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Abstract
We consider a setting in which it is desired to find an optimal complex vector x ∈ C

N

that satisfies A(x) ≈ b in a least-squares sense, where b ∈ C
M is a data vector

(possibly noise-corrupted), and A(·) : CN → C
M is a measurement operator. If A(·)

were linear, this reduces to the classical linear least-squares problem, which has awell-
known analytic solution as well as powerful iterative solution algorithms. However,
instead of linear least-squares, this work considers the more complicated scenario
whereA(·) is nonlinear, but can be represented as the summation and/or composition
of some operators that are linear and some operators that are antilinear. Some common
nonlinear operations that have this structure include complex conjugation or taking the
real-part or imaginary-part of a complex vector. Previous literature has shown that this
kind ofmixed linear/antilinear least-squares problem can bemapped into a linear least-
squares problembyconsideringx as a vector inR2N insteadofCN .While this approach
is valid, the replacement of the original complex-valued optimization problem with a
real-valued optimization problem can be complicated to implement, and can also be
associated with increased computational complexity. In this work, we describe theory
and computational methods that enable mixed linear/antilinear least-squares problems
to be solved iteratively using standard linear least-squares tools, while retaining all
of the complex-valued structure of the original inverse problem. An illustration is
provided to demonstrate that this approach can simplify the implementation and reduce
the computational complexity of iterative solution algorithms.
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1 Introduction

Consider a generic complex-valued finite-dimensional inverse problem scenario in
which the forward model is represented as

b = A(x) + n, (1)

where b ∈ C
M represents the measured data, A(·) : CN → C

M is the measurement
operator, n ∈ C

M represents noise, and x ∈ C
N represents the unknown signal that we

wish to estimate based on knowledge of b and A(·). A common approach to solving
this inverse problem is to find a least-squares solution

x̂ = argmin
x∈CN

‖A(x) − b‖22, (2)

where ‖ · ‖2 denotes the standard �2-norm. This choice of formulation can be justified
in multiple ways, and e.g., corresponds to the optimal maximum likelihood estima-
tor when the noise vector n is independent and identically-distributed (i.i.d.) Gaussian
noise (Kay 1993). Even formore complicated noise statistics that follow, e.g., the Pois-
son, Rician, or non-Central Chi distributions, there exist iterative methods that allow
the maximum likelihood estimator to be obtained by iteratively solving a sequence
of least-squares objective functions (Erdogan and Fessler 1999; Fessler and Erdogan
1998; Varadarajan and Haldar 2015). In addition, another reason for the popularity
of least-squares is that the optimization problem is frequently very easy to solve. For
example, in the case where A(·) is a linear operator (i.e., A(·) can be represented in
an equivalent matrix form as A(x) = Ax for some matrix A ∈ C

M×N ) with a trivial
nullspace, the solution to Eq. (2) has the analytic closed-form expression (Luenberger
1969)

x̂ = (AHA)−1AHb, (3)

where H denotes the conjugate-transpose operation. In large-scale problems where
N is very large, the matrix inversion in Eq. (3) may be computationally intractable,
although there exist a variety of simple iterative algorithms that are guaranteed to
converge to a globally-optimal solution, including Landweber iteration (Landweber
1951), the conjugate gradient (CG) algorithm (Hestenes and Stiefel 1952), and LSQR
(Paige and Saunders 1982).

Instead of assuming linearity, we focus in this work on solving least-squares prob-
lems in the scenario whereA(·) is nonlinear, but can be represented as the summation
and/or composition of some operators that are linear and some operators that are
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Efficient iterative solutions to complex-valued nonlinear… 751

antilinear. Such nonlinear operators have sometimes been termed as real-linear oper-
ators in mathematical physics (Huhtanen and Ruotsalainen 2011). Important common
examples of operators that possess this kind of nonlinear structure include the complex-
conjugation operator

A(x) = x, (4)

the operator that takes the real part of a complex vector

A(x) = real(x) � 1

2
x + 1

2
x, (5)

and the operator that takes the imaginary part of a complex vector

A(x) = imag(x) � 1

2i
x − 1

2i
x. (6)

Even though the descriptions we present in this paper are generally applicable to
arbitrary real-linear operators, we were initially motivated to consider such operators
because of specific applications in magnetic resonance imaging (MRI) reconstruction.
In particular, MRI images are complex-valued, and real-linear operators have previ-
ously been used to incorporate prior information about the image phase characteristics
into the image reconstruction process, which helps to regularize/stabilize the solution
when the inverse problem is ill posed. For example, there is a line of research within
MRI that poses phase-constrained image reconstruction as either (Bydder and Robson
2005; Willig-Onwuachi et al. 2005; Lew et al. 2007; Hoge et al. 2007; Haldar et al.
2013; Blaimer et al. 2016; Markovsky 2011)

x̂ = argmin
x∈CN

‖Ax − b‖22 + λ‖imag(Bx)‖22

= argmin
x∈CN

∥
∥
∥
∥

[
Ax√

λ · imag(Bx)

]

−
[

b
0

]∥
∥
∥
∥

2

2
,

(7)

or (Bydder 2010)

x̂ = argmin
x∈RN

‖Ax − b‖22
= argmin

x∈CN
‖Areal(x) − b‖22 + ‖imag(x)‖22

= argmin
x∈CN

∥
∥
∥
∥

[

Areal(x)
imag(x)

]

−
[

b
0

]∥
∥
∥
∥

2

2
.

(8)

In the case of Eq. (7), λ ∈ R is a positive regularization parameter and the matrix B
embeds prior information about the image phase such that the regularization encour-
ages Bx to be real-valued. In the case of Eq. (8), the phase information is embedded
in the matrix A, such that the vector x is strictly forced to be real-valued. Another
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line of research within MRI instead imposes phase constraints by leveraging linear
predictability and the conjugate-symmetry characteristics of the Fourier transform,
leading to an inverse problem formulation that can take the general form (Haldar
2014, Haldar and Setsompop 2020, Haldar 2015, Kim and Haldar 2018)

x̂ = argmin
x∈CN

‖Ax − b‖22 + λ‖Cx − D(Ex)‖22

= argmin
x∈CN

∥
∥
∥
∥

[
Ax√

λCx − √
λD(Ex)

]

−
[

b
0

]∥
∥
∥
∥

2

2
,

(9)

for appropriate matrices C, D, and E.
Although these are nonlinear least-squares problems because the operators involved

are nonlinear, previous work has benefitted from the fact that this kind of inverse
problem can be transformed into an equivalent higher-dimensional real-valued linear
least-squares problem (Bydder and Robson 2005; Willig-Onwuachi et al. 2005; Lew
et al. 2007; Hoge et al. 2007; Haldar et al. 2013; Blaimer et al. 2016; Haldar 2014;
Haldar and Setsompop 2020; Haldar 2015; Kim and Haldar 2018). Specifically, this
can be done by replacing all complex-valued quantities with real-valued quantities,
e.g., separating x ∈ C

N into its real and imaginary components, and treating this
as an inverse problem in R

2N rather than the original space C
N . While this real-

valued transformation of the problem is effective and enables the use of standard linear
least-squares solution methods, it can also cause computational inefficiencies and can
sometimes be difficult to implement when the operators involved have complicated
structure.

In this work, we describe theory that enables provably-convergent linear least-
squares iterative algorithms to be applied to this nonlinear least-squares problem
setting, without requiring a real-valued transformation of the original complex-valued
vectors and operators. This can enable both improved computation speed and simpli-
fied algorithm implementations.

2 Background

2.1 Linear, antilinear, and real-linear operators

In this section, we briefly summarize some definitions and properties of linear and anti-
linear operators, with simplifications corresponding to our finite-dimensional problem
context. Readers interested in a more detailed and more general treatment are referred
to Refs. (Rudin 1991; Huhtanen and Ruotsalainen 2011).

Definition 1 (Linear Operator) An operator F(·) : CN → C
M is said to be linear (or

complex-linear) if it satisfies both additivity

F(x + y) = F(x) + F(y) for ∀x, y ∈ C
N (10)
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and homogeneity

F(αx) = αF(x) for ∀x ∈ C
N ,∀α ∈ C. (11)

Property 1 For any linear operator F(·) : CN → C
M , there is a unique matrix F ∈

C
M×N such that F(x) = Fx for ∀x ∈ C

N .

Definition 2 (Antilinear Operator) An operator G(·) : CN → C
M is said to be anti-

linear (or conjugate-linear) if it satisfies both additivity

G(x + y) = G(x) + G(y) for ∀x, y ∈ C
N (12)

and conjugate homogeneity

G(αx) = αG(x) for ∀x ∈ C
N ,∀α ∈ C. (13)

Property 2 For any antilinear operator G(·) : CN → C
M , there is a unique matrix

G ∈ C
M×N such that G(x) = (Gx) for ∀x ∈ C

N .

Note that by taking the matrix G as the identity matrix, we observe that applying
complex conjugation x is an antilinear operation on the vector x.

Definition 3 (Real-Linear Operator) An operator A(·) : C
N → C

M is said to be
real-linear if it satisfies both additivity

A(x + y) = A(x) + A(y) for ∀x, y ∈ C
N (14)

and homogeneity with respect to real-valued scalars

A(αx) = αA(x) for ∀x ∈ C
N ,∀α ∈ R. (15)

Real-linearity is a generalization of both linearity and antilinearity, as can be seen
from the following property.

Property 3 Every real-linear operatorA(·) : CN → C
M can be uniquely decomposed

as the sum of a linear operator and an antilinear operator. In particular, A(x) =
F(x) +G(x) for ∀x ∈ C

N , where F(·) : CN → C
M is the linear operator defined by

F(x) � 1

2
A(x) − i

2
A(ix) (16)

and G(·) : CN → C
M is the antilinear operator defined by

G(x) � 1

2
A(x) + i

2
A(ix). (17)

Property 4 For any real-linear operator A(·) : CN → C
M , there are unique matrices

F,G ∈ C
M×N such that A(x) = Fx + (Gx) for ∀x ∈ C

N .
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754 T. H. Kim, J. P. Haldar

Notably, both the real(·) and imag(·) operators from Eqs. (5) to (6) are observed to
have real-linear form.

Property 5 For any two real-linear operators A1(·) : CN → C
M and A2(·) : CN →

C
M , their sum A1(·) + A2(·) is also a real-linear operator.

Property 6 For any two real-linear operators A1(·) : CN → C
P and A2(·) : CP →

C
M , their composition A2(·) ◦A1(·) : CN → C

M � A2(A1(·))) is also a real-linear
operator.

As can be seen, any operator that can be represented as the summation and/or
composition of some operators that are linear and some operators that are antilinear
can be viewed as a real-linear operator. As a result, the scenarios of interest in this paper
all involve real-linear operators, and the remainder of this paper will assume thatA(·)
obeys real-linearity, and has been decomposed in matrix form as A(x) = Fx + (Gx).

2.2 Real-valued transformation of complex-valued least squares

Assuming A(·) is real-linear as described in the previous subsection, Eq. (2) can be
rewritten as

x̂ = argmin
x∈CN

‖Fx + (Gx) − b‖22, (18)

which is a nonlinear least squares problem. However, as stated in the introduction,
previous work (Bydder and Robson 2005; Willig-Onwuachi et al. 2005; Lew et al.
2007;Hoge et al. 2007;Haldar et al. 2013;Blaimer et al. 2016;Haldar 2014;Haldar and
Setsompop 2020; Haldar 2015; Kim and Haldar 2018) has transformed this problem
into the form of a conventional linear least-squares problem by treating the variable
x as an element of R2N instead of CN . This was achieved by rewriting x ∈ C

N

as x = xr + ixi , where the real-valued vectors xr , xi ∈ R
N represent the real and

imaginary components of x. This allows us to equivalently rewrite the solution to
Eq. (18) as x̂ = x̂r + i x̂i , with

{x̂r , x̂i } = argmin
xr ,xi∈RN

‖Fxr + iFxi + Gxr − iGxi − b‖22

= argmin
xr ,xi∈RN

∥
∥
∥
∥

[

real(Fxr + iFxi + Gxr − iGxi − b)

imag(Fxr + iFxi + Gxr − iGxi − b)

]∥
∥
∥
∥

2

2

= argmin
x̃∈R2N

∥
∥
∥Ãx̃ − b̃

∥
∥
∥

2

2
,

(19)

where

x̃ �
[

xr
xi

]

∈ R
2N , (20)
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Ã �
[

real(F) + real(G) −imag(F) − imag(G)

imag(F) − imag(G) real(F) − real(G)

]

∈ R
2M×2N , (21)

and

b̃ �
[

real(b)

imag(b)

]

∈ R
2M . (22)

The final expression in Eq. (19) has the form of a standard real-valued linear least-
squares problem, and therefore can be solved using any of the linear least-squares
solution methods described in the introduction. For example, the Landweber iteration
(Landweber 1951) applied to this problemwould proceed as given in Algorithm 1, and
with infinite numerical precision, x̂k is guaranteed to converge to a globally optimal
solution as k → ∞ whenever 0 < α < 2/‖Ã‖22.

Algorithm 1: Landweber Iteration applied to Eq. (19)

Inputs: Ã ∈ R
2M×2N , b̃ ∈ R

2M , x̃0 ∈ R
2N (initial guess for x̃), and α ∈ R

(step size parameter)
Initialization:

k = 0;
Iteration:

While stopping conditions are not met:
x̃k+1 = x̃k + αÃH (b̃ − Ãx̃k );
k = k + 1;

Output: Final value of x̃k+1

As another example, the CG algorithm (Hestenes and Stiefel 1952) applied to this
problemwould proceed as given in Algorithm 2, and with infinite numerical precision,
x̂k would be guaranteed to converge to a globally optimal solution after at most 2N
iterations.

Algorithm 2: Conjugate Gradient Algorithm applied to Eq. (19)

Inputs: Ã ∈ R
2M×2N , b̃ ∈ R

2M , and x̃0 ∈ R
2N (initial guess for x̃)

Initialization:
r0 = ÃH (b̃ − Ãx̃0);
p0 = r0;
k = 0;

Iteration:
While stopping conditions are not met:

zk = ÃH Ãpk ;
αk = (rHk rk )/(pHk zk );
x̃k+1 = x̃k + αkpk ;
rk+1 = rk − αkzk ;
βk = (rHk+1rk+1)/(rHk rk );
pk+1 = rk+1 + βkpk ;
k = k + 1;

Output: Final value of x̃k+1
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Compared to the analytic linear least-squares solution corresponding to Eq. (3),
these iterative algorithms are generally useful for larger-scale problems where the
matrix Ãmaybe too large to store inmemory, andwhere thematrix has structure so that
matrix-vectormultiplicationswith Ã and ÃH can be computed quickly using specially-
coded function calls rather than working with actual matrix representations (e.g., if
Ã has convolution structure so that matrix-vector multiplication can be implemented
using the Fast Fourier Transform, if Ã is sparse, etc.).

Although the problem transformation from Eq. (19) has been widely used (Bydder
and Robson 2005; Willig-Onwuachi et al. 2005; Lew et al. 2007; Hoge et al. 2007;
Haldar et al. 2013; Blaimer et al. 2016; Haldar 2014; Haldar and Setsompop 2020;
Haldar 2015; Kim and Haldar 2018), it can also be cumbersome to work with if the
operatorA(·) has more complicated structure. For example, the optimization problem
in Eq. (9) involves the composition of linear and antilinear operators, and the Ãmatrix
corresponding to this case has a complicated structure that is laborious to derive. In
particular, with much manipulation, the matrix for this case can be derived to be

Ã =

⎡

⎢
⎢
⎣

real(A) −imag(A)

H11 H12
imag(A) real(A)

H21 H22

⎤

⎥
⎥
⎦

, (23)

with

H11 = √
λ · real(C) − √

λ · real(D)real(E) − √
λ · imag(D)imag(E), (24)

H12 = −√
λ · imag(C) + √

λ · real(D)imag(E) − √
λ · imag(D)real(E), (25)

H21 = √
λ · imag(C) − √

λ · imag(D)real(E) + √
λ · real(D)imag(E), (26)

and

H22 = √
λ · real(C) + √

λ · imag(D)imag(E) + √
λ · real(D)real(E). (27)

Of course, Eq. (9) relies on a relatively simplemixture of linear and antilinear operators,
and problems involving more complicated mixtures would be even more laborious to
derive.

Beyond just the effort required to compute the general form of Ã, it can also be com-
putationally expensive to try to use this type of expression in an iterative algorithm,
particularly when the different operators have been implemented as specially-coded
function calls. For example, if we were not given the actual matrix representations of
A,C,D, and E in Eq. (23) and only had function calls that implemented matrix-vector
multiplication with these matrices, then a naive implementation of matrix multipli-
cation between Ã and a vector would require 4 calls to the function that computes
multiplication with A (e.g., to compute real(A)r for an arbitrary real-valued vector
r ∈ R

N , we could instead compute the complex-valued matrix-vector multiplication
function call to obtain s = Ar, and then use real(A)r = real(s), with an analogous
approach for computing imag(A)t for an arbitrary real-valued vector t ∈ R

N ), 4 calls
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to the function that computes multiplication with C, 8 calls to the function that com-
putes multiplication with D, and 8 calls to the function that computes multiplication
with E. This relatively large number of function calls represents a substantial increase
in computational complexity compared to a standard evaluation of the complex-valued
forwardmodel, whichwould only require the use of one function call for each operator.
Of course, this number of computations is based on a standard naive implementation,
and additional carefulmanipulations could be used to reduce these numbers of function
calls by exploiting redundant computations – however, this would contribute further
to the laborious nature of deriving the form of Ã.

3 Main results

Our main results are given by the following lemmas, which enable the use of the
real-valued linear least-squares framework from Sect. 2.2 while relying entirely on
complex-valued representations and computations.

Lemma 1 Consider a real-linear operator A(·) : CN → C
M, with corresponding Ã

matrix as defined in Eq. (21). Also consider arbitrary vectors m ∈ C
N and n ∈ C

M,
which are decomposed into their real and imaginary components according to m =
mr + imi and n = nr + ini , withmr ,mi ∈ R

N and nr ,ni ∈ R
M. Then

Ã
[

mr

mi

]

=
[

real(A(m))

imag(A(m))

]

(28)

and

ÃH
[

nr
ni

]

=
[

real(A∗(n))

imag(A∗(n))

]

, (29)

with A∗(·) defined below.

Definition 4 (A∗(·)]) Consider a real-linear operator A(·) : C
N → C

M , which is
represented for ∀x ∈ C

N as A(x) = Fx + (Gx) for some matrices F,G ∈ C
M×N .

We define A∗(·) : CM → C
N as the mapping A∗(n) � FHn + GHn for ∀n ∈ C

M .

Note thatA∗(·) is also a real-linear operator, and can be equivalently written in real-
linear form as A∗(n) � FHn + (GTn) for ∀n ∈ C

M , where T denotes the transpose
operation (without conjugation). Interestingly, it can also be shown thatA∗(·)matches
the definition of the adjoint operator ofA(·) from real-linear operator theory (Huhtanen
and Ruotsalainen 2011). We believe this is interesting because our definition ofA∗(·)
was derived independently of adjoint concepts. In addition, while the adjoint of a
linear operator is well-known to be useful for solving linear least-squares problems,
the adjoint definition used in real-linear operator theory is different from that used in
the linear case (Huhtanen and Ruotsalainen 2011), and we had no prior expectations
that the real-linear definition of adjoint would be related to the present work.
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Lemma 2 Consider a real-linear operator A(·) : CN → C
M that can be written as

the composition A(·) = A2(·) ◦ A1(·) of real-linear operators A1(·) : CN → C
P

and A2(·) : CP → C
M. Then A∗(n) = A∗

1(A∗
2(n))) for ∀n ∈ C

M.

Lemma 3 Consider a real-linear operator A(·) : CN → C
M that can be written as

the summationA(·) = A1(·)+A2(·) of real-linear operatorsA1(·) : CN → C
M and

A2(·) : CN → C
M. Then A∗(n) = A∗

1(n) + A∗
2(n) for ∀n ∈ C

M.

The proofs of these three lemmas are straightforward, and are given in the appen-
dices. Note that results similar to Lemmas 2 and 3 have been previously described for
the adjoints of real-linear operators (Huhtanen and Ruotsalainen 2011), although the
previous results were derived in a different context and relied on different concepts and
proof techniques than those used in this paper (i.e., our approach is completely free
of the inner-product-based real-linear adjoint concepts that were central to previous
literature).

When combined together, Lemmas 1-3 completely eliminate the need to derive or
work with the real-valued matrix Ã in the context of iterative algorithms, because
the effects of multiplication with the real-valued matrices Ã and ÃH can be obtained
equivalently using the complex-valued nonlinear operators A(·) and A∗(·). This can
also lead to computational savings, since e.g., computing real(A(m)) and imag(A(m))

(as needed for computing multiplication of the matrix Ã with a vector using Eq. (28))
only requires a single call to the function that computes A(m). Likewise, computing
multiplication of the matrix ÃH with a vector only requires a single call to the function
that computes A∗(·). And further, if A(·) is represented as a complicated summation
and/or composition of real-linear operators, we can rely on Properties 5 and 6 and
Lemmas 2 and 3 to buildA∗(·) incrementally from the individual constituent operators,
rather than needing to use Definition 4 (which would require A(·) to be simplified so
that it can be decomposed using F and G matrices).

As a consequence of these lemmas, it is, e.g., possible to replace the real-valued
Landweber iteration fromAlgorithm1with the simpler complex-valued iteration given
by Algorithm 3.

Algorithm 3: Proposed Complex-Valued Landweber Iteration

Inputs: A(·) : CN → C
N , b ∈ C

M , x0 ∈ C
N (initial guess for x), and α ∈ R

(step size parameter)
Initialization:

k = 0;
Iteration:

While stopping conditions are not met:
xk+1 = xk + αA∗(b − Axk );
k = k + 1;

Output: Final value of xk+1

With infinite numerical precision, Algorithm 3 will produce the exact same
sequence of iterates as Algorithm 1, and will therefore have the exact same global
convergence guarantees stated previously for Landweber iteration.
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Wecanmake similarmodifications to the CG algorithm fromAlgorithm 2, although
need the following additional property to be able to correctly handle the inner-products
appearing in the CG algorithm.

Property 7 Consider arbitrary vectors p,q ∈ C
N , which are decomposed into their

real and imaginary components according to p = pr + ipi and q = qr + iqi , with
pr ,pi ,qr ,qi ∈ R

N . Define p̃, q̃ ∈ R
2N according to

p̃ =
[

pr
pi

]

and q̃ =
[

qr
qi

]

(30)

Then p̃H q̃ = real(pHq).

Combining this property with the previous lemmas leads to the simple complex-
valued iteration for the CG algorithm given by Algorithm 4.

Algorithm 4: Proposed Complex-Valued Conjugate Gradient Algorithm

Inputs: A(·) : CN → C
N , b ∈ C

M , and x0 ∈ C
N (initial guess for x)

Initialization:
r0 = A∗(b − A(x0));
p0 = r0;
k = 0;

Iteration:
While stopping conditions are not met:

zk = A∗(A(pk ));
αk = (rHk rk )/real(pHk zk );
xk+1 = xk + αkpk ;
rk+1 = rk − αkzk ;
βk = (rHk+1rk+1)/(rHk rk );
pk+1 = rk+1 + βkpk ;
k = k + 1;

Output: Final value of xk+1

While we have only shown complex-valued adaptations of the Landweber and CG
algorithms, this same approach is easily applied to other related algorithms like LSQR
(Paige and Saunders 1982).

4 Useful relations for common real-linear operators

Before demonstrating the empirical characteristics of our proposed new approach, we
believe that our proposed framework will be easier to use if we enumerated some of
the most common real-linearA(·) operators and their correspondingA∗(·) operators.
Such a list is provided in Table 1.
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Table 1 Table of common real-linear A(·) operators and corresponding A∗(·) operators. We also provide
expressions for A∗(A(·)) in cases where the combined operator takes a simpler form than applying each
operator sequentially. In the last two rows, it is assumed that the matrix A ∈ C

M1×N , and that the vector

y ∈ C
M is divided into two components y1 ∈ C

M1 and y2 ∈ C
M−M1 with y = [

yT1 yT2
]T

. In the last

row, we take B(x) � Cx − D(Ex), with corresponding B∗(y) = CH y − EH (DH y). Note that a special
case of equivalent complex-valued operators associated with Eq. (7) (with B chosen as the identity matrix)
was previously presented by Ref. (Bydder and Robson 2005), although without the more general real-linear
mathematical framework developed in this work

A(x) for x ∈ C
N A∗(y) for y ∈ C

M A∗(A(x)) for x ∈ C
N

Real-linear Fx + (Gx) FH y + GH y

Conjugation x y x

Real part real(x) real(y) real(x)

Imaginary part imag(x) i · real(y) i · imag(x)

System from
Eq. (7)

[
Ax√

λ · imag(Bx)

]

AH y1 +√
λiBH real(y2) AHAx +λiBH imag(Bx)

System from
Eq. (8)

[

Areal(x)
imag(x)

]

real(AH y1) + i · real(y2) real(AHAreal(x)) + i · imag(x)

System from
Eq. (9)

[
Ax√

λCx − √
λD(Ex)

]

AH y1 +√
λB∗(y2) AHAx +λB∗(B(x))

5 Numerical example

To demonstrate the potential benefits of our proposed complex-valued approach, we
will consider an instance of the problem described by Eq. (9). In this case, the use of
complex-valued operations can lead to both a simpler problem formulation and faster
numerical computations.

To address simplicity, we hope that it is obvious by inspection that the process of
deriving Ã for this case (as given in Eq. (23), and needed for the conventional real-
valued iterative computations)was non-trivial and labor-intensive,while the derivation
of A(·) and A∗(·) (as given in Table 1, and needed for the proposed new complex-
valued iterative computations) was comparatively fast and easy.

To address the computational benefits of the proposed approach, we will consider
a specific realization of Eq. (9), in which x ∈ C

1000, n ∈ C
20000, A ∈ C

20000×1000,
C ∈ C

30000×1000, D ∈ C
30000×2000, and E ∈ C

2000×1000, with the real and imaginary
parts of all of these vectors and matrices drawn at random from the i.i.d. Gaussian
distribution. We then took b = Ax + n, and set λ = 10−3. For this random problem
instance, we find the optimal nonlinear least-squares solution in four distinct ways:

– Conventional real-valued approach with matricesWe assume thatA,C,D, and
E are available to us in matrix form, such that it is straightforward to directly pre-
compute the real-valued matrix Ã ∈ R

100000×2000 from Eq. (23). We then use this
precomputed matrix directly in iterative linear least-squares solution algorithms
like Landweber iteration, CG, and LSQR. Although the form of this Ãmatrix was
complicated to derive, multiplications with the precomputed Ã and ÃH matrices
within each iteration should be very computationally efficient, particularly since
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we have taken 4 separate complex-valued matrices A, C, D, and E that were orig-
inally specified by a sum total of 1.12 × 108 complex-valued entries (2.24 × 108

real numbers), and replaced them with a single real-valued matrix specified by
only 2 × 108 real numbers. Every matrix-vector multiplications involving Ã or
ÃH will therefore require 2 × 108 real-valued scalar multiplications.

– Proposed complex-valued approach with matrices As in the previous case, we
assume that A, C, D, and E are available to us in matrix form, which allows
us to directly form the F and G matrices corresponding to the complex-valued
real-linear formulation of the problem. Specifically, F was formed as

F =
[

A√
λC

]

(31)

and G was formed as

G =
[

0
−√

λDE

]

. (32)

We then used these precomputed matrices to evaluateA(·) andA∗(·) as needed in
our proposed complex-valued iterative algorithms. These precomputed F and G
matrices are each specified by 5× 107 complex-valued entries (i.e., a sum total of
1×108 complex-valued entries or 2×108 real-valued entries considering F andG
together). However, since one complex-valued scalar multiplication corresponds
to four real-valued scalar multiplications, applying the A(·) or A∗(·) operators to
vectors will require 4× 108 real-valued scalar multiplications, which is twice the
number of multiplications required in the previous case.

– Conventional real-valued approach with function calls We assume that we do
not have direct access to the A, C, D, and Ematrices, but are only given blackbox
functions that calculate matrix-vector multiplications with these matrices and their
conjugate transposes. As such, we implement matrix-vector multiplication with Ã
(and similarly for ÃH ) naively in each iteration of the conventional iterative linear
least-squares solution algorithms, using multiple calls to each of these functions
as described in Sect. 2.2. This approach is not expected to be computationally
efficient given the large number of function calls, although is simpler to implement
than more advanced approaches that might be developed to exploit redundant
computations within Eq. (23).

– Proposed complex-valued approachwith function callsAs in the previous case,
we assume that we do not have direct access to the A, C, D, and E matrices,
but are only given blackbox functions that calculate matrix-vector multiplications
with these matrices and their conjugate transposes. We implement the proposed
complex-valued iterative algorithms using the techniques described in Sect. 3,
using the expressions for A(·) and A∗(·) given in Table 1. In this case, applying
the A(·) or A∗(·) operators to vectors will require 1.12 × 108 complex-valued
scalar multiplications (equal to sum total of the number of entries in A, C, D, and
E, which corresponds to 4.48 × 108 real-valued scalar multiplications (slightly
larger than the proposed complex-valued approach with matrices).
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Fig. 1 Results for Landweber iteration. The plots show the total number of multiplications, the normalized
cost function value (normalized so that the initial value is 1), the computation time in seconds, and the
relative difference between the solution from the conventional method with matrices and solutions obtained
with other methods

For the sake of reproducible research, Matlab code corresponding to this example is
included as supplementary material.

For each case, we ran 50 iterations of Landweber iteration and 15 iterations of CG
and LSQR in MATLAB 2018b, on a system with an Intel Core i7-8700K 3.70 GHz
CPU processor. For each approach, each algorithm, and at each iteration, we computed
(1) the total cumulative number of real-valued scalar multiplications (with 1 complex-
valued scalar multiplication equal to 4 real-valued scalar multiplications) used by the
algorithm thus far; (2) the cost function value from Eq. (9) using the current estimate
(either xk or x̃k); (3) the total computation time in seconds; and (4) the relative �2-norm
difference between the xk value estimated from the proposed method with function
calls and the other methods, where we define the relative �2-norm difference between
arbitrary vectors p and q as ‖p− q‖2/‖ 1

2p+ 1
2q‖2. To minimize random fluctuations

in computation speed due to background processing, the computation times we report
represent the average of 15 different identical trials.

Results for Landweber iteration and the CG algorithm are reported in Figs. 1 and
2, respectively. The results for LSQR were quite similar to the results for CG (as
expected theoretically Paige and Saunders 1982), and have been omitted. Results
confirm that, as should be expected from the theory, all of the different approaches
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Fig. 2 Results for the conjugate gradient algorithm. The plots show the total number of multiplications, the
normalized cost function value (normalized so that the initial value is 1), the computation time in seconds,
and the relative difference between the solution from the conventional method with matrices and solutions
obtained with other methods

yield virtually identical cost function values and virtually identical solution estimates
xk/x̃k at each iteration for each of the different algorithms. There are some very minor
differences on the order of 10−15, which can be attributed to numerical effects resulting
from finite-precision arithmetic. In terms of computational complexity, we observe
that the matrix-based approaches are generally associated with fewer multiplications
than the implementations that use function calls, which should be expected because
the matrix-based approaches were able to precompute simpler consolidated matrix
representations [e.g., the Ãmatrix fromEq. (21) or theF andGmatrices fromEqs. (31)
and (32)] that were not available to the function call approaches.

The proposed approaches required a moderate number of multiplications, some-
what intermediate between the conventional approach with matrices (which had the
fewest multiplications, as expected based on our previous discussion of the efficiency
of the conventional approach with precomputation) and the conventional approach
with function calls (which had the most multiplications). However, in terms of actual
computation time, we observe that the conventional approach with function calls was
much slower than any of the other three methods, while the other three methods
were all similar to one another. It is perhaps surprising that the computation times are
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not directly proportional to the number of multiplications, although this discrepancy is
likely related toMATLAB’s use of efficient parallelizedmatrixmultiplication libraries.
Importantly, we observe that both variations of the proposed approach are quite fast,
and have computation times that are quite similar to the conventional real-valued
approach with matrices (which, as we mentioned, was expected to have excellent
computational efficiency). There was negligible difference between the computation
times assocociated with matrices and function call implementations of the proposed
method, which was definitely not the case for the conventional approaches. And in
terms of implementation, the proposed approach with function calls was the easiest to
implement, since it didn’t require us to derive the forms of any special matrices like
Ã, F, or G, we could just directly work with the individual original matrices A, C, D,
and E.

6 Conclusion

This work proposed a new approach to solving nonlinear least-squares problems
involving real-linear operators. The new approach allows the use of the original
complex-valued operators without transforming them into an unwieldy real-valued
form. Theoretically, the approach enables identical iterative results as the conven-
tional real-valued transformation, but with much simpler implementation options and
potentially much faster computations.We expect the proposed approach to be valuable
for solving general complex-valued nonlinear least-squares problems involving real-
linear operators. Note that the proposed complex-valued approach is also an integral
but previously-undescribed component of the most recent version of an open-source
MRI reconstruction software package released by the authors (Kim and Haldar 2018).
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A Proof of Lemma 1

First, note that Eq. (28) is a simple consequence of the derivations shown in Eq. (19).
Thus, the validity of Eq. (29) is the only thing that remains to be proved.

To see that Eq. (29) is valid, note that

A∗(n) = FHn + GHn
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= FH (nr + ini ) + GH (nr − ini )

=
(

real(FH ) + i · imag(FH )
)

(nr + ini )

+
(

real(GH ) + i · imag(GH )
)

(nr − ini )

=
(

real(FH )nr − imag(FH )ni + real(GH )nr + imag(GH )ni
)

+i
(

imag(FH )nr + real(FH )ni + imag(GH )nr − real(GH )ni
)

=
(

real(F)Hnr + imag(F)Hni + real(G)Hnr − imag(G)Hni
)

+i
(

−imag(F)Hnr + real(F)Hni − imag(G)Hnr − real(G)Hni
)

,

(33)

where the last line of this expression relies on the fact that imag(BH ) = −imag(B)H

for an arbitrary matrix B. Equation (33) provides a decomposition of A∗(·) into its
real and imaginary components, and is equivalent to

[

real(A∗(n))

imag(A∗(n))

]

=
[

real(F)H + real(G)H imag(F)H − imag(G)H

−imag(F)H − imag(G)H real(F)H − real(G)H

] [

nr
ni

]

=
[

real(F) + real(G) −imag(F) − imag(G)

imag(F) − imag(G) real(F) − real(G)

]H [

nr
ni

]

= ÃH
[

nr
ni

]

,

(34)

where the last line comes from the definition of Ã in Eq. (21). This proves the validity
of Eq. (29). ��

B Proof of Lemma 2

Let A1(·) : CN → C
P be a real-linear operator that is represented for ∀x ∈ C

N as
A1(x) = F1x+ (G1x) for some matrices F1,G1 ∈ C

P×N , and letA2(·) : CP → C
M

be a real-linear operator that is represented for ∀y ∈ C
P asA2(y) = F2y+ (G2y) for

some matrices F2,G2 ∈ C
M×P . Then the composition A(·) = A2(·) ◦ A1(·) can be

expressed for ∀x ∈ C
N as

A(x) = A2(A1(x))

= A2

(

F1x + (G1x)
)

= F2

(

F1x + (G1x)
)

+
(

G2

(

F1x + (G1x)
))

= (F2F1 + G2G1)x + (F2G1 + G2F1)x.

(35)
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ThusA(·) can be written in the real-linear formA(x) = Fx+ (Gx) for ∀x ∈ C
N with

F � F2F1 + G2G1 and G � F2G1 + G2F1.
By Definition 4, we also have that A∗(n) � FHn + GHn for ∀n ∈ C

M , A∗
1(y) �

FH
1 y + GH

1 y for ∀y ∈ C
P , and A∗

2(n) � FH
2 n + GH

2 n for ∀n ∈ C
M . Thus, we have

for ∀n ∈ C
M that

A∗
1(A∗

2(n)) = A∗
1

(

FH
2 n + GH

2 n
)

= FH
1

(

FH
2 n + GH

2 n
)

+ GH
1

(

FH
2 n + GH

2 n
)

= (FH
1 FH

2 + GH
1 GH

2 )n +
(

FH
1 GH

2 + GH
1 FH

2

)

n

= (F2F1 + G2G1)
Hn + (F2G1 + G2F1)

Hn

= FHn + GHn

= A∗(n),

(36)

which shows that A∗(n) = A∗
1(A∗

2(n)) for ∀n ∈ C
M as desired. ��

C Proof of Lemma 3

Let A1(·) : CN → C
M be a real-linear operator that is represented for ∀x ∈ C

N as
A1(x) = F1x+(G1x) for somematrices F1,G1 ∈ C

M×N , and letA2(·) : CN → C
M

be a real-linear operator that is represented for ∀x ∈ C
N asA2(x) = F2x+ (G2x) for

some matrices F2,G2 ∈ C
M×N . Then the summation A(·) = A1(·) + A2(·) can be

expressed for ∀x ∈ C
N as

A(x) = A1(x) + A2(x)

= F1x + (G1x) + F2x + (G2x)

= (F1 + F2) x + (G1 + G2) x.

(37)

ThusA(·) can be written in the real-linear formA(x) = Fx+ (Gx) for ∀x ∈ C
N with

F � F1 + F2 and G � G1 + G2.
By Definition 4, we also have that A∗(n) � FHn + GHn for ∀n ∈ C

M , A∗
1(y) �

FH
1 y + GH

1 y for ∀y ∈ C
P , and A∗

2(n) � FH
2 n + GH

2 n for ∀n ∈ C
M . Thus, we have

for ∀n ∈ C
M that

A∗
1(n) + A∗

2(n) = FH
1 n + GH

1 n + FH
2 n + GH

2 n

= (FH
1 + FH

2 )n + (GH
1 + GH

2 )n

= (F1 + F2)
Hn + (G1 + G2)

Hn

= FHn + GHn

= A∗(n),

(38)
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which shows that A∗(n) = A∗
1(n) + A∗

2(n) for ∀n ∈ C
M as desired. ��
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