased pipeline infrastructure. A consequence of 
this calculation is that the cost of e can be negative when e′ is hosting CO2. If redirect-
ing CO2 results in the new cost of the pipeline component being lower than the old cost 
of e′ , the cost to use e will be negative. Selecting e in this case represents redirecting 
some of the CO2 that was traversing e′,thereby enabling a smaller pipeline trend for 
the remaining CO2, less utilization, and a cost savings. The cheapest path can then be 
calculated between the source and reservoir (line 28). Since there can be negative edge 
weights in the network, and possibly negative cycles, we implemented this step by set-
ting the capacity of each edge to 1 and finding the minimum-cost flow of value 1.

After the costs for each (source,  reservoir) pair are calculated, the pair that cap-
tures, transports, and injects CO2 for the lowest cost per tonne is added to the solution 
(lines 31-35). When the cheapest pair is selected, the infrastructure used to support the 
pair is updated for future iterations (lines 38-63). For the selected source and reser-
voir, they are added to the solution and their amounts captured and stored are updated 
(lines 39-40). The path between the source and reservoir is added one edge at a time 
(lines 42-63). In a similar fashion as was done to parameterize the costs for the pipeline 
network when finding cheapest paths, the new edge added to the solution depends on 
whether or not that edge (or its reverse) was already in the solution. If the edge was 
already in the solution, it will stay in the solution with a new volume of CO2 being 
the old volume plus the new amount being transported (lines 43-45). If the edge in 
the reverse direction is already in the solution, the edge added to the solution and its 
volume of CO2 depends on if the reverse edge was hosting more or less than the new 
amount of CO2 being transported (lines 46-53). If neither the edge nor the reverse 
direction edge is already in the solution, the edge is added with a volume of CO2 being 
the new amount being transported (lines 54-56).

This process then repeats until the target quantity of CO2 is captured. The running 
time for Algorithm 1 is driven by lines 2-36. The running time for the algorithm is 
O((|S||R|)2(|K||C| + ShortestPath)) , where |S| is the number of sources, |R| is the 
number of reservoirs, |K| is the number of pipeline components, |C| is the number 
of trends, and ShortestPath is the running time for the shortest path algorithm used. 
Line 2 repeats until the capture target is met by maximizing the transfer between some 
(source, reservoir) pair at each iteration of the algorithm. Since the transfer between 
each pair is maximized, it cannot be revisited in future iterations. This means that line 
2 cannot repeat more than |S||R| times. Line 3 repeats |S||R| times. Line 13-27 runs in 
|K||C| time and line 28 runs in whatever the running time is of the selected shortest path 
algorithm. When there are a reasonable number of trends, the shortest path algorithm 
at line 28 will dominate the running time. A preliminary version of this algorithm 
appeared in a poster at ACM’s e-Energy conference in 2019 (Whitman et al. 2019).
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Algorithm 1 Greedy Add

Input: Sources S, Reservoirs R, Candidate Pipelines K, Capture Target T
Output:S′ ⊆ S,R′ ⊆ R,K′ ⊆ K

1: S′, R′,K′ = ∅; captured = 0; minCost = ∞; minSet = ∅
2: while captured < T do
3: for (src, res) ∈ S ×R do
4: c = min(src.remainingProduction, res.remainingCapacity, T − captured)
5: cost = c · (src.variableCost + res.variableCost)
6: if src.captured = 0 then
7: cost += src.fixedCost
8: end if
9: if res.stored = 0 then
10: cost += res.fixedCost
11: end if
12:
13: for directed edge e = (u, v) in K do
14: if e = (u, v) in K′ then
15: vol = e.transported + c
16: oldCost = e.costInK′

17: else if e′ = (v, u) in K′ then
18: vol = |c - e′.transported|
19: oldCost = e′.costInK′

20: else
21: vol = c
22: oldCost = 0
23: end if
24: trend = smallestTrendWithCapacity(vol)
25: newCost = trend.fixedCost + trend.variableCost · vol
26: e.setCost(newCost - oldCost)
27: end for
28: path = shortestPathInK(src, res)
29: cost += path.cost
30:
31: cost /= c
32: if cost < minCost then
33: minCost = cost
34: minSet = {src, res, path, c}
35: end if
36: end for
37:
38: Let src, res, path, and c be the references contained in minSet
39: S′.add(src), R′.add(res)
40: src.captured += c, res.stored += c, captured += c
41:
42: for directed edge e = (u, v) in path do
43: if e = (u, v) in K′ then
44: newEdge = e
45: vol = e.transported + c
46: else if e′ = (v, u) in K′ then
47: if e′.transported < c then
48: newEdge = e
49: vol = c - e′.transported
50: else
51: newEdge = e′

52: vol = e′.transported - c
53: end if
54: else
55: newEdge = e
56: vol = c
57: end if
58: K′.remove(e), K′.remove(e′)
59: trend = smallestTrendWithCapacity(vol)
60: newEdge.transported = vol
61: newEdge.costInK′ = trend.fixedCost + trend.variableCost · vol
62: K′.add(newEdge)
63: end for
64: end while
65: return {S′, R′,K′}
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4.2 � Iterative LP

The second algorithm we introduce iteratively solves linear programs that result 
from removing all integer variables from the mixed integer linear program formu-
lated in Sect.  2. Removing integer variables allows the resulting linear programs 
to be solved optimally in polynomial running time. However, the integer variables 
in the original mixed integer linear program formulation provided the mechanism 
to charge the fixed cost based on the binary decision of whether infrastructure was 
used or not. Each type of infrastructure entity (i.e. source, pipeline, or reservoir) in 
the CID problem has a fixed utilization cost F and variable utilization cost V. This 
means that the total cost for an entity is Fw + Vx , where w indicates if the entity is in 
use and x is the continuous amount of CO2 processed by the entity. To approximate 
fixed costs with only continuous variables, entity costs are reformulated by remov-
ing the fixed utilization component and changing the variable utilization coefficient 
from V to F

x̂
+ V  , where x̂ is an estimate of what the value of x will be when the lin-

ear program is solved. Therefore, the closer x is to x̂ , the closer the reformulated cost 
is to the true cost. This results in the following linear program, where â , p̂ , and b̂ are 
the estimated capture, transportation, and injection amounts:

Subject to constraints 2 and 5 from Sect. 2 and the following modified constraints:

These constraints are similar to constraints 1, 3, and 4 from Sect.  2. Constraint 7 
limits the maximum capacity of a pipeline. Constraint 8 limits the amount captured 
at each source by its maximum production, and constraint 9 limits lifetime storage 
for each reservoir by its maximum capacity.

An iterative scheme is used to generate estimated â , p̂ , and b̂ values: The esti-
mated values are all initially set to one and the linear program is solved, resulting in 
solution values for a, p, and b. For each subsequent iteration, the estimated â , p̂ , and 
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b̂ values are set to equal the previous iteration’s a, p, and b values. In this way, if an 
infrastructure entity’s utilization remains identical across iterations, its total cost will 
accurately reflect the correct fixed and variable costs, since (F∕x̂ + V)x = F + Vx 
when x = x̂ . However, there is no guarantee that the utilization values will stabilize 
between iterations, so we cannot depend on this process by itself to return high-
quality solutions.

Two procedures, motivated by Crainic et al. (2005), are used to explicitly search 
for improved solutions, instead of just aiming to accurately reflect costs. Both of 
these procedures incentivize use of specific infrastructure based on usage in pre-
vious iterations of the algorithm. The intensification procedure prioritizes heavily-
used infrastructure to improve existing solutions. The diversification procedure pri-
oritizes seldom used infrastructure to encourage exploration of new solutions. Both 
of these procedures modify the â , p̂ , and b̂ values based on utilization statistics from 
previous iterations. The relevant utilization statistics are the same for each family of 
variables in the linear program (i.e. a, p, and b), so they can all be represented with 
a generic variable x:

This algorithm is presented in Algorithm 2 and detailed below. The algorithm alter-
nates between intensification (lines 8-18) and diversification (lines 21-31) phases 
until the maximum number of iterations is exceeded (line 2). In the intensifica-
tion phases, entities that are already extensively deployed are defined as entities xi 
where numxi

n ≥ �x
n
+

1

2
�x
n
 (line 10). For these entities, x̂i is set to 1∕(1 − rat

xi
n ) (line 

11) which makes the cost coefficient in the objective function for entity xi equal 
to F(1 − rat

xi
n ) + V  . On the other hand, uncommonly deployed entities are defined 

as entities xi where numxi
n < 𝜇x

n
 (line 12). For these entities, x̂i is set to 1∕(2 − rat

xi
n ) 

(line 13) which makes the cost coefficient in the objective function for entity xi equal 

avg
xi
n Average value of xi in first n iterations

max
xi
n Maximum value of xi in first n iterations

rat
xi
n Equal to avg

xi
n ∕max

xi
n

num
xi
n Number of times xi was non-zero in first n iterations

�x
n

Average number of non-zero x�s in first n iterations

�x
n

Standard deviation of number of non-zero x�s in n iterations
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to F(2 − rat
xi
n ) + V  . All other entities have x̂i is set to 1 (line 15), which makes the 

cost coefficient in the objective function for entity xi equal to F + V  . This results in 
incentivizing the use of extensively deployed entities (since 1 − rat

xi
n ≤ 1 ), disincen-

tivizing the use of uncommonly deployed entities (since 2 − rat
xi
n ≥ 1).

In the diversification phases, extensively and uncommonly deployed entities are 
defined in the same way as in the intensification phases. For extensively deployed 
entities, x̂i is set to 1∕(1 + rat

xi
n ) (line 24) which makes the cost coefficient in the 

objective function for entity xi equal to F(1 + rat
xi
n ) + V  . For uncommonly deployed 

entities, x̂i is set to 1∕ratxin  (line 26) which makes the cost coefficient in the objec-
tive function for entity xi equal to F ⋅ rat

xi
n + V  . All other entities have x̂i is set to 

1 (line 28), which makes the cost coefficient in the objective function for entity xi 
equal to F + V  . This results in incentivizing the use of uncommonly deployed enti-
ties (since ratxin ≤ 1 ), disincentivizing the use of extensively deployed entities (since 
1 + rat

xi
n ≥ 1).

This algorithm alternates between intensification and diversification phases until 
the maximum number of iterations is exceeded (line 2). At each iteration, â , p̂ , and 
b̂ are determined and the linear program described above is formulated and solved 
(lines 33-34). The resulting solution is used to update the utilization statistics and 
the next iteration begins (line 42). Changing from intensification phases to diver-
sification phases and back is done whenever solution costs fail to improve within 
some threshold number of iterations (lines 3-5 and 35-41). Once the target number 
of iterations is completed, the set of sources, reservoirs, and pipeline components 
from the last iteration is returned. Finally, the real cost of this infrastructure must be 
calculated, since the cost used in the algorithm is not the actual cost, but the scaled 
cost defined in the objective of the linear program in Sect. 4.2.

The running time for each iteration of Algorithm  2 is driven by the formula-
tion and solving of the linear program in lines 33-34. The linear program has 
O(|S| + |K||C| + |R|) variables and O(|K||C| + |I| + |S| + |R|) constraints, where 
|S| is the number of sources, |R| is the number of reservoirs, |K| is the number of 
pipeline components, |C| is the number of trends, and |I| is the number of vertices 
in the pipeline network. The running time is then O(numIterations ⋅ |LP|), where 
numIterations is the number of iterations enforced in line 2 and |LP| is the running 
time associated with constructing and solving the linear program solver. 
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Algorithm 2 Iterative LP

Input: Sources S, Reservoirs R, Candidate Pipelines K, Capture Target T
Parameters: maxIterations, improvingThreshold
Output: S′ ⊆ S,R′ ⊆ R,K′ ⊆ K

1: S′, R′,K′ = ∅; minCost = ∞; phase = 1; unimproved = 0
2: for n < maxIterations do
3: if unimproved ≥ improvingThreshold then
4: phase ∗= −1
5: end if
6: if phase == 1 then
7: // Intensification
8: for each family of variables x ∈ {a, b, p} do
9: for each i do
10: if numxi

n−1 ≥ µx
n−1 + 1

2σ
x
n−1 then

11: x̂i =
(
1− ratxi

n−1

)−1

12: else if numxi
n−1 < µx

n−1 then

13: x̂i =
(
2− ratxi

n−1

)−1

14: else
15: x̂i = 1
16: end if
17: end for
18: end for
19: else
20: // Diversification
21: for each family of variables x ∈ {a, b, p} do
22: for each i do
23: if numxi

n−1 ≥ µx
n−1 + 1

2σ
x
n−1 then

24: x̂i =
(
1 + ratxi

n−1

)−1

25: else if numxi
n−1 < µx

n−1 then

26: x̂i =
(
ratxi

n−1

)−1

27: else
28: x̂i = 1
29: end if
30: end for
31: end for
32: end if
33: Formulate linear program from Section 4.2 as LP
34: {SLP , RLP ,KLP } = LP.solve()
35: if cost(SLP , RLP ,KLP ) < minCost then
36: minCost = cost(SLP , RLP ,KLP )
37: {S′, R′,K′} = {SLP , RLP ,KLP }
38: unimproved = 0
39: else
40: unimproved += 1
41: end if
42: Update utilization statistics: ratxi

n = avg
xi
n

max
xi
n

,numxi
n , µx

n, σ
x
n

43: end for
44: return {S′, R′,K′}
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4.3 � LP‑greedy hybrid

The third algorithm we introduce is a hybrid of the first two algorithms. This algo-
rithm is presented in Algorithm  3 and detailed below. First, an initial solution is 
generated by Algorithm 2 (line 1). The unit cost to transfer the maximum amount 
of CO2 between each (source, reservoir) pair in the solution is then calculated (lines 
4-29). Calculating this cost is done in a similar fashion to what was done in Sect. 4.1 
when finding the cheapest path for a (source, reservoir) pair: First, the maximum 
amount of CO2 transferable between the (source, reservoir) pair in the solution is 
calculated as the minimum of the CO2 captured at the source and injected at the 
reservoir (line 5). Second, the capture and storage costs associated with that amount 
of CO2 is calculated as the sum of the utilization costs (line 6) and applicable fixed 
costs (lines 7-12). Third, the shortest path in the solution between the (source, res-
ervoir) pair is calculated by first parameterizing a network with the cost savings of 
removing this pair from the solution (lines 14-23). This is done by considering each 
directed edge in the solution that is hosting more CO2 than the maximum transfer-
able amount (lines 15-16). The cost of a new pipeline hosting the original amount of 
CO2 minus the maximum transferable amount is calculated (lines 17-20). The cost 
of this edge in the cost network is set to be the difference between the cost of the 
pipeline in the solution and the new pipeline cost (line 21). The cheapest path for the 
(source, reservoir) pair is calculated by finding the shortest path in the cost network 
(line 24). These capture, transport, and storage costs and summed and the cost per 
ton of CO2 calculated and recorded (line 27).

Once the pairwise costs of each (source, reservoir) pair is calculated, the cheap-
est (per ton of CO2) reservoir for each source is identified (lines 31-35) and the most 
expensive pair is selected (line 36). The rationale for this step is that selecting the 
most expensive (source, reservoir) pair from the list of all pairs will likely select a 
pair with high transportation cost (i.e. physically distant from each other) that would 
not actually pair together to transfer CO2 instead of a pair that would reasonably pair 
together. Instead, the list of cheapest pairs will reflect more likely pairings, of which 
we select the most expensive one for removal.

The most expensive of the cheapest, for each source, (source, reservoir) pairs is 
removed from the solution (lines 38-59). A pair is removed from the solution by 
removing the maximum transferable amount of CO2 from the source and reser-
voir (lines 38-46). The cost and volume of CO2 on each edge in the cheapest path 
between the (source, reservoir) pair is then calculated and updated (lines 48-59).

Finally, the cheapest replacement (source,  reservoir) pairs are then added back 
to the solution using Algorithm 1 (line 62). Before Algorithm 1 is run, the solution 
variables in Algorithm 1 ( S′ , R′ , K′ ) are set to be the S′ , R′ , and K′ values from this 
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algorithm (line 61). This process is repeated for a fixed number of iterations and 
improves the solution by replacing expensive (source, reservoir) pairs with cheaper 
ones.

The driver of the running time for each iteration of Algorithm 3 is not as clear 
as the preceding algorithms. Algorithm  2 is run only once, in line 1. Lines 4-29 
takes O(|S||R|(|K||C| + ShortestPath)) , where |S| is the number of sources, |R| is the 
number of reservoirs, |K| is the number of pipeline components, |C| is the number of 
trends, and ShortestPath is the running time for the shortest path algorithm used. Line 
62 calls Algorithm 1, which runs in O((|S||R|)2(|K||C| + ShortestPath)) time, with 
possibly a different shortest path algorithm than Algorithm 3. In practice though, 
Algorithm 1 does not need to run many iterations, since the amount of captured CO2 
is still very close to the target. So, it is unlikely that Algorithm 1 will actually run for 
close to |S||R| iterations in its line 2, whereas lines 4-29 in Algorithm 1 will run in 
Θ(|S||R|(|K||C| + ShortestPath)) time each iteration. Nonetheless, the running time is 
O(numIterations + |S||R|(|K||C| + ShortestPath) + (|S||R|)2(|K||C| + ShortestPath)) , 
where numIterations is the number of iterations enforced in line 2.
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Algorithm 3 LP-Greedy Hybrid

Input: Sources S, Reservoirs R, Candidate Pipelines K, Capture Target T
Parameters: maxIterationsHybrid,maxIterationsLP, improvingThreshold
Output: S′ ⊆ S,R′ ⊆ R,K′ ⊆ K

1: {S′, R′,K′} = IterativeLP(S,R,K, T,maxIterationsLP, improvingThreshold)
2: for n < maxIterationsHybrid do
3: srcSnkPairCosts = ∅
4: for (src, res) ∈ S′ ×R′ do
5: c = min(src.captured, res.stored)
6: cost = c · (src.variableCost + res.variableCost)
7: if c = src.captured then
8: cost += src.fixedCost
9: end if
10: if c = res.stored then
11: cost += res.fixedCost
12: end if
13:
14: N = ∅
15: for directed edge e = (u, v) in K′ do
16: if e.transported ≥ c then
17: vol = e.transported - c
18: oldCost = e.costInK′

19: trend = smallestTrendWithCapacity(vol)
20: newCost = trend.fixedCost + trend.variableCost · vol
21: N .addEdgeWithCost(e, oldCost − newCost)
22: end if
23: end for
24: path = shortestPathInN(src, res)
25: cost += path.cost
26:
27: cost /= c
28: srcSnkPairCosts.add((src, res, path, c, cost))
29: end for
30:
31: cheapestSourcePairs = ∅
32: for src ∈ S′ do
33: (src, res, path, c, cost) = srcSnkPairCosts.cheapestCostForSrc(src)
34: cheapestSourcePairs.add((src, res, path, c, cost))
35: end for
36: Let (src, res, path, c, cost) be most expensive entry in cheapestSourcePairs
37:
38: src.captured -= c
39: if src.captured = c then
40: S′.remove(src)
41: end if
42:
43: res.stored -= c
44: if res.stored = c then
45: R′.remove(res)
46: end if
47:
48: for directed edge e = (u, v) in path do
49: if e.transported > c then
50: vol = e.transported - c
51: trend = smallestTrendWithCapacity(vol)
52: e.transported = vol
53: e.costInK′ = trend.fixedCost + trend.variableCost · vol
54: else
55: e.transported = 0
56: e.costInK′ = ∞
57: K′.remove(e)
58: end if
59: end for
60:
61: Set GreedyAdd solution variables (S′, R′, K′) to reference these S′, R′, K′ values
62: {S′, R′,K′} = GreedyAdd(S,R,K, T )
63: end for
64: return {S′, R′,K′}



1076	 C. Whitman et al.

1 3

5 � Results

For the algorithms presented in Sect.  4 to be useful in realistic applications, they 
must both (1) solve instances significantly faster than optimal MILP approaches 
and (2) find solutions whose costs are close to optimal. In this section, we present 
results from testing the GreedyAdd, IterativeLP, and Hybrid algorithms on real CCS 
datasets. These algorithms were implemented and integrated with the SimCCS CCS 
infrastructure optimization software. Optimal MILPs were formulated using Sim-
CCS and the MILP presented in Sect. 2. The MILP implemented does not incorpo-
rate any enhancements (e.g., Benders decomposition) which could result in a lower 
execution time. Initial experiments suggested that parameterizing the IterativeLP 
algorithm to run for 200 iterations and to switch between intensification and diversi-
fication phases after 5 iterations of not improving the cost of the solution lead to the 

Fig. 3   Sample CCS infrastructure design with 40 possible sources and 40 possible reservoirs. Selected 
sources and reservoirs are larger and in dark red (sources) and dark blue (reservoirs). The purple edges 
are the candidate network and the selected edges are green. (Color figure online)

Table 1   Scenario sizes Average number Average number Number of trends
Scenario of Vertices of edges per edge

20 72.1 105.6 2
40 163.4 245.3 2
80 332.1 507.6 2
160 647.4 1005.1 2
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highest quality solutions in the quickest time. The Hybrid algorithm was parameter-
ized with the same values for its execution of IterativeLP and was set to run through 
the component removal/addition process for 100 iterations. Results presented were 
produced running the algorithms implemented in SimCCS on a machine running 
Fedora 30 with an Intel Core i7-2450 processor running at 2.1 GHz using 32 GB of 
RAM. The optimal MILPs were solved on this machine using IBM’s CPLEX opti-
mization tool, version 12.10.

Source and reservoir data were provided by the Great Plains Institute in sup-
port of the National Petroleum Council’s 2019 Carbon Capture, Use, and Storage 
study (National Petroleum Council 2019). This study involved a ground up eco-
nomic analysis of hundreds of potential source locations and resulted in the most 
modern CO2 capture database to date covering a vast geographic region and many 

Fig. 4   Average running time (logarithmic scale) versus input instance size

Fig. 5   Average solution cost versus input instance size
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industries. Reservoir data includes both storage without direct economic benefit 
(i.e. deep saline formation storage) as well as storage that incurs a direct economic 
benefit (i.e. enhanced oil recovery1). This data spans most of the contiguous United 
States and has a total of 150 potential sources and 270 potential sinks. Candidate 
pipeline routes were generated in SimCCS using its novel network generation algo-
rithms (Yaw et al. 2019). A sample infrastructure design is presented in Fig. 3.

The motivation for developing new CCS infrastructure design algorithms is the 
massive time requirement for solving optimal MILPs and input instances grow large. 
To evaluate the running time of the algorithms, four scenarios were considered 
that set the number of available sources and sinks as 20, 40, 80, or 160. For each 

Fig. 6   Percent increase in average solution cost compared to optimal solution versus input instance size

Table 2   Percent deviation from 
optimal cost

Scenario

20 (%) 40 (%) 80 (%) 160 (%)

GreedyAdd Min 2.73 0.11 4.42 2.55
Avg 5.65 5.80 6.70 4.95
Max 15.11 9.49 14.36 20.92

IterativeLP Min 0.61 4.36 10.15 0.38
Avg 4.05 7.20 12.77 7.58
Max 14.42 12.69 19.55 21.37
Min 0.43 4.24 7.08 0.16

Hybrid Avg 3.15 6.87 10.02 6.72
Max 8.17 12.5 14.53 20.22

1  Enhanced oil recovery is the process of injecting CO2 into oil fields to increase production. Oil fields 
will pay for CO2 for this purpose, so the capture facility will collect proceeds from sale of CO2 to the oil 
field.
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scenario, 10 instances were generated that randomly selected the appropriate num-
ber of sources and sinks from the full available set. The average sizes of the result-
ing scenarios is presented in Table  1. The variation of instance sizes within each 
scenario is less than 10%.

Target capture amounts for each individual instance were set as the maximum 
amount of CO2 able to be captured and stored, calculated as the minimum of the 
total capturable CO2 and total annual reservoir storage capacity. The running time 
required for each algorithm on each scenario is recorded as the average of the run-
ning time over the 10 instances. Figure 4 presents the average running time required 
for each algorithm in each scenario. Note the logarithmic scale y-axis. Error bars 
representing the minimum and maximum values are presented to illustrate the vari-
ability in running time. For some algorithms and scenarios (e.g., GreedyAdd and 

Fig. 7   Average time it takes for CPLEX to find a lower cost solution than the algorithm (logarithmic 
scale) versus input instance size

Fig. 8   CPLEX optimality gap when CPLEX found a lower cost solution than the algorithm versus input 
instance size
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IterativeLP), very little variation was found. All three algorithms substantially 
reduce running time compared to solving the MILP optimally. For the largest sce-
nario, this improvement is near two orders of magnitude for the worst algorithm 
(GreedyAdd) and four orders of magnitude for the best (IterativeLP). It is also appar-
ent that for larger scenarios, IterativeLP is significantly faster than both GreedyAdd 
and Hybrid. This performance difference is likely attributable to the rapid speed 
even very large linear programs can be solved.

Though reducing the running time it takes to solve CCS infrastructure design 
problems is the primary objective of these algorithms, quick solutions are not ben-
eficial if the quality of the solution is very poor. To evaluate the quality of the solu-
tion, the cost of the infrastructure designs from the running time experiment were 
compared. The true cost of the infrastructure that does not include any scaling fac-
tors used by the algorithms to manipulate costs was calculated and is reported here. 
Figure 5 presents average true solution costs of the infrastructure designs found by 
each algorithm in each scenario. Error bars representing the minimum and maxi-
mum values across all algorithms are presented to illustrate the variability in solu-
tion costs. Variability is very similar across the algorithms, and is much larger than 
the differences in the average values, so only the largest maximum and smallest 
minimum for each scenario is displayed. Solutions costs increase as the size of the 
input instances increase, since more infrastructure incurs a higher cost. Costs for all 
algorithms stay fairly close to the optimal costs.

Figure 6 presents the average percent each algorithm’s costs increased over the 
optimal cost. Error bars representing the minimum and maximum values across all 
algorithms are presented to illustrate the variability in solution costs. Variability is 
very similar across the algorithms, and is much larger than the differences in the 
average values, so only the largest maximum and smallest minimum for each sce-
nario is displayed. The average, minimum, and maximum percent deviation over 
optimal for each algorithm in each scenario is provided in Table 2. All algorithms 
found solutions that were less than 13% more expensive than the cost of the optimal 
solution. Aside from some variability seen with small instances, GreedyAdd finds 
solutions with better costs than IterativeLP and Hybrid.

This evaluation suggests that all three algorithms can greatly reduce running 
time while keeping solution costs close to optimal. One final interesting question is 
to consider the process for actually solving optimal MILPs. CPLEX tends to very 
quickly converge on good solutions and spends the majority of its time closing the 
final gap. Even if the algorithms presented here run in less time than it takes CPLEX 
to terminate, it is possible that CPLEX will find a solution that is better than the 
algorithm’s solution in less time than the algorithm took. Figure 7 presents the time 
it takes CPLEX to generate a solution whose value is better than the solution that 
GreedyAdd found. Note the logarithmic scale y-axis. Error bars representing the 
minimum and maximum values are presented to illustrate the variability in time. 
This was only presented for GreedyAdd since it was the algorithm that consistently 
found the lowest cost solutions. For the largest scenario, it takes CPLEX on aver-
age approximately 4.75 min before its solution has a lower cost than GreedyAdd’s 
solution.
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Figure 8 presents the optimality gap that CPLEX had when it found a lower cost 
solution than the solution that GreedyAdd found. The optimality gap is the gap 
between the best integer solution found and the best relaxed solution in the remain-
ing search space. As such, it does not correspond to the gap with the actual optimal 
solution, but instead it is the gap with current best lower bound on the optimal mini-
mum cost. Error bars representing the minimum and maximum values are presented 
to illustrate the gap variability. For the largest scenario, the optimality gap was on 
average 20% when CPLEX’s solution surpassed GreedyAdd’s solution, even though 
the eventual gap with the optimal solution was on average 5% (Fig. 6).

Even though all algorithms greatly reduce running time compared to optimally 
solving MILPs, they do so to a varying degree and with a varying impact on solu-
tion costs. This presents a different use case for each algorithm. GreedyAdd is the 
most accurate, consistently staying within 7% of optimal. This suggests that Greedy-
Add will work well for small to mid-ranged scenarios, consistently providing reli-
ably good solutions. It also has the advantage of not requiring special software 
(e.g., CPLEX) to solve linear programs. Finally, GreedyAdd would be much more 
straightforward to parallelize than the other algorithms, which could open to door to 
constructing a high-performance computing workflow. IterativeLP is the fastest and 
also achieves high accuracy for some scenarios. Many CCS studies are proposing a 
high-level screening phase that will run thousands of instances reflecting the uncer-
tainty involved in many of the economic and physical parameters. Having a tool like 
IterativeLP available, that can quickly give rough cost estimates, would enable this 
high-level screening. Hybrid is able to improve on the solutions chosen and could 
even be adapted to work as a refinement tool on other CCS infrastructure design 
algorithms.

6 � Conclusion

In this research, we presented three algorithms for the CID problem demonstrated 
experimentally that they are fast with minimal loss in solution quality for realistic 
CCS data. These algorithms represent viable approaches for approximating CCS 
infrastructure designs for large scenarios. We explored the trade-offs between the 
algorithms and suggested specific use cases for each. This enables organizations to 
better explore scenarios that were previously hindered by the intractability of solv-
ing MILPs optimally.

Future practical work could focus on more testing and improving the high varia-
bility seen in the IterativeLP algorithm. Testing should take place on other data sets. 
Scenarios fed by other data sets may see differences in network structure, requiring 
modifications of each algorithm. In addition, further improvements should look at 
reducing the solution costs for all algorithms.

Future theoretical work could look at developing algorithms with theoretical per-
formance guarantees (i.e. approximation algorithms). Such algorithms would be 
of interest to the larger community given the CID problem’s relationship with the 
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FCNF problem, but would also provide insight into CCS infrastructure designs that 
cannot be compared to an optimal solution.

Funding  This research was partially funded by the Great Plains Institute (GPI) through the State Carbon 
Capture Work Group.
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