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Abstract
The optimization of the locations of a large number of wells in an oil or gas field 
represents a challenging computational problem. This is because the number of opti-
mization variables scales with the maximum number of wells considered. In this 
work, we develop and test a new two-stage strategy for large-scale oil field optimiza-
tion problems. In the first stage, wells are constrained to lie in repeated patterns, and 
the reduced set of optimization variables defines the pattern type and geometry (e.g., 
well spacing, orientation). For this component of the optimization, we introduce 
several important modifications, including optimization of the drilling sequence, to 
an existing well-pattern optimization procedure. The solutions obtained in the first 
stage are then used to initialize the second stage optimization. In this stage we apply 
comprehensive field development optimization, where the well location, type (injec-
tion or production well), drill/do not drill decision, completion interval for 3D mod-
els, and drilling time variables are determined for each well. Pattern geometry is no 
longer enforced in this stage. Specialized treatments (consistent with actual drill-
ing practice) are introduced for cases where multiple geomodels, used to capture 
geological uncertainty, are considered. In both stages optimization is achieved using 
a particle swarm optimization-mesh adaptive direct search (PSO-MADS) method. 
The two-stage procedure is applied to 2D and 3D models corresponding to differ-
ent geological scenarios. Both deterministic and geologically uncertain systems are 
considered. Optimization results using the new procedure are shown to clearly out-
perform those from the single-stage comprehensive field development optimization 
approach. Specifically, for the same number of function evaluations, the two-stage 
treatment provides net present values that exceed those of the single-stage approach 
by about 15–18% for the cases considered. This suggests that this optimization strat-
egy may indeed lead to improved results in practical problems.
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1  Introduction

Optimization of oil and gas field development decisions, such as the number, 
types, locations, drilling sequence and control of wells, represents a challenging 
mixed-integer nonlinear programming (MINLP) problem. MINLP problems are 
inherently difficult, and these optimizations typically require a very large number 
of function evaluations (flow simulations in this context). Problem difficulty in 
oil reservoir management settings generally scales with the number of decision 
variables, which in this case depends on the maximum number of wells consid-
ered. This renders the optimization computationally expensive, if not prohibi-
tive, in large-scale systems where (potentially) hundreds of wells are involved. 
Large numbers of optimization variables may also lead to degradation in the per-
formance of the optimization algorithm. Thus, it is evident that these problems 
would benefit from techniques that act to reduce the number of optimization vari-
ables. This can be achieved by decoupling the dependence between the number of 
decision variables and the (maximum) number of wells considered.

In an earlier study, Onwunalu and Durlofsky (2011) developed a well-pattern 
optimization (WPO) procedure for large-scale field development optimization. 
The parameterization in WPO defines the locations of wells constrained to lie in 
repeated patterns, and the optimization variables define the pattern type (e.g., a 
five-spot pattern, with four production wells surrounding an injection well) and 
pattern geometry (well spacing and orientation). Posing the optimization problem 
at the level of well patterns rather than individual wells significantly reduces the 
number of optimization variables. Our goal in this work is to develop and test a 
new two-stage technique for large-scale field development optimization. The two-
stage procedure entails an enhanced version of the WPO procedure combined 
with comprehensive field development optimization. The resulting development 
plan includes well locations and types (with wells not constrained to be drilled in 
patterns), completion intervals (for 3D models), and drilling schedule.

As discussed by Khor et  al. (2017), different techniques, with varying com-
putational requirements, have been proposed to solve oil field development and 
production system optimization problems. To reduce the computational cost asso-
ciated with these optimization problems, two general approaches have been intro-
duced. The first set of techniques targets the flow problem. This generally entails 
replacing the high-fidelity flow simulation model with a lower-fidelity or reduced-
order model, or with a model based on simplified flow physics. The second gen-
eral approach involves reducing the dimension of the optimization problem itself; 
i.e., limiting the number of optimization variables. Methods based on the first 
approach include the use of reduced-order numerical models (Van Doren et  al. 
2006; Cardoso and Durlofsky 2010; He et al. 2011; Suwartadi et al. 2015; Jansen 
and Durlofsky 2017), machine-learning and deep-learning-based surrogates (e.g., 
Guo and Reynolds 2018; Nasir et al. 2020; Jin et al. 2020), reduced-physics simu-
lations (e.g., Møyner et al. 2015; de Brito and Durlofsky 2020), or simpler ana-
lytical representations such as capacitance-resistance models (e.g., Albertoni and 
Lake 2003; Lasdon et al. 2017). Multilevel optimization approaches, in which a 
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sequence of upscaled (coarsened) models are applied, have also been developed 
(Aliyev and Durlofsky 2017).

The second type of cost-reduction approach is applied in this work. There have 
been a significant number of previous studies along these lines, as we now discuss. 
Dimension reduction techniques have been proposed for both the production (well 
control) and field development optimization problems. As shown in previous studies 
(such as Oliveira and Reynolds 2015; Fonseca et al. 2017; Awasthi et al. 2019), clear 
benefit can be achieved by optimizing time-varying well settings (e.g., injection/pro-
duction rates or wellbore pressures) for existing wells. In this problem, the number 
of decision variables increases as the number of well-control periods increases. The 
computational cost of such problems can become quite substantial when uncertainty 
in the geological model is considered (Jansen et  al. 2005; Wang et  al. 2009; Bar-
ros et al. 2020). Trigonometric (Awotunde 2014), polynomial approximation (Sorek 
et al. 2017), and principal component analysis (Fu and Wen 2018) parameterizations 
have been applied as dimension reduction techniques for the optimization of time-
varying well settings. A review of several dimension reduction techniques for the 
well control optimization problem can be found in Awotunde (2019).

For field development optimization problems, well-pattern-based optimization 
has proven to be an effective technique to reduce the number of variables. Pan and 
Horne (1998) optimized the location of wells in an inverted five-spot pattern using 
the location of the injector and well-spacing parameters as optimization variables. 
Ozdogan et al. (2005) proposed a fixed pattern approach to determine the well count 
and well locations with a line-drive pattern. Volz et al. (2008) and Litvak and Angert 
(2009) considered the use of three different well patterns (inverted five-spot, inverted 
seven-spot, and staggered line drive) in optimizing giant oil fields. The well types, 
length of high-angle wells, and well spacing (from a predefined set) were optimized. 
More general well-pattern parameterizations (Onwunalu and Durlofsky 2011; Zhang 
et al. 2017; Fan et al. 2018) have also been introduced.

In this paper, we introduce a new two-stage field development optimization tech-
nique that takes advantage of the dimension-reduction capability of well-pattern-
based optimization procedures. The optimization in the first stage is similar to the 
WPO procedure developed by Onwunalu and Durlofsky (2011), though several 
significant extensions are introduced. These include the incorporation of (pattern-
based) drilling-sequence optimization, a reformulation of the problem to provide 
a further reduction in the number of optimization variables, and application to 3D 
models. The solutions obtained in the first stage are used to initialize the second-
stage field development optimization, in which pattern geometry is not enforced. 
Optimization in both stages is performed using a derivative-free particle swarm 
optimization – mesh adaptive direct search (PSO-MADS) hybrid algorithm (Isebor 
et al. 2014a, b). We also introduce a realization-by-realization well completion tech-
nique, which is conceptually consistent with actual drilling practice, for cases where 
multiple 3D realizations are used to represent geological uncertainty.

This paper proceeds as follows. In Sect. 2, we introduce the comprehensive field 
development optimization problem, and then describe the enhanced well-pattern 
optimization procedure, including the drilling-scheduling technique. In Sect. 3, the 
full two-stage field development optimization approach is presented, along with the 
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realization-by-realization well completion procedure. Computational results demon-
strating the performance of the two-stage procedure, for both 2D and 3D problems, 
are presented in Sect. 4. An example involving geological uncertainty is also consid-
ered. We conclude in Sect. 5 with a summary and suggestions for future work.

2 � Comprehensive field development and well‑pattern optimization

In this section, we first present the comprehensive field development optimiza-
tion problem. We then describe our implementation of the well-pattern optimiza-
tion (WPO) procedure. This is similar to the method developed by Onwunalu and 
Durlofsky (2011), though we introduce several significant new features, including 
pattern-based drilling-sequence optimization.

2.1 � Comprehensive field development optimization

Our goal in the field development optimization problem is to determine the number, 
types (producer or injector), locations, and drilling sequence for a set of wells. Addi-
tional optimization variables defining how the wells are controlled (e.g., time-vary-
ing rates or bottom-hole pressures) could also be included, though this is not done 
here. The comprehensive field development optimization problem, in the absence of 
well control variables, is written as follows:

where J is the objective function to be optimized, the decision vectors � ∈ 𝕌 ⊆ ℤ
2Nw 

and � ∈ 𝕍 ⊆ ℤ
Nw represent the discrete well location and drilling sequence varia-

bles, respectively, and the vector � (where for well i, wi ∈ {−1, 0, 1} ) contains Nw 
ternary categorical variables, where −1 represents the decision to drill a producer, 
1 the decision to drill an injector, and 0 the decision to not drill the well. Here Nw 
denotes the maximum number of wells that can be drilled. The spaces � , �  , and � 
define the feasible regions for the optimization variables, including upper and lower 
bounds if applicable. The vector c defines optimization constraints such as minimum 
well-to-well distance, maximum number of wells to be drilled at a given drilling 
stage, and maximum production or injection limits.

The vector � contains the two areal location variables associated with each well 
(for now we assume that all wells are vertical and penetrate the entire formation). 
These integer coordinates, for well i, are represented by ( �i, �i ). The development 
plan is divided into several drilling stages, with variable vi defining the stage at 
which well  i is drilled. A constraint is imposed so the number of wells drilled in 
each stage does not exceed the available number of drilling rigs. Although � and � 
each contain Nw variables, only Nw − 1 components of each are optimized. This is 
because we assume that at least one producer is drilled in the first drilling stage.

The full set of optimization variables is represented as � = [�T , �T ,�T ]T . The 
total number of optimization variables is 4Nw − 2 . The number of optimization 
variables thus scales linearly with the maximum number of wells. Note that in this 

(1)max
�∈�,�∈� ,�∈�

J(�, �,�), subject to �(�, �,�) ≤ �,
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study, rather than optimize the well controls, we use a ‘reactive-control’ strategy, 
where wells are operated at fixed rates or bottom-hole pressures (bottom-hole pres-
sure refers to the wellbore pressure at a particular depth) until a prescribed economic 
limit is reached. One such economic limit is the maximum water cut (fraction of 
water in the produced fluid) in a production well. This reactive treatment is subopti-
mal relative to optimizing the well settings, but it results in an optimization problem 
that is less demanding computationally.

In this work, we seek to obtain the decision variables that maximize net present 
value (NPV); i.e., we specify J = NPV  . Following Shirangi and Durlofsky (2015), 
we compute NPV as follows:

Here Ni and Np are the number of injectors and producers, respectively, Nt is the 
number of time steps in the flow simulation, tk and �tk are the time and time step size 
at time step k, ti is the time at which well i is drilled, and po , cpw , and ciw represent 
the oil price and the cost of produced and injected water. The variables cw and b rep-
resent the well drilling cost and annual discount rate. The rates of oil/water produc-
tion and water injection, for well i at time step k are, respectively, qi

o,k
 , qi

pw,k
 , and 

qi
iw,k

 . It should be noted that wells introduced by the optimizer (i.e., wi ∈ {−1, 1} ) 
that lack an active perforation due to placement in inactive cells, are not included in 
the drilling cost calculation.

For a given well configuration (potential solution) x, the evaluation of Eq.  2 
requires a full flow simulation to be performed. This entails the solution, in time, 
of a discretized set of nonlinear partial differential equations. For oil-water prob-
lems, as are considered in this work, there are two equations and two unknowns for 
each grid block, which must be evaluated at each time step. Given that practical 3D 
models may contain O(105−107) grid blocks, these simulations can be quite time 
consuming, and may require minutes to hours for a single run using a traditional 
(CPU-based) flow simulator. Thus these optimizations can be very expensive com-
putationally, which provides a strong motivation to accelerate the overall procedure.

2.2 � Well‑pattern optimization overview

In well-pattern optimization (WPO), instead of optimizing decision variables associ-
ated with individual wells as described in the preceding section, the optimization vari-
ables describe a group of wells within a reference well pattern. A set of pattern opera-
tions is applied to geometrically transform the reference pattern in terms of its size, 
orientation and shape (skewness). A fixed reference well serves as the origin for each 
pattern operation, and its location does not change after the operation is performed. The 
reference well, which affects the pattern geometry and orientation, is an optimization 

(2)

NPV(�) =

Nt�
k=1

⎡
⎢⎢⎣

Np�
i=1

�
po q

i
o,k

− cpw qi
pw,k

�
−

Ni�
i=1

ciw qi
iw,k

⎤
⎥⎥⎦

�tk

(1 + b)tk∕365

−

Nw�
i=1

�wi� cw
(1 + b)ti∕365

.



366	 Y. Nasir et al.

1 3

variable associated with each of the pattern operations (the reference well may differ 
between operations). The patterns are replicated over the entire reservoir, with wells 
falling outside the reservoir boundary, or in inactive regions, eliminated.

Following Onwunalu and Durlofsky (2011), the three pattern operations considered 
in this work are illustrated in Fig. 1 for an inverted five-spot pattern. The gray lines 
indicate the initial well patterns, while the black lines show the resulting patterns after 
the operations. The scaling operator (Fig. 1a) increases the size of the reference well 
pattern in the � and � directions. Here well 3 (shown in green) is the reference well. By 
varying the size of the well pattern, this operator strongly impacts the number of wells 
drilled. Figure 1b illustrates the rotation operation, with well 2 as the reference well. 
Figure 1c depicts the shearing operation – here well 1 is the reference well. Following 
replication of this well pattern throughout the reservoir, we have the well configuration 
shown in Fig. 1d.

WPO contains three groups of optimization variables: those associated with the 
well-pattern parameterization, the operator parameters, and (optionally) parameters that 
define the sequence of the application of the operators. Different well pattern types can 
be considered in WPO. The reference well pattern, �p , is defined as follows:

where Iwp ∈ {1, 2, 3} is a categorical variable that indicates the pattern type (five-
spot, seven-spot and nine-spot are considered in this work), �0 and �0 are integer 

(3)�p =
[
Iwp, �0, �0, a, b

]T
,

Fig. 1   Illustration of the scale, rotation and shearing operators for an inverted five-spot pattern. The black 
and red circles show the producers and injectors, respectively. The green-numbered wells show the refer-
ence well for that particular pattern operation (the reference well for each operation is also an optimiza-
tion variable). (Color figure online)
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variables that define the areal location of the center of the pattern on the simulation 
grid, and a and b are user-defined well spacing parameters that specify the minimum 
size of the reference well pattern.

2.3 � Well pattern operators

The manipulation of the reference pattern is achieved using the three geometric trans-
formation operators described above along with a switch operator. The components of 
the corresponding geometric transformation matrices (including the reference well) are 
optimized in order to vary the size, shape, and orientation of the reference pattern. The 
geometric transformations can be described using:

where �scale , �rot , and �shear ∈ ℝ
2×2 are geometric transformation matrices (dis-

cussed later) for the scaling, rotation and shearing operations. The matrix 
�in,j ∈ ℝ

Nwp×2 defines the well locations for the individual wells 
(�i, �i; i = 1,… ,Nwp) , relative to the reference well location (�ref

j
, �

ref

j
) , prior to the 

transformation. Here Nwp is the number of wells in the pattern. The matrix �out,j 
defines the pattern after the transformation, with the new well locations (𝜉i, 𝜂̂i) also 
defined relative to the reference well. The matrices �in,j and �out,j are given by:

We now describe the various well pattern operators. The scale operator increases the 
size of the reference well pattern from its minimum size defined by the well spacing 
variables (a,  b). This is in contrast to the treatment in Onwunalu and Durlofsky (2011), 
where the scale operator decreases or increases the size of the reference well pattern, 
and a and b are additional decision variables.

The nonuniform scaling matrix, �scale , used to scale a well pattern in the � and � 
directions by (axis-aligned) scaling factors S� and S� (with S� , S� ≥ 1 ), is given by:

The clockwise rotation matrix, �rot , is used to rotate a well pattern by an angle � 
( 𝜃 > 0 indicates clockwise rotation). This matrix is defined as:

(4)�
T
out,j

= �j�
T
in,j
, j ∈ {scale, rot, shear},

(5)�in,j =

⎛
⎜⎜⎜⎜⎝

𝜉1 − 𝜉
ref

j
𝜂1 − 𝜂

ref

j

𝜉2 − 𝜉
ref

j
𝜂2 − 𝜂

ref

j

⋮ ⋮

𝜉Nwp
− 𝜉

ref

j
𝜂Nwp

− 𝜂
ref

j

⎞
⎟⎟⎟⎟⎠
, �out,j =

⎛
⎜⎜⎜⎜⎝

𝜉1 − 𝜉
ref

j
𝜂̂1 − 𝜂

ref

j

𝜉2 − 𝜉
ref

j
𝜂̂2 − 𝜂

ref

j

⋮ ⋮

𝜉Nwp
− 𝜉

ref

j
𝜂̂Nwp

− 𝜂
ref

j

⎞
⎟⎟⎟⎟⎠
.

(6)�scale =

(
S� 0

0 S�

)
.

(7)�rot =

(
cos� sin�

−sin� cos�

)
.
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The shear operator alters the shape of a well pattern by skewing the pattern in the � 
and � directions. The degree of shearing is dictated by the axis shearing factors H� 
and H� . These quantities appear in the shear matrix �shear , given by:

The rotation and shear operators are particularly important in optimizations involv-
ing channelized geomodels, as they give the optimizer more flexibility in terms of 
aligning wells with channels.

Finally, the switch operator is a non-geometric operator that converts the refer-
ence well pattern from inverted to normal. This is achieved by switching the well 
types in the reference pattern. The switching operation is dictated by a binary cat-
egorical variable Sp ∈ {0, 1} , where 1 represents the decision to switch the reference 
pattern from inverted to normal. Note that this procedure will, in general, affect the 
number of injection versus production wells, though it does not alter the total num-
ber of wells.

In our implementation of the WPO, we have a total of 12 optimization variables 
within the decision vector �w . These include two categorical variables (well pattern 
type and switch operator), two integer variables (these define the location of the ref-
erence well pattern), and eight continuous variables (components of the three geo-
metric transformation matrices and their corresponding reference wells). Accord-
ingly, �w is given by:

where Rscale , Rrot , and Rshear ∈ ℝ are scalar variables that define the reference wells 
for the scaling, rotation and shearing operators. These optimization variables are 
restricted to the range [0,  1], with the resulting value linearly mapped to the number 
of wells ( Nwp ) in the reference pattern to obtain the reference well (e.g., a value of 
0.3 in a five-spot pattern would correspond to well 2).

The major advantage of this well pattern parameterization for the field develop-
ment optimization problem is that the number of decision variables does not scale 
directly with the maximum number of wells considered. With the formulation 
described above, we found that the sequence in which the operators are applied does 
not have a noticeable effect on the well pattern and scheduling (described later) opti-
mization problem. For this reason, in contrast to Onwunalu and Durlofsky (2011), 
we do not include sequence parameters in the full set of optimization variables.

Onwunalu and Durlofsky (2011) implemented an optional well-by-well per-
turbation (WWP) step that can be used to improve upon the repeated well pattern 
solution. This is achieved by optimizing well location perturbations, in the � and � 
directions, for each well in the repeated pattern solution. The perturbation step is 
illustrated in Fig. 2. The well pattern here corresponds to a standard five-spot (thus 
the pattern boundary is a square), and � is a user-defined parameter that specifies the 
maximum perturbation for the central well. In this work we allow the perturbation 

(8)�shear =

(
1 H�

H� 1

)
.

(9)
�w =

[
Iwp, Sp
⏟⏟⏟
categorical

, �0, �0
⏟⏟⏟
integer

, S� , S� , �, H� , H� , Rscale, Rrot, Rshear

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
continuous

]T
,
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to shift wells into adjacent patterns, though this was not permitted in the original 
WWP treatment. Optimization variables are �� and �� for each well, and the central 
well location after application of the perturbation is shown in the right image. WWP 
shares some similarities with the comprehensive field development optimization, 
where wells are optimized individually, though in WWP the well count and types 
are fixed and the search space is much smaller.

In this paper, we use ‘WPO’ to mean the pattern-based optimization method 
without the WWP step. We use the terminology ‘WPO-WWP’ to denote the case 
where WWP is applied after WPO.

2.4 � Drilling sequence optimization for WPO

The WPO procedure described thus far provides optimized well patterns, but it does 
not define the sequence in which the well patterns are drilled. We now discuss our 
approach for optimizing the drilling sequence. We assume the wells are drilled in a 
maximum of Nd discrete stages ( Nd is an input parameter), with all wells in a par-
ticular pattern drilled in the same stage. The optimized solution will in general entail 
fewer than Nd stages. In practice, Nd can be determined heuristically and/or based 
on well cost and the project budget. The WPO solution �w is now taken to define 
the shape, size, orientation and location of the reference well pattern. This pattern is 
drilled in the first drilling stage, and is not yet replicated over the domain.

After the first well pattern is placed, we require that subsequent patterns be 
drilled adjacent to an existing pattern. This pattern-adjacency requirement could be 
relaxed though, consistent with many treatments at the WPO stage, it acts to reduce 
the complexity of the optimization problem. Complexity reduction is achieved 
because, by specifying pattern adjacency, the number of combinatorial options at 
each drilling stage are reduced, thus simplifying the overall optimization. This sim-
plification of the drilling sequence component of WPO is thus compatible with our 
goal of emphasizing simplicity over generality at the first stage of the procedure. 
This requirement, along with the specification that wells be drilled in patterns, will 

Fig. 2   Illustration of the well-by-well perturbation (WWP) procedure for a standard five-spot pattern. 
The original position of the central well is shown as the red circle, and the perturbed position as the blue 
circle (right figure). (Color figure online)
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be relaxed in the second stage. We note that pattern adjacency may, in some cases, 
be consistent with actual practice as it reduces rig movement.

Given the reference (initial) well pattern, the second-stage pattern can be drilled 
in four possible locations, adjacent to the reference well pattern. These potential 
locations are indicated by p1 , p2 , p3 and p4 in Fig. 3a for a five-spot reference well 
pattern (defined by the black lines). An additional null well pattern, p0 , is also con-
sidered by the optimizer at every drilling stage. If the optimizer selects p0 , no well 
pattern is drilled at that stage.

We introduce a vector � ∈ ℝ
Nd−1 containing the decision variables that indicate 

which well pattern to drill in each of the Nd − 1 drilling stages (there is no decision 
variable for the first drilling stage). The values in � are bounded between 0 and 1. 
The corresponding drilling sequence decision variable for any drilling stage is then 
mapped, based on the number of patterns considered for drilling at that stage, to 
define the pattern to be drilled.

This treatment can be readily explained with reference to the five-spot patterns 
shown in Fig. 3. There are five options in the second stage ( p0 through p4 ). If the 
decision variable for the second drilling stage ( d1 ) falls in the range d1 ≤ 0.2 , no 
well pattern (corresponding to p0 ) is drilled in this stage. If 0.2 < d1 ≤ 0.4 , then 
p1 is drilled, if 0.4 < d1 ≤ 0.6 , then p2 is drilled, etc. The situation depicted corre-
sponds to p3 being drilled in stage 2 (meaning 0.6 < d1 ≤ 0.8 ). In the third drilling 
stage, shown in Fig. 3b, there are seven options for the next pattern. At this stage, for 
example, if 2∕7 < d2 ≤ 3∕7 , then p2 will be drilled. This process continues until all 
drilling stages are considered.

In order to impose a degree of ‘continuity’ on the drilling sequence optimiza-
tion variable, at each drilling stage k, we reorder the well patterns under consid-
eration based on their spatial location. With the new ordering, neighboring patterns 
have pattern-vector indices that are close to one another (e.g., pattern p3 is near p4 ). 
The reordered patterns are illustrated in Fig. 4. As a result of the reordering, small 

Fig. 3   Illustration of the drilling sequence procedure for a five-spot pattern at two different drilling 
stages. The black lines show the outer boundaries of patterns already drilled, while the gray lines indicate 
possible patterns that can be drilled at that stage. (Color figure online)
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changes in dk−1 generally correspond to small shifts in pattern location. We also 
introduce the concept of zones (see Fig. 4), which correspond to groups of patterns. 
Jumps in pattern index do not occur within a zone, but they may occur between 
zones (e.g., pattern p9 is next to p1 , but they are in different zones). This reorder-
ing is useful when local search optimization algorithms such as MADS are applied, 
since these methods introduce small, systematic perturbations to the optimization 
variables. With this approach, large perturbations can be viewed as shifts between 
zones, while small perturbations correspond to shifts within a zone.

The well pattern and drilling sequence optimization problem can now be 
expressed as follows:

where �p =
[
�T
w
, �T

]T and J is taken to be NPV. The space �p defines the allowable 
values of all decision variables. The total number of optimization variables for the 
well pattern and scheduling problem is 11 + Nd . Although this does depend on Nd , 
we reiterate that it is independent of the maximum number of wells considered.

3 � Two‑stage field development optimization and multiple 
realization treatment

In this section, we present the two-stage field development optimization procedure, 
followed by a brief description of the particle swarm optimization – mesh adap-
tive direct search (PSO-MADS) method (Isebor et al. 2014a, b) used in this work. 
Finally, the realization-by-realization well completion treatment, applicable for use 
in optimizations over multiple geomodels, is described.

(10)max
�p∈�p

J(�p), subject to �(�p) ≤ �,

Fig. 4   Reordered well patterns 
and zones
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3.1 � Two‑stage field development optimization technique

In fields that will be developed based on well patterns, the optimal development plan 
is defined by the �p that maximizes the objective function J in Eq. 10. In cases where 
the goal is to solve the more general optimization problem represented by Eq.  1, 
however, this �p will be suboptimal. As we will see, it nonetheless represents a rea-
sonable initial guess for the general problem in Eq. 1. This is the motivation for the 
two-stage procedure, which we now describe.

In the first stage of this procedure, we solve the well pattern and scheduling opti-
mization problem (Eq. 10) to provide �optp  . This optimization can be accomplished 
relatively efficiently since it involves only 11 + Nd optimization variables. It should 
be noted that constraints on the minimum well-to-well distance, or on the maximum 
number of wells to drill within a given drilling stage, can be accommodated in this 
stage. The resulting �optp  provides an estimate of the number of wells, the producer-
to-injector ratio, well locations, and the drilling schedule for the comprehensive field 
development optimization.

Given �optp  as an initial solution, we solve the comprehensive field development 
optimization problem in the second stage. We further enrich the quality of the initial 
PSO swarm/population in the second-stage optimization by including additional par-
ticles (potential solutions) from the final PSO swarm of the first-stage optimization. 
Specifically, particles corresponding to development plans with the same number of 
wells, or fewer wells, than �optp  are included in the initial second-stage swarm. First-
stage solutions are mapped to second-stage solutions by transforming the solutions 
represented by �p to solutions represented by � . This entails mapping from the WPO 
representation, which involves 11 + Nd variables, to the comprehensive field devel-
opment problem representation, involving 4Nw − 2 variables for 2D areal problems 
and 6Nw − 2 variables for multilayer problems (with Nw determined from �optp  ). The 
remaining initial particles in the second-stage optimization are initialized randomly.

If the optimization involves a multilayer reservoir model, the wells are completed 
in all layers during WPO. In the second stage, however, the completion interval for 
each well is optimized. This involves the determination of two additional optimiza-
tion variables, which is why we have 6Nw − 2 variables in 3D. These variables cor-
respond to the first and last layers at which each well is completed.

Although the same parameterization is used in the second stage of the two-stage 
procedure as in a comprehensive (single-stage) optimization, the two-stage approach 
has several advantages over the single-stage method. Specifically, in the second step 
of the two-stage approach, we have a reasonable estimate of the number of wells 
required for the field development, whereas in the single-stage approach a somewhat 
arbitrary (and relatively large) number of wells must be considered. This will typi-
cally result in more decision variables in the single-stage procedure. In addition, the 
use of ‘pre-optimized’ initial solutions in the second stage, which satisfy geometric 
and operational constraints, considerably reduces the computational cost of solving 
Eq. 1, as we will see later.

As noted earlier, optimization in both stages is accomplished using a derivative-
free particle swarm optimization – mesh adaptive direct search (PSO-MADS) hybrid 
algorithm (Isebor et  al. 2014a, b). PSO is a population-based stochastic search 
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method that explores globally, though there is no guarantee of convergence to even 
a local optimum. Particles in the swarm/population move within the search space, 
from iteration to iteration, based on particle velocities. The search entails coopera-
tive, explorative and exploitative aspects. MADS is a pattern-search algorithm that 
involves local search (polling), in randomly selected directions, around the best 
solution found thus far in the optimization. Under certain conditions MADS ensures 
convergence to a local optimum. In general, there is no practical way to determine 
how close this local optimum is to the (unknown) global optimum. However, the 
global search component provided by PSO, along with the fact that the overall PSO-
MADS procedure is typically run multiple times, allows us to avoid converging to 
poor local optima in practice.

The hybrid PSO-MADS algorithm benefits from the global exploration accom-
plished by PSO in combination with the local search provided by MADS. The algo-
rithm switches back and forth between PSO and MADS based on particular criteria 
and settings. This approach has been shown to be preferable to simply performing 
some number of MADS iterations after PSO has terminated (though this can also be 
effective). Interested readers are referred to Onwunalu and Durlofsky (2010) for the 
application of standalone PSO, and to Isebor et al. (2014a, b) for a detailed descrip-
tion of the PSO-MADS algorithm along with extensive computational results and 
performance comparisons. Other standalone and/or hybrid optimization procedures 
could also be considered for both WPO and the comprehensive field development 
optimization. Possible options include genetic algorithms, differential evolution and 
iterative Latin hypercube sampling.

Algorithm  1 below describes the treatments applied in both stages of the 
optimization. 
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3.2 � Realization‑by‑realization well completion procedure

In cases where multiple realizations are used to capture geological uncertainty, the 
objective function is generally taken to be the expected NPV, defined as follows:

Here Nr is the number of realizations considered, and �k , k = 1,… ,Nr , represents 
the model parameters for realization k. For WPO, � is replaced by �p in Eq. 11. As 
written, the same field development strategy proposed by the optimizer, � (or �p ), is 
used to evaluate the NPV for all Nr realizations in Eq. 11. This means, for example, 
that wells in all geomodels will have the same set of completions, even if real-time 
drilling data available to the operator suggest a different strategy.

(11)J(�) =
1

Nr

Nr∑
k=1

NPV(�,�k).
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To partially account for actual drilling and completion practice in our optimiza-
tion, we introduce a realization-by-realization well completion treatment. With this 
approach, for each production well proposed by the optimizer, we apply a separate 
decision as to whether or not each intersected grid block, in each realization, should 
be perforated. This is meant to approximately mimic actual practice, where the well-
completion strategy would be adjusted based on available data.

In this work, the perforate/do not perforate decision is based on a simple measure 
of local permeability. Specifically, for vertical wells in 3D geomodels (as are con-
sidered here), we compute an average permeability over a 3 × 3 region centered at 
the target well block. Inverse-distance-squared weighting is applied in this averag-
ing procedure. If this average permeability exceeds a predefined threshold, the well 
is perforated in the block (otherwise it is not). A region beyond just the well block 
is considered because near-well (radial) ‘effective’ permeability is known to be 
impacted by permeability values outside the well block. In fact, effects extending a 
distance of O(lc) from the well, where lc is the permeability correlation length, were 
considered by Yeten et al. (2000) in their estimates of near-well effective permeabil-
ity. Our treatment here is approximate, and more detailed measures of local perme-
ability (such as that described by Yeten et al. 2000) could be readily incorporated. 
The perforations for injection wells are taken to be the same across all realizations.

The modified objective function for comprehensive field development under geo-
logical uncertainty is now given by:

where �k is the field development solution with the ‘customized’ perforation strategy 
for realization k. The perforations associated with �k always correspond to a subset 
of those defined by � (the latter represents the completion interval proposed by the 
optimizer). We note finally that the ability to perforate each realization differently 
leads to cost savings in two ways. First, there are direct cost savings due to fewer 
total perforations. Second, and perhaps more importantly, the optimizer has more 
flexibility in its proposals for � , given that the �k for each realization will, in general, 
be different.

4 � Computational results

In this section, we apply the various field development optimization strategies to two 
example cases. The first case is a 2D system characterized by a Gaussian perme-
ability field. This model, shown in Fig. 5a, contains 120 × 120 grid blocks (14,400 
total cells). Porosity is constant and set to 0.2. The grid block dimensions are 
�x = �y = �z = 50  ft. The second case is based on the 3D Olympus model devel-
oped by Fonseca et al. (2018). The particular realization used in the deterministic 
optimization cases is shown in Fig.  5b. This model contains 118 × 181 × 16 grid 
blocks (for a total of 341,728 cells, of which 192,750 are active), with each block 
of approximate size 164  ft × 164  ft × 10  ft. Porosity in this case varies spatially. 

(12)J(�) =
1

Nr

Nr∑
k=1

NPV(�k,�k),
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An impermeable shale layer separates the model into two zones. The upper zone 
contains fluvial channel sands, and the lower zone is characterized by alternating 
layers of coarse, medium and fine sand. Different capillary and relative permeability 
curves, as provided in Fonseca et al. (2018), are specified for the four facies types 
(channel, coarse, medium, and fine sands).

Figure  6 shows the oil and water relative permeability curves for the medium 
sand in the Olympus model. These curves are also used in the 2D case. The simu-
lation and optimization parameters for both cases are shown in Table  1. Many of 
these parameters are consistent with those given by Fonseca et al. (2018), though we 
increased the oil price to a value close to the average US spot price for 2019. Wells 
operate at prescribed bottom-hole pressures unless a maximum water cut (0.88) is 
reached in a production well, at which point the well is shut in (closed to flow).

For the 2D case, we assess the performance of a wide range of optimization strat-
egies. These include the two-stage optimization approach, WPO with the additional 
WWP step (WPO-WWP), an aided single-stage comprehensive field development 
optimization procedure (by ‘aided’ we mean that we set the maximum number of 
wells, which defines the number of optimization variables in the comprehensive 
field development optimization, to the value determined by WPO), and single-stage 
comprehensive field development optimization with varying maximum number of 
wells. For the 3D Olympus case, which is more time consuming to run, we consider 
only the two-stage and aided comprehensive field development optimization strate-
gies. We also evaluate the performance of the realization-by-realization well com-
pletion procedure, with eight realizations of the Olympus model. The abbreviations 
used for the different procedures, along with a brief description of each approach, 
are provided in Table 2.

A total of 12 drilling stages are considered in both cases. This means there are 
23 optimization variables in WPO. For all WPO runs, we use 40 PSO particles and 
a 2n stencil in MADS, where n is the number of optimization variables. In all com-
prehensive field development and WWP optimization runs, where the decision vari-
ables are associated with individual wells, 100 PSO particles are used. Due to the 

(a) (b)

Fig. 5   Log-permeability fields (with permeability in md) for the 2D Gaussian and 3D Olympus models
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stochastic nature of PSO-MADS, each optimization is run three times. Although this 
is not nearly enough runs to provide statistically converged results, it does reduce 
the chance of finding a poor local optimum (though this is not usually a major issue 
with PSO-MADS).

After the three WPO runs, the maximum number of wells in the optimal solu-
tions, over all three runs, is specified to be the maximum number of wells in the sec-
ond step of the two-stage optimization and in aided single-stage comprehensive field 
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Fig. 6   Oil and water relative permeability curves for the medium sand facies of the Olympus model and 
the 2D Gaussian permeability case

Table 1   Simulation and 
optimization parameters used in 
both cases

Initial pressure pi , at reference depth 2973 psi at 6864 ft
Oil viscosity, �o at pi 3.2 cp
Water viscosity, �w 0.40 cp
Oil density 850 kg/m3

Water density 1020 kg/m3

Oil formation volume factor, Bo at pi 1.09 RB/STB
Water formation volume factor, Bw 1.01 RB/STB
Rock compressibility 10−6 psi−1

Producer bottom-hole pressure 2176 psi
Injector bottom-hole pressure 3408 psi
Economic limit, producer water cut 0.88
po , cpw and ciw $55, $6 and $2/STB
Well drilling cost, cw $15 million
Discount rate, b 0.08
Number of PSO particles (WPO) 40
Number of PSO particles (comprehensive) 100
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development optimization. In each second-step optimization, the initial solution is 
obtained from the corresponding WPO run. If the number of wells for that run is 
less than the maximum number of wells considered, additional wells are included 
in the set of optimization variables, though they are initialized with wi = 0 (which 
corresponds to do not drill). The maximum number of wells that can be drilled in a 
single drilling stage ( Nd ) is set to nine.

We now comment on the data that could be used to condition the geomodels con-
sidered in the optimizations. The models are assumed to be constructed such that 
they honor all available hard data and any measured production data. For a new 
field there will be very little production data, but in mature fields existing wells will 
provide some amount of production data, and these data can be used to condition 
the geomodels. Although not considered in this work, the models could be history 
matched at each step of the optimization procedure to ensure consistency with the 
production data from all previous drilling stages. A detailed procedure that accom-
plishes this, referred to as closed-loop field development (CLFD), was presented by 
Shirangi and Durlofsky (2015). This general approach could be employed with the 
optimization strategies considered here. Additional effects would need to be consid-
ered in WPO, however, as there will be existing wells (that are not in patterns) in all 
drilling stages after the first.

4.1 � Example 1: 2D Gaussian permeability model

We now present optimization results for the 2D case. Oil-water flow is considered, 
and the simulations are performed using Stanford’s Automatic Differentiation-based 
General Purpose Research Simulator, AD-GPRS (Zhou 2012). The total simulation 
time frame is 2500  days, and each drilling stage is of length 200  days (with the 
simulation starting at the end of the first drilling stage). Thus, after all drilling is 
completed, there is a final production period of 300 days. The minimum well-to-well 
distance, which also defines the initial well pattern size, is set to 500 ft (correspond-
ing to 10 grid blocks).

Table 2   Summary of the different optimization procedures considered

Procedure Description

WPO Well-pattern optimization without the well-by-well perturbation step
WPO-WWP ( �) WPO followed by well-by-well perturbation (WWP), with a maximum pertur-

bation distance defined by �
WPO-Comprehensive Two-stage optimization in which solutions obtained from WPO are used as 

initial guesses for comprehensive field development optimization
Comprehensive ( Nw) Single-stage comprehensive field development optimization with the maximum 

number of wells, Nw , specified by the user (the value of Nw determines the 
number of optimization variables). Initial PSO swarm is randomly generated

Comprehensive (aided) Single-stage comprehensive field development optimization with the maximum 
number of wells determined from WPO solutions. Initial PSO swarm is 
randomly generated
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In these optimizations, as well as those for the 3D case, we assume there are suf-
ficient rigs to drill all wells associated with a given drilling stage. In practice, if 
excess rigs are available during some periods, this could also be accomplished via 
pre-drilling, meaning some of the wells are drilled before the stage at which produc-
tion or injection begins. In this work the only factor that affects capital cost is the 
number of wells drilled. Although not considered here, rig movement costs could 
be easily included in the NPV computation. If these costs are sufficiently high, they 
could impact the optimal field development plan as it will be beneficial to drill new 
wells near existing wells to reduce rig time.

The PSO runs are fully parallelized; i.e., 40 processors are used for the WPO 
runs, and 100 processors are used for all comprehensive field development optimi-
zation runs. The initial PSO particles for WPO and the single-stage comprehensive 
field development optimizations are randomly initialized, although user-defined 
solutions could also be incorporated. A maximum of 20,000 simulations is used as 
the termination criterion for the two-stage and comprehensive field development 
optimization procedures. In the two-stage procedure, the WPO stage is terminated 
after 1200 simulation runs. In some cases, NPV plateaus before these maximum val-
ues are reached, which suggests that the use of more sophisticated termination crite-
ria would lead to efficiency improvements.

We first compare the two-stage approach to WPO with the well-by-well perturba-
tion (WPO-WWP). Two different maximum perturbation sizes, � = 5 and � = 10 
grid blocks, are considered in WWP. For � = 10 , wells may be shifted into adjacent 
patterns. Figure 7 shows the evolution of NPV for the WPO procedure and Fig. 8 
displays NPV evolution for the two-stage and WPO-WWP procedures. In these and 
subsequent figures, the solid curve depicts the mean, and the shaded region displays 
the range, for the three runs performed for each method. In Fig. 7, we see that the 
curve flattens after about 1000 simulations, though it is possible that some improve-
ment could be achieved with additional iteration. It is evident in Fig. 8 that, follow-
ing the WPO runs (green curves, extending out to 1200 simulations), WWP with 
either � value (black and cyan curves) provides a slight improvement in NPV. There 
is, however, little increase in NPV after about 8000 simulations.

The two-stage approach (dark blue dashed curve) clearly leads to higher NPVs 
than WPO-WWP (even with � = 10 ) for this case. In fact, the optimal NPV contin-
ues to improve even up to the termination of the optimization at 20,000 simulations. 
This demonstrates the benefit of optimizing well count, well types, drilling sequence 
and well locations after WPO, rather than just perturbing the well locations as in 
WPO-WWP.

The performance of the two-stage approach is now compared to that of single-
stage comprehensive field development optimization. Three different comprehensive 
(single-stage) cases are considered: aided comprehensive field development optimi-
zation, where we set the maximum number of wells to be that obtained from WPO 
(which in this case is 24 wells), a case with a maximum of 32 wells, and a case with 
a maximum of 40 wells. The latter two cases entail exploration of higher-dimen-
sional search spaces than are considered in the aided comprehensive field develop-
ment optimization, which has the same number of optimization variables as the sec-
ond step of the two-stage approach. Results for all methods are presented in Fig. 9. It 
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is apparent that the two-stage approach consistently outperforms aided comprehen-
sive field development optimization. The average NPV obtained for the aided com-
prehensive field development optimization after 20,000 simulations is essentially 

Fig. 7   Evolution of NPV for the 2D case using the WPO procedure. The shaded region indicates the 
range of NPV over the three runs, and the solid curve shows the mean. (Color figure online)

Fig. 8   Evolution of NPV for the 2D case, for the two-stage procedure (WPO-Comprehensive) and for 
WPO followed by WWP (WPO-WWP). Shaded regions indicate the range of NPV over the three runs, 
and curves indicate the mean. (Color figure online)
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that obtained by the two-stage approach after 2500 simulations (1200 WPO simu-
lations followed by 1300 second-stage simulations). Interestingly, comprehensive 
field development optimization with a maximum of 32 wells slightly outperforms 
the same procedure with 40 wells. This is presumably because the latter case entails 
a more challenging optimization problem, and the optimum number of wells is 
(likely) less than 32. The mean results for these two cases are, however, quite close 
at the end of the runs.

Table 3 presents NPVs for the individual runs at different stages of the optimiza-
tion. We see that WPO, after 1200 simulations, consistently provides better solu-
tions than the aided single-stage comprehensive field development approach after 
3000 simulations. In the best two-stage run (run 2), the optimal solution found using 
WPO has an NPV of $795.2  million. The second-stage optimization provides an 
NPV of $959.2 million, which represents a 20.6% increase over that of WPO. Com-
pared to the best aided single-stage comprehensive field development optimization 
run (run 2, with an NPV of $814.0 million), the best solution from the two-stage 
approach yields an NPV that is 17.8% higher.

The well configurations corresponding to the best solutions obtained using WPO, 
two-stage optimization, and aided single-stage comprehensive field development 
optimization, are displayed in Fig. 10. In the figure, the red circles denote produc-
tion wells and the blue circles injection wells. The numbers inside the circles indi-
cate the drilling stage. The reference well pattern (drilled in stage  1) of the best 
WPO solution is an inverted seven-spot. This WPO solution corresponds to a total 
of 24 wells (17 producers and seven injectors). In this solution, almost all producers 
are placed in high-permeability regions. The maximum number of wells in the aided 

Fig. 9   Evolution of NPV for the 2D case, for the two-stage procedure (WPO followed by comprehen-
sive field development optimization), aided single-stage comprehensive field development optimization, 
and single-stage comprehensive field development optimization with a maximum of 32 and 40 wells. 
Shaded regions indicate the range of NPV over the three runs, and curves indicate the mean. (Color fig-
ure online)
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single-stage comprehensive field development optimization, and in the second step 
of the two-stage optimization, is set to 24 (which corresponds to 94 optimization 
variables).

The optimal solution obtained using the two-stage approach, shown in Fig. 10b, 
has 12 producers and eight injectors. This is an increment of one injector and a 
decrease of five producers from the (initial) WPO solution. The solution from the 
aided single-stage comprehensive field development optimization approach corre-
sponds to 12 producers and nine injectors, which is similar to the two-stage result 
(12 producers and eight injectors).

It is evident in Fig. 10 that wells drilled in the same drilling stage in the two-stage 
and aided single-stage comprehensive field development optimizations can be quite 
far apart. This is in contrast to the WPO solution shown in Fig. 10a. In that case, 
in order to simplify the optimization, new well patterns are constrained to be near 
existing patterns. The fact that wells in different portions of the field are drilled at 
the same time (in Fig. 10b and c) is consistent with our assumption that multiple rigs 
are available and that the cost of rig movement is small compared to drilling costs.

This assumption is reasonable in many onshore settings, such as those cor-
responding to the examples in this paper. Consider, for example, a case where we 
have three onshore ‘walking’ rigs that can move 33  ft per hour, with an interwell 
movement cost of $25,000 to $35,000 per day. In this case we estimate that, for the 

Table 3   NPV (in million USD) 
for two-stage and single-
stage comprehensive (aided) 
optimization for the 2D case

Two-stage Comprehensive 
(aided)

Stage 1 Stage 2

Simulations 1200 18,800 3000 20,000
  Run 1 777.0 938.0 687.7 801.7
  Run 2 795.2 959.2 686.0 814.0
  Run 3 765.8 943.5 682.5 804.0

Average NPV 779.3 946.9 685.4 806.6

(a) (b) (c)

Fig. 10   Best well configurations for WPO, two-stage, and aided single-stage comprehensive field devel-
opment optimization procedures, for the 2D case. Red circles denote producers, blue circles denote 
injectors, and the numbers indicate the drilling stage. Black lines in (a) show the reference well pattern. 
(Color figure online)
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best two-stage solution (Fig. 10b), we would require total rig movement of approxi-
mately 34,000 ft (with nearby wells drilled using the same rig). This corresponds to 
$1.1 million to $1.5 million, which is significantly less than the cost ($300 million) 
required to drill the 20 wells in the two-stage solution. We note that, if rig movement 
costs are an important factor, they can be readily incorporated into any of the opti-
mization procedures considered in this work.

The drilling sequences for the two-stage and aided optimization procedures are 
summarized in Fig. 11. The number of producers and injectors drilled in each stage 
are indicated, and these differ significantly between the two solutions. Specifically, 
all wells except for one injector in the two-stage solution are drilled by the end of 
drilling stage  7, while in the aided single-stage comprehensive field development 
solution, five wells are drilled at later stages.

Figure  12 presents the field-wide cumulative oil production, water production 
and water injection for the maximum NPV case for each of the three optimization 
strategies. As is evident in Fig. 12a, the best solution obtained using the two-stage 
approach results in the most cumulative oil production as well as the most water 
injection (Fig. 12c). Interestingly, this solution also corresponds to the latest water 
breakthrough time (Fig.  12b). This result is consistent with the better positioning 
and sequencing of wells in the two-stage solution.

Figure 13 shows oil saturation maps at the beginning of different drilling stages 
for the best two-stage solution. The final oil saturation map, at 2500 days, is also 
presented. The heavier circles indicate wells drilled at that specific stage. We see 
that the overall development plan results in a fairly uniform sweep. Note the strate-
gic drilling of wells in stages 6 and 12. The producer in stage 6 is clearly effective, 
as can be seen by the final saturation map. The injector drilled in stage 12, although 
very near a producer, is still beneficial considering the amount of oil left in that 
(low-permeability) region. This well does not lead to excessive water production, as 
there are only 300 days of production after the well is drilled.

(a) (b)

Fig. 11   Drilling schedule showing the number of producers and injectors for the two-stage and aided 
single-stage comprehensive field development optimization procedures for the 2D case
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4.2 � Example 2: 3D Olympus model

We now present results for the two-stage and aided single-stage comprehensive field 
development optimization approaches using a single realization of the 3D Olympus 
model. Realization 1, used in this assessment, is shown in Fig. 5b. In this case, the 
oil-water flow simulations are performed using the Echelon GPU-based simulator 
(Echelon 2019). The total simulation time is 6500  days. Each drilling stage is of 
length 500 days, and there is a final production period of 1000 days. The simulations 
are performed on four GPUs. While this does not allow for full parallelization (as 
each iteration in the comprehensive field development procedure requires 100 simu-
lations), it is still faster in terms of wall-clock time than running AD-GPRS on 100 
CPU cores. Each Echelon simulation requires about 24 seconds on a Nvidia Tesla 
V100 GPU.

The wells in this case are all specified to be vertical. During WPO, wells are 
drilled (and perforated) in all layers. In the comprehensive field development opti-
mization procedure, the completion interval (first and last layer in which the well 

(a) (b)

(c)

Fig. 12   Field-wide cumulative oil production, water production and water injection for the best solutions 
obtained using WPO, two-stage, and aided single-stage comprehensive field development optimization 
approaches, for the 2D case



385

1 3

A two‑stage optimization strategy for large‑scale oil field…

is open to flow) for each well is also determined. This means we have two addi-
tional variables for each well, and the number of decision variables is now 6Nw − 2 . 
It should be noted that the number of decision variables in WPO is still 11 + Nd . 
In addition to the base drilling cost per well, there is an additional within-reservoir 
drilling cost ($150,000 per model layer) and a perforation cost ($125,000 for each 
grid block in which the well is perforated). The minimum well-to-well distance 
(which also defines the initial pattern size) is set to 1640  ft. The WPO and com-
prehensive field development optimization runs are again terminated after 1200 and 
20,000 total simulations.

Figure 14 shows the evolution of NPV for the two-stage and aided single-stage 
comprehensive field development optimization methods. The two-stage approach 

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 13   Oil saturation maps (including final saturation) at different drilling stages for the best solution 
obtained using the two-stage approach for the 2D case. Red circles denote producers, blue circles denote 
injectors, and heavy circles indicate wells drilled in the current drilling stage. Numbers indicate the drill-
ing stage. (Color figure online)
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clearly outperforms the aided single-stage comprehensive field development pro-
cedure, consistent with our observations in the 2D case. In the second step of the 
two-stage method, and in the aided single-stage comprehensive field development 
optimization, there are a total of 112 decision variables (corresponding to Nw = 19 , 
obtained with WPO). The average NPV obtained after 20,000 simulations by the 
aided single-stage comprehensive field development procedure is found by the two-
stage approach after about 1800 simulations. In addition, as indicated by the red 
shaded region, the solutions obtained from the three runs of the aided single-stage 
comprehensive field development optimization are more variable in terms of NPV. 
This may be due to the challenges associated with optimizing this MINLP problem. 
Although the second step of the two-stage runs is terminated after 20,000 simula-
tions, the results are seen to plateau earlier. The use of a termination criterion based 
on, e.g., a required degree of improvement over a prescribed number of iterations, 
would enable these runs to terminate before 20,000 simulations, thus leading to 
computational savings.

Table 4 displays NPVs for the individual runs at different stages of the optimi-
zation. It is apparent that the WPO solutions after 1200 simulations correspond to 

Fig. 14   Evolution of NPV for the 3D Olympus (single-realization) case, for the two-stage procedure 
(WPO followed by comprehensive field development) and aided single-stage comprehensive field devel-
opment optimization. Shaded regions indicate the range of NPV over the three runs, and curves indicate 
the mean. (Color figure online)
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considerably higher NPVs than the aided single-stage comprehensive field devel-
opment optimization solutions after 3000 simulations. In the best two-stage run 
(run 2), the optimal solution found using WPO has an NPV of $1.113 billion. The 
second-stage optimization provides an NPV of $1.542  billion, which corresponds 
to a very substantial (38.5%) increase over the best WPO result. This best two-stage 
solution results in an NPV that is 15.1% higher than that from the best single-stage 
optimization run (NPV of $1.340 billion).

Figure 15 presents the well configurations for the best solutions obtained using 
WPO, two-stage optimization, and aided single-stage comprehensive field devel-
opment optimization. Areal displays for the latter two solutions appear in Fig. 16. 
The WPO arrangement in Fig.  15a corresponds to inverted five-spot patterns and 
involves a total of 19 wells (11 producers and eight injectors). The two-stage solu-
tion entails a development with a total of 13 wells (five injectors and eight produc-
ers), six wells fewer than the WPO solution. Aided single-stage comprehensive 
field development optimization also provides a solution with 13 wells, but in this 
case there are six injectors and seven producers. In the two-stage solution, six of 
the wells (three injectors and three producers) are completed in all layers. The areal 
plots in Fig.  16 illustrate the complex permeability ‘connectivity’ associated with 
this model. This connectivity is quite variable from layer to layer.

Results for field-wide cumulative oil and water production, and cumulative water 
injection, are shown in Fig.  17. The best solution obtained using the two-stage 
approach results in the most cumulative oil produced, along with more cumulative 
water produced and injected than either of the other solutions. The cost of this extra 
water is, however, more than compensated for by the additional oil recovered.

Finally, we present results for optimization over multiple realizations of the 3D 
Olympus model. Because computational cost scales with the number of realiza-
tions considered, we restrict ourselves here to Nr = 8 , though our procedures are 
applicable for larger values of Nr . The optimization problem in this case is dif-
ferent than that defined above for the single-realization case. Specifically, here 
we first apply comprehensive field development (single-stage) optimization, with 
the number of wells specified to be 15. In addition, in this multiple-realization 
optimization, we do not optimize drilling time, and instead treat all wells as being 
drilled at the start of the simulation. The simulation time frame is now 7200 days 
(as opposed to 6500 days in the single-realization case). In the first optimization 

Table 4   NPV (in billion USD) 
for two-stage and aided single-
stage comprehensive field 
development optimization for 
a single realization of the 3D 
Olympus model

Two-stage Comprehensive 
(aided)

Stage 1 Stage 2

Simulations 1200 18,800 3000 20,000
Run 1 1.081 1.511 0.773 1.222
Run 2 1.113 1.542 0.547 1.340
Run 3 1.059 1.516 0.655 1.200
Average NPV 1.084 1.523 0.658 1.254
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step, wells are assumed to be completed in all layers in all realizations. There are 
thus 30 well location variables and 15 well type variables in this optimization. 
The economic and simulation parameters are the same as those used previously.

The optimal solution obtained using the eight realizations, with the setup 
described above, includes eight production wells and seven injection wells. The 
optimal expected NPV, computed using Eq. 11, is $898.7 million. This value is of 
the same order but differs from the NPVs for the single-realization case. This is 
reasonable given the somewhat different problem specifications and the fact that 
NPV is now an average over eight realizations.

We now assess the impact of the realization-by-realization perforation deter-
mination. Two approaches are considered. In the first treatment we optimize the 
completion intervals across all realizations for all wells, but for each realization 
perforations are only introduced for production wells if the near-well permeabil-
ity (computed over the 3 × 3 region around the well-block) is greater than 10 md. 
Expected NPV is then computed using Eq. 12. In the second approach, all reali-
zations have the same (optimized) completion intervals, and all wells are perfo-
rated over the full completion interval. Expected NPV in this case is computed 
using Eq. 11.

Fig. 15   Best well configurations for WPO, two-stage and aided single-stage comprehensive field devel-
opment optimization procedures for a single realization of the 3D Olympus model. Red cylinders denote 
producers, and blue cylinders denote injectors. Note that, in addition to their areal locations, the comple-
tion intervals of the optimized wells also vary. (Color figure online)
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(a) (b)

(c) (d)

(e) (f)

Fig. 16   Areal views of best well configurations for two-stage and aided single-stage comprehensive 
field development optimization procedures for a single realization of the 3D Olympus model. Red cir-
cles denote producers, and blue circles denote injectors. Log-permeability scale and color bar shown in 
Fig. 5b. (Color figure online)
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Figure 18 displays the optimal set of perforated regions obtained using the reali-
zation-by-realization treatment. Results are shown for four of the eight realizations. 
The black cylinders depict the portions of the completion intervals that are not per-
forated. It is evident from the figures that the perforated regions for the producers 
differ from realization to realization. The expected NPV achieved using the real-
ization-by-realization treatment is $1.042 billion, while that obtained for the case 
in which the perforated regions are the same across models is $1.036 billion. We 
thus achieve a cost savings of $6 million in expected NPV using the realization-
by-realization treatment. In the optimal solution, a total of 96 grid blocks comprise 
the completion intervals for the eight producers. In the realization with the fewest 
perforations, 68 of these blocks are perforated, while in the realization with the most 
perforations, 84 of these blocks are perforated. The average over the eight realiza-
tions is 77 blocks perforated.

A portion of the $6 million increase in expected NPV derives from the direct sav-
ings in perforation costs, and a portion derives from the fact that the optimizer finds 
different completion intervals under the realization-by-realization treatment. We 

(c)

(a) (b)

Fig. 17   Field-wide cumulative oil production, water production and water injection for the best solutions 
obtained using WPO, two-stage, and aided single-stage comprehensive field development optimization 
approaches, for a single realization of the 3D Olympus model
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note finally that, although the improvement in expected NPV is fairly small in this 
case (0.6%), in large-scale field development, where hundreds of production wells 
are considered, this treatment could lead to more significant cost savings. Additional 
savings could also be achieved in thicker reservoirs (since perforation cost scales 
with length) or when the per-foot perforation cost is higher.

5 � Concluding remarks

In this work, we introduced a two-stage strategy for large-scale field development 
optimization, where we seek to determine the number of wells, their locations, types, 
drilling sequence and completion intervals (for multilayer models), such that an 
objective function (NPV) is maximized. In the first stage, an extended version of the 
well-pattern optimization procedure introduced by Onwunalu and Durlofsky (2011) 
is applied. Our implementation includes a new pattern-based drilling sequence 
optimization treatment and modifications that reduce the number of optimization 
variables. In the well-pattern optimization stage, the number of decision variables 

Fig. 18   Optimal perforated regions obtained using the realization-by-realization treatment for four of the 
eight Olympus realizations considered. Red, blue and black cylinders denote producers, injectors, and 
non-perforated regions, respectively. (Color figure online)
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is relatively small and does not depend directly on the maximum number of wells 
considered. The solutions obtained in this stage are used to initialize the compre-
hensive field development optimization in the second stage. In this stage, decision 
variables are associated with individual wells, and pattern geometry is not enforced. 
A new realization-by-realization well perforation treatment was also developed for 
cases where multiple (multilayer) geomodels are used to represent geological uncer-
tainty. This treatment, in which wells are only perforated in blocks with near-well 
permeability above a threshold value, allows for the effective incorporation of data 
available during drilling. A hybrid particle swarm optimization-mesh adaptive direct 
search (PSO-MADS) algorithm, introduced by Isebor et al. (2014a, b), was used for 
all of the optimizations in this study.

Two example cases, involving a 2D Gaussian permeability model and the 3D 
Olympus model (Fonseca et al. 2018), were used to investigate the performance of 
the two-stage optimization procedure. Optimization results clearly demonstrated the 
advantages of the two-stage approach over the single-stage optimization method. 
Specifically, for the 2D case, the best two-stage solution provided an NPV that was 
17.8% higher than that obtained using the single-stage optimization procedure. The 
average NPV obtained by the single-stage optimization after 20,000 simulations was 
achieved by the two-stage approach after only about 2500 simulations. For the 3D 
case, the best two-stage solution resulted in an NPV 15.1% higher than that from 
the best single-stage optimization. In this case, the average NPV found after 20,000 
simulations by the single-stage procedure was achieved after about 1800 simulations 
by the two-stage approach. The relative advantage of the two-stage optimization 
procedure over the single-stage approach can be expected to vary from case to case, 
and it will be important to assess performance for practical cases. The realization-
by-realization treatment was shown to provide benefit in an optimization involving 
eight realizations of the 3D Olympus model.

In future work, it will be of interest to evaluate the two-stage optimization 
approach using different optimization procedures, including hybrid algorithms, with 
a range of termination and switching criteria. The joint optimization of well loca-
tions, types, drilling sequence and well operational settings should be considered. 
This will result in additional decision variables, so it will be useful to introduce 
dimension reduction techniques into the optimization. The inclusion of faster (surro-
gate) simulation models should additionally be considered. These capabilities could 
then be incorporated into a closed-loop field development framework (Shirangi and 
Durlofsky 2015), which would enable the full linkage of field development optimi-
zation and history matching procedures.

The methods introduced in this work should also be extended for use, and tested, 
in a range of practical problems. These could include both primary depletion prob-
lems involving new fields, and water or gas injection for new or mature fields. For 
primary depletion systems, the well patterns (viewed as well templates in this case) 
can be designed to include only sets of production wells. With parametric repre-
sentations for these templates, our WPO procedure could be applied for, e.g., off-
shore systems with deviated or horizontal wells. The realization-by-realization 
well completion procedure could be extended for application to such systems. The 
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existing methodology should also be tested for, e.g., CO2 enhanced oil recovery, 
either involving patterns or general well configurations.
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