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Abstract
The application ofmathematical optimizationmethods for water supply system design
and operation provides the capacity to increase the energy efficiency and to lower the
investment costs considerably. We present a system approach for the optimal design
and operation of pumping systems in real-world high-rise buildings that is based on
the usage of mixed-integer nonlinear and mixed-integer linear modeling approaches.
In addition, we consider different booster station topologies, i.e. parallel and series-
parallel central booster stations as well as decentral booster stations. To confirm the
validity of the underlying optimization models with real-world system behavior, we
additionally present validation results based on experiments conducted on a modu-
larly constructed pumping test rig. Within the models we consider layout and control
decisions for different load scenarios, leading to a Deterministic Equivalent of a two-
stage stochastic optimization program. We use a piecewise linearization as well as
a piecewise relaxation of the pumps’ characteristics to derive mixed-integer linear
models. Besides the solution with off-the-shelf solvers, we present a problem specific
exact solving algorithm to improve the computation time. Focusing on the efficient
exploration of the solution space, we divide the problem into smaller subproblems,
which partly can be cut off in the solution process. Furthermore, we discuss the perfor-
mance and applicability of the solution approaches for real buildings and analyze the
technical aspects of the solutions from an engineer’s point of view, keeping in mind
the economically important trade-off between investment and operation costs.
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1 Introduction

More than half of the world’s population (55%) lived in urban areas in 2018, as shown
in UN (2018). Based on this data published by the United Nations, it is estimated that
2.5 billion people will be added to the urban population by 2050 leading to an increase
by more than half of the number of people living in urban areas today. This continuous
trend towards urbanization will lead to an increasing number of mega-cities, cities
with more than 10 million inhabitants.

As the space for living in cities is limited, one effective way to cope with the steady
urbanization and to create living space are high-rise buildings. In those buildings
distributed pressure boosting pumping stations, also called booster stations, provide
water for every floor, especially in higher pressure zones. Consequently, their needwill
increase proportionally with the number of high-rise buildings. Already today there
is a rapid growth of completed buildings of 200 meters or greater height, CTBUH
(2018).

Water supply systems are a key component of any urban infrastructure, cf. Coelho
and Andrade-Campos (2014), and urbanization will pose increasing challenges for
these infrastructures in the future: Whilst a secure supply of water for the growing
number of citizens is to be ensured, energy consumption for water supply must be
reduced on the way to a more sustainable future. Thus, efficiency optimization of
water supply systems has been in the focus of ongoing research, for a review cf. e.g.
Coelho and Andrade-Campos (2014).

While existing research has so far tended to focus on the energy consumption of
larger centralized water infrastructures, in this contribution, we want to investigate
the energy consumption of the mentioned booster stations for buildings. Especially in
tall buildings, booster stations have a considerable energy consumption, in particular
if they are wrongly dimensioned and/or operated. Therefore, the potential for energy
savings through the application of several pressure zones or a decentralized pump
placement and an optimal selection of pump types is high, cf. e.g. Altherr et al. (2019).

In order to unlock this optimizationpotential, a large number of pipenetwork topolo-
gies and pump configurations must be considered in the planning process. However,
with the increasing number of degrees of freedom, especially in tall buildings, it is a
difficult challenge to investigate all possible system variants, as the number of possible
design choices can be overwhelming. Moreover, one not only has to check whether a
promising design is able to fulfill the different load scenarios occurring in the building,
but also for an economic solution by balancing investment and operating costs against
each other. To achieve these goals, we present an optimization-aided system design
approach based on a problem-specific solving algorithm. In order to ensure that the
underlying optimization models represent the system under consideration with suf-
ficient accuracy, we also present an experimental validation. To model the pressure
losses due to friction we use own measurements as well as literature data and compare
the optimization results of both approaches.
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In the following Sect. 2, we introduce relevant literature for the optimization. After-
wards, we present the technical application in detail and show different formulations
of the optimization model as well as a problem specific solving algorithm. We then
discuss the performance of different solving approaches as well as technical aspects of
the solutions and close with an experimental validation. Finally we draw a conclusion
and give an outlook for future work.

2 Related work

In this article we present a holistic approach to the optimal synthesis of technical
systems, which we illustrate by means of a pumping system for water supply. In the
context of this research focus, the state-of-the-art is presented in two different areas:

(i) Methods used in engineering for the design and efficiency optimization of pumping
systems, in particular pressure boosting systems in buildings.

(ii) Application of mathematical optimization methods to general technical systems,
in particular methods for two-stage optimization problems.

In the next two subsections we will give a short overview of relevant literature in
these two areas.

2.1 Design and efficiency optimization of pumping systems

When optimizing the efficiency of a pumping system, a first step is to assemble the
system from efficient components. For the transport of drinking water, booster stations
consisting of centrifugal pumps are commonly used. Therefore, we focus on this pump
type within this literature overview.

The development and hydraulic optimization of centrifugal pumps is already at a
very high level and multiple standard works are focusing on centrifugal pump design
as well as performance, cf. e.g. Japikse and Marscher (1997), Brennen (2011), or
Gülich (2010). In recent decades, also through the use of computer-aided methods
such as Computational Fluid Dynamics (CFD), cf. e.g. Garg (1998), the efficiency of
centrifugal pumps, in particular at their design point, has been continuously improved.

In real life applications, however, it can be seen that centrifugal pumps are predom-
inantly not operated at their design point, but in the partial load range for a large part of
the time, cf. Hirschberg (2014). In this case, the excess energy is either dissipated via
throttling valves, or—if variable speed pumps, so called RPM-regulated pumps, are
employed—they are operated at a lower rotational speed than their nominal rotational
speed. Both leads to an operation at lower efficiency, often far away from their best
efficiency point. Therefore, when classifying and optimizing pump performance, a
suitable approach for assessing efficiency in practical usage is crucial.

The product approach, which is part of an european standard for energy-efficiency
evaluation of water pumps, c.f. EN 16480:2016 (2016), is a first step in this direction.
This approach no longer considers merely the pump as a component, but the pump and
electric motor as part of a system. The efficiency of this system is assessed according
to the Minimum Energy Efficiency Index (MEI) which rates the pump’s efficiency not
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only at its design point, but also at partial load and overload. Therefore, the so-called
“house of efficiency” scheme is applied, which sets efficiency criteria for 75%, 100%
and 110% of the volume flow at the design point.

While this is a first step towards the right direction, when pumps are used in a real
building, not only their volume flow varies, but so does the required pressure increase
in relation to the demanded flow. In addition, when assessing overall energy efficiency,
it is important to take the time slice of the respective volume flow and its corresponding
pressure requirements into account. For this reason, the Extended Product Approach,
cf. Stoffel (2015), was developed within the scope of energy efficiency guidelines of
the European Union. It considers a load profile which links volume flow and pressure
demands, as well as corresponding time profiles. The energy consumption of the
ExtendedProduct (pump and electricmotor) considering these load profiles then yields
the Energy Efficiency Index (EEI), cf. Lang et al. (2013). In this work, we present a
method which considers typical load profiles within buildings and is in accordance
with the EEI.

When building pumping systems, several technical aspects have to be considered.
The standards DIN 1988-500 (2011) and DIN 1988-300 (2012) provide codes of
practice for drinking water installations. While DIN 1988-500 (2011) focuses on the
dimensioning of pressure boosting systems with RPM-regulated pumps, DIN 1988-
300 (2012) describes the dimensioning of the pipe network. Particularly, the selection
of suitable pipe diameters in regard to restrictions such as a peak load volume flow
and a maximal water velocity for reasons of noise is outlined. In addition to a central
pump configuration, the standard DIN 1988-500 (2011) also considers some decen-
tralized pump configurations due to the specification of different pressure zones within
the building. E.g., lower pressure zones of the building can be supplied directly by
the public water mains and solely higher pressure zones are supplied via a pressure
boosting system. Furthermore, the installation of several booster stations is described
so that each pressure zone is supplied by its own pumping system. However, more
sophisticated decentralized configurations, which could be automatically assessed and
evaluated by our approach, are not considered.

Whereas efficient components are certainly a basic prerequisite for an efficient
overall system, they are not yet a guarantee for this. With a system-wide assessment
in mind, the scope of the international standard “Pump system energy assessment” is
to set “the requirements for conducting and reporting the results of a pumping system
energy assessment [...] that considers the entire pumping system, from energy inputs to
the work performed as the result of these inputs”, ISO/ASME 14414 (2019). However,
the standard neither specifies how to design a pumping system nor how to validate the
energy savings that would result from implementing recommendations based on this
assessment. That are two aspects that we cover in this work.

In general, there are several system-widemeasures to increase the energy efficiency
of pumping systems:

– The optimal selection of pumps, i.e. usage of variable-speed pumps, cf. Ferreira
et al. (2010), and avoiding over-dimensioning, cf. e.g. Fisher (2001), Tindall and
Pendle (2015), Weber and Lorenz (2017), Weber and Lorenz (2018).
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– The allocation of several pressure zoneswithin the building and the usage of decen-
tralized pump layouts, cf. e.g. Norgaard and Nielsen (2010); Leise and Altherr
(2018).

– The optimization of the pumps’ operation, cf. e.g. Pedersen andYang (2008), Groß
et al. (2017), and Nowak et al. (2018).

The approach presented in this contribution allows to cover all three of these aspects,
since not only the optimal pumping system design, but also its optimal operation can
be considered.

While in this work we particularly focus on the optimization of the efficiency and
investment costs, other possible objectives are shown in the literature. One example is
the optimization of resilient water supply networks as shown by Herrera et al. (2016),
Hartisch et al. (2018), and Altherr et al. (2019).

2.2 Mathematical aspects of two-stage optimization problems in engineering

Besides literature from the engineering domain covering the technical aspects of opti-
mizing pumping systems, also previous works regarding the mathematical aspects are
relevant.

When designing an economically optimal pumping system, the overall goal often
is to minimize the sum of investment costs and energy costs for the expected life cycle.
Since the loadwithin residential buildings varies, cf. Sect. 2.1, its operation at different
load points has to be considered to assess the energy costs of the pumping system.

The correspondingmathematical optimization problemconsists of two stages: First,
finding a low-priced investment decision, i.e. a pump and pipe configuration. Second,
operating a subset of the chosen pumps for each quasi-stationary demand scenario of
the given load profile, such that the system satisfies this demand and at the same time
the efficiency is maximized.

In this case, the considered load profile can be seen as a discrete distribution of
uncertain load parameters, with the time portion of each load scenario corresponding to
its probability of occurrence. The optimization program, which minimizes investment
costs as well as expected value of operation costs, can then be seen as the Deterministic
Equivalent of a general two-stage stochastic program with recourse, cf. e.g. Wets
(1974).

As many optimization problems in the area of engineering design are subject to
uncertain parameters, e.g. uncertain material characteristics or load scenarios, two-
stage stochastic programs have been frequently studied in this context, and a good
overview can be found in Popela (2010) and Popela et al. (2014). The life cycle of
products and systems in engineering includes the two phases of planning (first stage)
and operation (second stage). In two-stage stochastic optimization problems the oper-
ation is already anticipated in the planning phase, which leads to better investment
decisions. The operation itself is then typically ensured by closed- or open-loop con-
trollers.

An important aspect for the difficulty of solving these two-stage optimization prob-
lems to global optimality is whether integer variables are (1) present in the first stage
solely, or (2) also present in the second stage. Regarding design and operation opti-
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mization of technical systems, integer variables in the first stage, and more precisely
binary variables, are often used to model purchase decisions. Moreover, in this work,
binary variables in the second stage are used to model the activation or deactivation
of active components, i.e. an on/off-switch, leading to problems of case (2).

Theoretical aspects of these problems, also called complete mixed-integer recourse
problems, have e.g. been investigated by Schultz (1992), and sophisticated solution
approaches have been proposed, cf. e.g. Carøe and Tind (1998). Given the formulation
as Deterministic Equivalent Program, standard solution approaches based on Branch
& Bound with LP relaxation may be applied. Yet these might suffer from high com-
putation times, especially if multiple (load) scenarios are considered in the second
stage.

3 Technical application

As mentioned in the previous sections, we generate the Deterministic Equivalent
Programs of two-stage stochastic optimization models to compute energy-efficient
centralized and decentralized booster stations in high-rise buildings and validate these
models on a test rig. The physical properties of these systems and topology decisions
are modeled within the constraints of the optimization programs. Within this contri-
bution, the fresh cold water supply is considered solely, while waste water, hot water,
and water for firefighting are not considered. Thereby, the objective is to minimize
the simplified life-time cost, which consists of investment and energy costs within the
lifetime. These two parts represent the economically most important goals, cf. Tolva-
nen (2007), when designing pumping systems. When modeling these systems, two
aspects are of importance. First, reasonable computation times of model instances are
required. Second, the model’s level of detail has to represent the real system with an
acceptable accuracy to allow for the transfer of the optimization results. The computed
optimumwithin the model instance, should represent the true optimum of the underly-
ing technical system. Usually, a trade-off between these two goals is necessary, as the
former tends to lead to models that are as simple as possible, while the latter demands
for models that are highly accurate, but computationally not tractable. To achieve a
model that is as simple as possible and at the same time as accurate as needed, we
conduct an experimental validation step based on a test rig that represents a scaled
building with five pressure zones.

We present all relevant basics of the pump and booster station modeling, the test
rig, the system modeling and the preselection of pumps in the following subsections.

3.1 Pumpmodeling

The most important components to fulfill the water supply in high-rise buildings are
the pumps. All pumps are modeled with polynomial approximations for the pressure–
volume flow characteristic, as well as the power–volume flow characteristic. This
approach is based on Ulanicki et al. (2008). We model the pressure increase Δp =
f (q, n) with f : R+

0 × R
+
0 → R

+
0 by using a quadratic approximation relating the
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Fig. 1 Characteristics for an example pump based on the used pump model. These characteristics are
usually limited in each domain according to specific pump requirements. The different curves describe
several different rotational speeds

pressure head Δp, the volume flow q ∈ R
+
0 and the normalized rotational speed

n ∈ [N , N ], as given by

Δp =
2∑

m=0

αm q 2−m nm, (1)

where the parameters αm and the lower bound of the normalized rotational speed N
depend on the pump type. The rotational speed is normalized by using its maximum
value. Therefore, we get an upper bound N = 1. For better readability, we refer to
the normalized rotational speed in the following as rotational speed or speed, only.
The power po = g(q, n) with g : R+

0 × R
+
0 → R

+
0 is modeled by using a cubic

approximation,

po =
3∑

m=0

βm q 3−m nm . (2)

The parameters αm and βm are derived from manufacturer provided component char-
acteristics for each pump type. Exemplified characteristic diagrams for a pump are
shown in Fig. 1.

The shown characteristics are often limited bymaximumpower aswell asminimum
and maximum volume flow requirements for each pump. These limits are added in the
underlying optimization as additional constraints to model a realistic pump behavior.
For simplicity they are not shown in Fig. 1.

3.2 Booster stationmodeling

The function of a booster station is to provide sufficient pressure to overcome the
geodetic height of the floor to be provided with water as well as the friction in the pipes
feeding the respective floor. We distinguish three different booster station topologies,

123



650 T. M. Müller et al.

Fig. 2 Exemplified system
design of the underlying
optimization program

which differ in the alignment of the considered pumps. Today, pumps are commonly
aligned in parallel at the lowest pressure zone of the building, as the product range
of various manufacturers (Wilo 2020; KSB SE Co KGaA 2020; Grundfos Pumps
Ltd 2016) and the discussion in (Gülich 2010, pp. 666–669) shows. This leads to a
central, parallel booster station design providing the pressure and volume flow for the
whole building. Varying from this approach, also the serial arrangement of pumps in a
central booster station is possible, leading to higher degrees of freedom in the design
process and therefore allowing for higher energy efficiency of the booster station. For
the centralized topology the building’s demand can be modeled as solely one sink
with one available water source. Additionally to these centralized system topologies,
a decentralized booster station topology is possible. In this approach, pumps can be
positioned at any pressure zone of the building and therefore amore accurate modeling
of the volume flow demand, i.e. the flow demand per pressure zone, is necessary. In the
following, we comprise floors of similar height into individual pressure zones. Each
pressure zone is modeled as an individual sink which has a different pressure demand,
depending on the height of the floors. The decentralized topology allows for an even
higher degree of freedom of pump arrangement and a reduction of the throttle losses,
facilitating the improvement of the overall efficiency even further.

The system design approach with an exemplified booster station is shown in Fig. 2.
In this exemplary system three pumps are used. The first pump is used in series with
the remaining two pumps. The second and third pump supply different pressure zones
in the building individually.

3.3 Test rig for validation

As indicated before, an experimental validation of the optimization results is crucial to
guarantee the technical functionality. A validation using real buildings is not possible
for reasons of high effort. In addition, novel concepts, i.e. the decentralized booster
station design, shall be investigated, which cannot be realized in already existing
buildings.
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Fig. 3 Sketch (left) and photo (right) of the modular test rig with a central booster station design

For this reason, a down-scaled, modular test rig has been set up, cf. Figure 3 and
Müller et al. (2019b). The down-scaled system’s booster station has the same charac-
teristics as those of high-rise buildings. The maximum geodetic height difference is
5m divided into five different pressure zones, which can be supplied individually. The
water is pumped from a tank with constant pressure to the five pressure zones by the
booster station.As in real buildings, thewater flows in at a constant supply pressure and
flows out in an open drain pipe at ambient pressure (open system). The water returns to
the tank to keep the water level and therefore the supply pressure constant. The test rig
is equipped with sensors for measuring the volume flow in each pressure zone as well
as the pressure head and power consumption of each pump. It is possible to control the
speed of the pumps and the valve position on each pressure zone and thus to control
the volume flow on each pressure zone. Overall, a set of thirteen pumps, consisting of
six different types, is available to build and test different booster station designs.

The pumps are centrifugal circulator pumps for heating systems with an integrated
frequency converter (FC) and therefore speed controllable. The sizes are chosen to
fit the needs for the down-scaled booster system, even though the ratio of pressure
head to volume flow is lower than in real-world booster station pumps. The pumps
can be connected in any way and up to six pumps can be operated simultaneously as a
booster station for the test rig. Compared to real pressure booster stations, the friction
caused by installation fittings of the pumps (e.g. for pressure measurement) on the test
rig is quite high. Therefore, those pressure losses are taken into account in the loss
coefficient ζinst.
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Table 1 Characteristics of the chosen real-world hotel buildings and the down-scaled test rig

unit building 1 building 2 building 3 test rig

geodetic height H m 100 80 40 5

max. volume flow demand Q m3h−1 72 82 18 4.28

floors – 28 23 10 –

pressure zones – 5 5 5 5

3.4 Systemmodeling and load scenarios

We consider three different real-world high-rise hotel buildings in addition to the pre-
viously described test rig as examples for the presented system optimization approach.
We consider each building’s geodetic height, base area and type to estimate the vol-
ume flow demand and the respective pressure increase. The estimation of volume flow
demands is highly uncertain if no consumption patterns are known previously to the
optimization. An overview of water demand for hotel buildings is given by Gössling
et al. (2012). Besides these different measurements, Hirschberg (2014) also presented
an approximation method to estimate the volume flow demand in buildings of differ-
ent types. Another possibility to approximate the volume flow in buildings is given
by DIN 1988-300 (2012). It shows a computational approach to estimate the volume
flow demand in buildings based on a standardized estimation procedure.

We estimated the volume flow making use of the estimation method shown by
Hirschberg (2014) for building 1 and 2. The volume flow demand in building 3, as
shown in Table 1, is based on real consumption data in this building. In the following,
the different buildings are referred to as B1, B2 and B3, respectively. We assume that
all buildings in Table 1 are divided into 5 pressure zones similarly to the test rig.

The demand of the test rig system is derived by scaling the demands of real buildings
according to the geodetic height and the friction losses of the test rig.

The maximum load scenario—given by the maximum volume flow demand Q
and maximum pressure head ps—allows to lay out the booster station for the peak
load. This load scenario occurs only for a fraction of the operation time. To design
the booster station more realistically, we also consider the events of partial load. The
volume flow demand in partial load is derived according to Hirschberg (2014) and all
scenarios are shown in Fig. 4.

The necessary pressure at the sink of a central booster station is calculated using
the geodetic height of the building H , the minimum flow pressure pflow = 1 bar,
the supply pressure psup = 3 bar (i.e. provided by the connection to the regional
water supply system) and the friction, which depends quadratically on the flow rate.
According to Hirschberg (2014), the pressure loss due to friction in the maximum
load case is approximately σ = 52% of both the geodetic height and minimum flow
pressure. This leads to:

123



Optimization and validation of pumping systems 653

Fig. 4 Load scenarios based on
Hirschberg (2014) and their
according time shares

ps = �gH + pflow + 1

2
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(
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)2

− psup

= (�gH + pflow)

(
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(
Qs
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)2
)

− psup ∀s ∈ S.

(3)

For the decentralized system design, we derive individual load scenarios for each
pressure zone,which sumup to the load scenarios in Fig. 4. The pressure at the different
sinks is derived by scaling the pressure for the central booster station according to the
geodetic height and the volume flow of the individual pressure zones.

3.5 Preselection of pumps

In this work, we apply a model series of 200 different market-available pumps which
were explicitly designed for the water supply of buildings. The combinatorial pos-
sibilities resulting from this wide range of variants is challenging within reasonable
computation time. In addition, most pumps are not suitable for each specific building.
Therefore,we aim to reduce the number of considered pumps based ondomain-specific
knowledge. To the best of the authors knowledge there exists no general purpose
method to select multiple appropriate pumps for consideration within an optimization
program. Sets of pumps for the respective buildings are currently only selected based
on expert knowledge as for example shown by Larralde and Ocampo (2010a) and
Larralde (2010). Therefore, a crucial step in the optimal design of booster stations
for high-rise buildings is the selection of an appropriate set of available pumps, as
shown by Leise and Altherr (2018). For this, we implemented a heuristic, as shown in
Algorithm 1, for the pump selection, which is based on a two-step process.

In the first step of the heuristic selection of pumps we define additional partial
load scenarios that should be met by individual pumps selected in the following step.
These additional scenarios are derived from the original scenarios (represented by
black square markers in Fig. 5) by taking advantage of the generally valid relationship
of pressure and volume flow for in series and parallel connected pumps:

123



654 T. M. Müller et al.

Algorithm 1: Heuristic Selection of Pumps
input : original load scenarios in Δp–q domain S

set of all available pumps P total

distance parameter dmax

set of desired fractional positions F
output: selected pumps P
Z ← ∅ // selected fractional loads in Δp-q domain
P ← ∅ // selected pumps
// step 1: select fractional loads
for i ← 1 to |S| do

generate fractional loads for parallel pump usage based on F and add them to Z
for i ← 1 to |Z| do

generate fractional loads for serial pump usage based on F and add them to Z
sort Z by power
while true do

compute distance matrix di, j between every point z in Z
if at least one di, j < dmax ∀ zi , z j ∈ Z without i = j then

remove point with di, j < dmax and lowest possible power from Z
else

quit loop
// step 2: get best suitable pumps for Z
for i ← 1 to |Z| do

for j ← 1 to |P total| do
select best suitable pump p j ∈ P total for zi ∈ Z
save best suitable pump in P if not already selected

On the one hand, for in series connected pump systems with N pumps the volume
flow in each pump is equivalent to the total system volume flow, while the pressure
in each pump is given by Δp/N (if we assume that the pressure increase is equal in
each pump).

On the other hand, a parallel usage of N pumps of the same type results in total in
the same pressure increase for each pump but the volume flow for each pump reduces
to q/N if all parallel pumps are operated with the same speed.

These two effects for in series and parallel system design result in a reduction of
the original load scenarios to fractions of the original load scenarios in q and/or Δp
direction.

In the selection heuristic we start by generating all fractional loads that can be
derived for parallel combinations with up to 6 equivalent pumps based on the original
load scenarios. Afterwards we then derive all loads that are based on in series connec-
tions of up to 6 equivalent pumps for the originally given loads and newly computed
ones.

For each building we want to consider a predefined number of pumps (in our case
15 in total). As the number of fractional loads in the first step exceeds this predefined
number and also results in a clustering of fractional load scenarios with small power,
we use a set distance dmax in the Δp–q domain to select only loads which have a
predefined distance from each other. We then iteratively delete load scenarios with a
lower hydraulic power demandwithin the range of the set distance.With this reduction
step, we assure that every deleted load scenario point remains feasible in the solution,
as we could use a pump with a higher hydraulic power and a frequency converter to
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Fig. 5 Characteristic diagrams of all used pumps at their maximum rotational speed for a building B1 of
100 m height, b building B2 of 80 m height, c building B3 of 40 m height, and d the test rig . The considered
scenarios are shown as black squares. The scaled points to select pumps in Algorithm 1 are shown as gray
circles for the three buildings

reduce the speed according to the desired fractional demand. Additionally, it would
be possible in a real building to throttle the flow to achieve the desired partial load
scenario. This simple procedure ensures to derive the predefined number of pumps as
well as a great coverage of the overall domain.

In the second step of the heuristic selection of pumps we select an appropriate pump
for each of the remaining load scenarios in the Δp–q domain which are given by gray
circles and black squares in Fig. 5.Apump is selected if it can fulfill the desired demand
at one fractional load and has the lowest electric power of all considered pumps at
full speed. In this manner we derive a final pump catalog that consists of a predefined
number of pumps (in our case 15), which are suitable to supply each original load
scenario by a single pump or a combination of in series/parallel connected pumps.
Additionally, each selected pump has the lowest power demand to supply the partial
load it was selected for. By implementing and applying this heuristic, we remove all
pumps that are not suitable and all suitable pumps with a higher power demand for
the supply of a respective building. In the following, we consider solely a set number
of preselected pumps which specifically supply a certain building efficiently.
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4 Optimizationmodel

This section deals with the mathematical formulation of the previously introduced
technical designproblem.The technical specifications aremodeled in a basic stochastic
optimization model (Sect. 4.1).

We reduce the two-stage stochastic problem to its Deterministic Equivalent Pro-
gram by using multiple load scenarios. In our case, the first stage variables represent
investment and design decisions while second stage variables represent control deci-
sions. Within this scenario based optimization approach binary variables are present
in both stages. Even in the second stage as the model takes into account that not all
pumps are always switched on to meet the demand of the different load scenarios. In
contrast, some pumps may also be switched off and bypassed for efficiency reasons,
especially in load cases with lower volume flow requirements.

Since pumps have nonlinear characteristics, the mixed-integer nonlinear program
(MINLP) pumpmodel (Sect. 4.2) as well as two linear pumpmodels, allowing the for-
mulation of a mixed-integer linear program (MILP), are presented. In a first approach,
a piecewise linearized pump model (Sect. 4.3) is derived and in a second approach, a
piecewise linear relaxed pump model (Sect. 4.4) is established.

4.1 Basic optimizationmodel

All derived optimization models in this contribution have a common mixed-integer
linear foundation, which we present in this section. The complete system design with
all possibilities is modeled as a graph G = (V, E), in which the edges E model the
pumps as well as the pipes. The junctions of the booster station are modeled as vertices
V . The basic model’s variables, which are indicated by lower case letters, as well as
sets and parameters, indicated by upper case and Greek letters, are shown in Table 2.

The shared objective of all presented optimization models is the maximization of
the net present value, cf. Meck et al. (2019). This results in a minimization of lifetime
cost, which are approximated considering investment costs for pumps and frequency
converters as well as discounted energy costs. The objective is shown in Obj. (5a). We
use the annuity-present value factor APF to discount all costs to the present day.

We model an upper bound of pumps, Constr. (5b), to solely select a suitable subset
of all possible pumps in P in the final solution, i.e. maximum N buy pumps may be
bought. The necessary precondition to use a pump is that it was bought, Constr. (5c).
Purchased pumps should be used only in their physical domain. Therefore, we limit the
pump speed, power and volume flow with Constr. (5d) and (5e). Constr. (5f) models
the volume flow conservation in the network, while Constr. (5g) models upper bounds
for the volume flow in each pipe.We demand the volume flow in the sinks to be exactly
the predefined volume flow for each scenario, as shown in Fig. 4 with Constr. (5h).
It is imperative to choose at least one pump to connect the source with the sinks,
Constr. (5i) and (5j). Constr. (5k)–(5m) prevent undesired topologies, as for example
loops. The pressure at the inlet of a pump is set to the pressure at the source Psource

s
in Constr. (5n) if a pump is connected to the source. The pressure increase from the
inlet to the outlet of a pump is modeled by Constr. (5o). The pressure at the inlet and
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Table 2 Decision variables, sets and parameters

Variable Domain Description

Δpi,s ; qi,s ; ni,s R
+
0 Pressure increase, volume flow and rotational speed of

pump i ∈ P in scenario s ∈ S

po
pump
i,s ; poFCi,s ; poi,s R

+
0 Power consumption of pump i ∈ P , the associated

frequency converter and the sum of both in scenario s ∈ S

pini,s ; p
out
i,s R

+
0 Pressure at inlet and outlet of pump i ∈ P , s ∈ S

q
pipe
i, j,s R

+
0 Volume flow between outlet of pump i ∈ P and inlet of

pump j ∈ P , s ∈ S
qsourcei,s R

+
0 Volume flow between source and inlet of pump i ∈ P , s ∈ S

qsinki, f ,s R
+
0 Volume flow between outlet of pump i ∈ P and sink

f ∈ F , s ∈ S
Indicator for connection between:

ti, j {0, 1} Outlet of pump i and inlet of pump j ,

tsourcei {0, 1} Source and inlet of pump i ,

tsinki, f {0, 1} Outlet of pump i and sink f ∈ F
xi,s {0, 1} Activation of pump i in scenario s ∈ S

yi ; y
FC
i {0, 1} Investment decision for pump i ∈ P and associated

frequency converter

Set Description

P Set of available pumps

S Set of demand scenarios with |S| = 5

F Set of sinks, which corresponds to individually supplied
pressure zones. For central systems applies |F | = 1, for
decentral systems |F | = 5

Parameter Range Description

APF R
+
0 Annuity-present value factor

C
pump
invest,i R

+
0 Investment costs of pump i ∈ P

CFC
invest,i R

+
0 Investment costs of frequency converter for pump i ∈ P

Celect R
+
0 Electricity price (0.3 e/kWh)

Ws [0, 1] Time share of scenario s ∈ S.
Ton R

+
0 Total runtime per year (0.3 × 365d × 24h)

Nbuy
N Maximum number of pumps that can be purchased.

ΔPi ; P; Q;Poi ; Poi ; Ni , Ni R
+
0 Upper or lower bounds for the operating parameter of

pump i , i.e., pressure increase, pressure, volume flow,
power, speed

Psource
s R

+
0 Pressure at the source

Psink
f ,s ; Qbound

f ,s R
+
0 Pressure and volume flow demand at sink f ∈ F in

scenario s ∈ S

Po
hydr
s R

+
0 Required hydraulic power s ∈ S

123



658 T. M. Müller et al.

Table 2 continued

Parameter Range Description

αi,m R
+
0 Pressure-volume flow regression coefficients for pump

i ∈ P with m ∈ {0, 1, 2}
βi,m R

+
0 Power-volume flow regression coefficients for pump i ∈ P

with m ∈ {0, 1, 2, 3}
ζ inst. R

+
0 Loss coefficient for the installation fittings of the pumps

η
pump
best R

+
0 Best efficiency of any pump in set P

ηFCi R
+
0 Efficiency of frequency converter of pump i ∈ P

outlet of an unused pump is set to zero, Constr. (5p). The pressure of a pump’s outlet
should fulfill the predefined pressure requirements at the sink if it is connected to the
sink, Constr. (5q). The pressure propagation between connected pumps is modeled by
Constr. (5r). If a frequency converter for a certain pump is not purchased (yFCi = 0),
the speed of the pump has to be set to the nominal speed (n = 1) in case of activity,
Constr. (5s). If the pump is turned off, or a frequency converter is purchased, this
constraint has to be deactivated, Constr. (5s). If a frequency converter is bought, the
pump is speed controllable, but a part of the transmitted electrical power is dissipated,
Constr. (5t). In addition, the electrical power for the pump motor is added to the total
power, Constr. (5u). Moreover, we can say that the electrical power of the system
has to be higher than the hydraulic power divided by the best efficiency of the best
pump, Constr. (5v). This provides a lower bound for the power consumption, which
significantly speeds up the optimization process, as shown by Müller et al. (2019a).

In the subsequently introduced models, we allow for the option to restrict the usage
of in series connected pumps, as pumps connected in parallel correspond to the current
standard installation procedure, cf. Sect. 3.2. A solely parallel connection can be
achieved by adding the following constraint to the basic model (5):

ti, j = 0 ∀ i, j ∈ P. (4)

The objective as well as all so far presented constraints, Model (5) and Constr. (4),
depend linearly on the decision variables. The accordingmixed-integer linear program
describes the generic selection and usage of pumps to supply multiple sinks with
relevant connected pumps to derive a suitable booster station. Nevertheless, this model
does not contain the explicit modeling of the used pumps, as shown in Eq. (1) and
Eq. (2). Therefore, we present different methods to model these nonlinear relations of
type Δp = f (q, n) and po = g(q, n) in the following subsections.

min TonAPF Celect

∑

s∈S
Ws

∑

i∈P
poi,s +

∑

i∈P
Cpump
invest,i yi +

∑

i∈P
CFC
invest,i y

FC
i (5a)

subject to
∑

i∈P
yi ≤ N buy (5b)
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xi,s ≤ yi ∀i ∈ P, s ∈ S (5c)
ni,s ≥ Ni xi,s ∀i ∈ P, s ∈ S (5d)

Δpi,s ≤ Pxi,s , qi,s ≤ Qxi,s , ni,s ≤ Ni xi,s ,

poi,s ≤ Poi , popump
i,s ≤ Poi xi,s ∀i ∈ P, s ∈ S (5e)

qi,s =
∑

j∈P
qpipej,i,s + qsourcei,s =

∑

j∈P
qpipei, j,s +

∑

f ∈F
qsinki, f ,s ∀i ∈ P, s ∈ S (5f)

qpipei, j,s ≤ Q ti, j , qsourcei,s ≤ Q t sourcei , qsinki, f ,s ≤ Q t sinki, f ∀i, j ∈ P, f ∈ F , s ∈ S (5g)
∑

i∈P
qsinki, f ,s = Qbound

f ,s ∀ f ∈ F , s ∈ S (5h)

∑

i∈P
t sinki, f ≥ 1 ∀ f ∈ F (5i)

∑

i∈P
t sourcei ≥ 1 (5j)

ti,i = 0 ∀i ∈ P (5k)
∑

j∈P
ti, j ≤ |P|(1 − t sourcei ) ∀i ∈ P (5l)

∑

j∈P
ti, j ≤ |P|yi ,

∑

j∈P
t j,i ≤ |P|yi , t sourcei ≤ yi ,

∑

t∈F
t sinki, f ≤ yi ∀i ∈ P (5m)

pini,s − Psource
s

≤+≥− P(1 − t sourcei ) ∀i ∈ P, s ∈ S (5n)

pini,s + Δpi,s − pouti,s
≤+≥− P(1 − xi,s) ∀i ∈ P, s ∈ S (5o)

pini,s ≤ P

⎛

⎝
∑

j∈P
t j,i + t sourcei

⎞

⎠ , pouti,s ≤ P

⎛

⎝
∑

j∈P
ti, j +

∑

f ∈F
t sinki, f

⎞

⎠ ∀i ∈ P, s ∈ S (5p)

pouti,s − Psink
f ,s

≤+≥− P(1 − t sinki, f ) ∀i ∈ P, f ∈ F , s ∈ S (5q)

pouti,s − pinj,s
≤+≥− P(1 − ti, j ) ∀i, j ∈ P, s ∈ S (5r)

ni,s − 1 ≤+≥−
(
(1 − xi,s) + yFCi

)
∀i ∈ P, s ∈ S, (5s)

(
1 − ηFCi

)
poi,s − poFCi,s ≤ Poi

(
1 − yFCi

)
∀i ∈ P, s ∈ S (5t)

poi,s = popump
i,s + poFCi,s ∀i ∈ P, s ∈ S (5u)

∑

i∈P
poi,s ≥ Pohydrs /η

pump
best ∀s ∈ S (5v)

4.2 Mixed-integer nonlinear pumpmodel

The most accurate modeling approach is given by a nonlinear approach in which
each considered pump is modeled with nonlinear constraints according to Eq. (1) and
Eq. (2). We add all pumps by adding

Δpi,s = (αi,0 − ζ inst.) qi,s
2 +

2∑

m=1

αi,m qi,s
2−m ni,s

m ∀i ∈ P, s ∈ S, (6a)
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Table 3 Additional variables, sets and parameters for PWL

Variable Domain Description

λu,v,i,s [0, 1] Additional variable to model the piecewise linear
approximation based on grid point (u, v) and pump
i ∈ P in scenario s ∈ S

ai,s,k {0, 1} Binary variable to select simplex k ∈ K for pump i ∈ P
in scenario s ∈ S

Set Description

Q Set of grid points in direction of the volume flow q

N Set of grid points in direction of the speed n

K Set of simplices

K(u, v, i, s) Subset of simplices which contain grid point (u, v) for
pump i ∈ P in scenario s ∈ S

Parameter Range Description

Qu,v,i Grid values in q direction for pump i ∈ P
Nu,v,i Grid values in n direction for pump i ∈ P
ΔPu,v,i Pressure value at grid point (Qu,v,i , Nu,v,i ) by

evaluating Eq. 1 for pump i ∈ P
Po

pump
u,v,i Power value at grid point (Qu,v,i , Nu,v,i ) by evaluating

Eq. 2 for pump i ∈ P

popump
i,s =

3∑

m=0

βi,m qi,s
3−m ni,s

m ∀i ∈ P, s ∈ S, (6b)

to the basic model in Eq. (5), where ζ inst. is the pressure loss factor of the fittings
used for installing the pump into the system. The benefits of this approach are a fast
implementation and a highly accurate model, while the drawbacks are potentially high
solution times.

4.3 Piecewise linearized pumpmodel

A common approach to solve nonlinear non-convex optimization models with integer
variables, is to make use of approximations based on piecewise linearization (PWL)
techniques, cf. Geißler et al. (2012). Linearization of all nonlinear constraints results in
a mixed-integer linear program, which can then be solved by state-of-the-art solvers
as for example GUROBI (GUROBI 2020) or CPLEX (IBM 2020). Piecewise lin-
earization methods are therefore applied in a high variety of applications, both within
classical operations research, as well as technical applications, e.g. Misener et al.
(2009), Morsi et al. (2012), Rausch et al. (2016) and Mikolajková et al. (2018). The
underlying modeling to reformulate a nonlinear functional relationship as linear con-
straints can be implemented by multiple methods, as shown by Misener and Floudas
(2010), Vielma et al. (2010) and Geißler et al. (2012).
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In this contribution, we use the convex combinationmethod, as described byVielma
et al. (2010), to model the nonlinear relations of the pressure head Δp = f (q, n) and
of the power po = g(q, n) as piecewise linearized function approximations. All
additional variables, sets and parameters for the PWL are shown in Table 3. Instead
of using Eq. (6) to model the nonlinear pump characteristics, we model a piecewise
linearized approximation by using the set of constraints (7).

qi,s −
∑

u∈Q

∑

v∈N
λu,v,i,s Qu,v,i

≤+≥− (1 − xi,s)Q ∀i ∈ P, s ∈ S, (7a)

ni,s −
∑

u∈Q

∑

v∈N
λu,v,i,s Nu,v,i

≤+≥− (1 − xi,s)Ni ∀i ∈ P, s ∈ S, (7b)

Δpi,s −
∑

u∈Q

∑

v∈N
λu,v,i,sΔPu,v,i

≤+≥− (1 − xi,s)P ∀i ∈ P, s ∈ S, (7c)

popump
i,s −

∑

u∈Q

∑

v∈N
λu,v,i,s Po

pump
u,v,i

≤+≥− (1 − xi,s)Poi ∀i ∈ P, s ∈ S, (7d)

∑

u∈Q

∑

v∈N
λu,v,i,s = 1 ∀i ∈ P, s ∈ S, (7e)

∑

k∈K
ai,s,k = 1 ∀i ∈ P, s ∈ S, (7f)

λu,v,i,s −
∑

k∈K(u,v,i,s)

ai,s,k ≤ 0 ∀u ∈ Q, v ∈ N , i ∈ P, s ∈ S. (7g)

The index sets Q and N represent grid points in the (q, n) domain in which the
pressure ΔPu,v,i,s and power Popump

u,v,i,s are evaluated for each pump i ∈ P before
optimization according to Eqs. (1) and (2). The pressure losses and additional power
for frequency converters are added to these values in the preprocessing of the opti-
mization to derive an equivalent description, as shown in Constr. (6). Besides these
grid points, we have to use additional binary variables ai,s,k ∈ {0, 1} and continuous
variables λu,v,i,s ∈ [0, 1] to ensure a piecewise linearized approximation. The set K
in Constr. (7f) contains all segments of the piecewise linearized approximation. In
turn, the subset K(u, v, i, s) in Constr. (7g) covers all segments that contain the grid
point (u, v) for pump i and scenario s. These additional constraints are added to the
optimization program in model (5), which results in a mixed-integer linear program
that can be solved by common MILP solvers.

4.4 Piecewise linear relaxed pumpmodel

As a third possibility we use piecewise linear relaxed pump models within the final
optimization program. Relaxations are often used in the MINLP solution process,
as shown by Puranik and Sahinidis (2017), to derive valid lower bounds. A general
introduction to relaxation methods for nonlinear network design problems is given by
Humpola and Fügenschuh (2015). Relaxation methods with piecewise linear underes-
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Fig. 6 Piecewise linear overestimation of the quadratic function of the pressure Δp = f (q, n). Shown are
a the function Δp(q) for different speeds n and b the function Δp(n) for different volume flows q. R = 6
elements in q direction and K = 2 elements in n direction are used. The dashed lines in a show the values
of q for which the lines were plotted in b and vice versa

timators are also used inMINLP solvers to improve the solution speed, cf.Misener and
Floudas (2012), Misener and Floudas (2013), Misener and Floudas (2014). Besides
these multi-purpose implementations, these methods can also be used to improve the
solution process for domain specific optimization models, like for example shown
by Pecci et al. (2019) in the domain of water supply networks. The authors derived
global bounds on the placement of valves by using a Branch-and-Bound algorithm
with relaxed nonlinear constraints. As shown in all previous references, the usage of
piecewise relaxed underestimators can improve the solution process. For this reason,
we developed a relaxed pump model to improve the solution speed of the solving
algorithm, cf. Sect. 5.

In order to underestimate the total cost it is necessary to overestimate the pressure
increase and to underestimate the power consumption of the pumps:

Δpi,s ≤ Δprelaxedi,s ∀i ∈ P, s ∈ S, (8a)

popump
i,s ≥ porelaxedi,s ∀i ∈ P, s ∈ S. (8b)

For these estimations, piecewise defined planes are determined, which serve as linear
under- or overestimators. They have to be defined piecewise, since Δp = f (q, n) is
not concave in n and popump = g(q, n) is not convex in q. The functions are shown
in Figs. 6 and 7 along with the over- and underestimations.

We define R equidistant segments in q- and K equidistant segments in n direction.
The boundaries of these segments are described by the setsQseg = {Qseg

1 , ..., Qseg
1+R}

and N seg = {N seg
1 , ..., N seg

1+K }. For each segment (u, v) and each function (Δp =
f (q, n), popump = g(q, n)) a plane is defined, which should approximate the function
as good as possible. Each plane is defined by the parameters γi,k,u,v (Δp = f (q, n))
and δi,k,u,v (popump = g(q, n)) with i ∈ P , k ∈ {1, 2, 3}, u ∈ {1, ...., R} , v ∈
{1, ..., K }.
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Fig. 7 Piecewise linear underestimation of the cubic function of the power consumption po = g(q, n). a
shows the nonlinear function and b the piecewise underestimation. c shows the function po(q) for different
speeds n and d po(n) for different volume flows (q). R = 4 elements in q direction and K = 4 elements
in n direction are used. The dashed lines in c show the values of q for which the lines were plotted in d and
vice versa

To solve the overall MINLP, cf. Sect. 4, the constraints of the pump characteris-
tics (6) are replaced by the following constraints:

Δpi,s − (
γi,1,u,v qi,s + γi,2,u,v ni,s + γi,3,u,v

) ≤ (1 − xγ

i,s,v)M1

∀u ∈ {1, ..., R}, v ∈ {1, ..., K }, i ∈ P, s ∈ S (9a)

popump
i,s − (

δi,1,u,v qi,s + δi,2,u,v ni,s + δi,3,u,v

) ≥ −(1 − xδ
i,s,u)M2

∀u ∈ {1, ..., R}, v ∈ {1, ..., K }, i ∈ P, s ∈ S (9b)

xγ 1
i,s,v + xγ 2

i,s,v ≤ xγ

i,s,v ∀v ∈ {1, ..., K }, i ∈ P, s ∈ S (9c)

ni,s ≥ (N seg
v + ε)(1 − xγ 1

i,s,v) ∀v ∈ {1, ..., K }, i ∈ P, s ∈ S (9d)

ni,s − (N seg
v+1 − ε) ≤ (1 − xγ 2

i,s,v) ∀v ∈ {1, ..., K }, i ∈ P, s ∈ S (9e)

xδ1
i,s,u + xδ2

i,s,u ≤ xδ
i,s,u ∀u ∈ {1, ..., R}, i ∈ P, s ∈ S (9f)

123



664 T. M. Müller et al.

qi,s ≥ (Qseg
u + ε)(1 − xδ1

i,s,u) ∀u ∈ {1, ..., R}, i ∈ P, s ∈ S (9g)

qi,s − (Qseg
u+1 − ε) ≤ Q(1 − xδ2

i,s,u) ∀u ∈ {1, ..., R}, i ∈ P, s ∈ S (9h)

Constraints (9a) and (9b) guarantee that the pressure in each segment is under-
estimated and the power overestimated. Here, xγ

i,s,v and xδ
i,s,u are binary activation

variables which activate a plane if and only if the speed (in case of pressure overes-
timation) or volume flow (in case of power underestimation) is within the segment
boundaries. A small value of ε = 10−3 is necessary to ensure that at least one plane is
active at the boundaries of the piecewise defined planes. M1 and M2 are upper bounds
which are necessary for the bigM-constraints. Constraints (9c) to (9h) are used to
check the mentioned boundaries with binary auxiliary variables xγ 1, xγ 2, xδ1 and xδ2.

The parameters of the planes are determined using a MILP. The objective is to find
planes within a segment which describe the function as good as possible and over-
or underestimate it. To model this, a two-dimensional fine grid Qgrid and N grid is
defined: at each grid point it is constrained that the overestimation or underestimation
is maintained and the distance to the nonlinear function is calculated. The setQu with
u ∈ {1, ..., R} andN v with v ∈ {1, ..., K } describes the grid points within a segment.
The following applies:

Qu = {z ∈ Qgrid|Qseg
u ≤ z ≤ Qseg

u+1} ∀u ∈ {1, ..., R}, (10a)

N v = {z ∈ N grid|N seg
v ≤ z ≤ N seg

v+1} ∀v ∈ {1, ..., K }. (10b)

With these definitions, both, MILP (11) for the pressure characteristic and
MILP (12) for the power characteristics are formulated for each pump i ∈ P and
for each segment (u, v) with u ∈ {1, ..., R}, v ∈ {1, ..., K }.

The objective (11a)/(12a) is tominimize the distance between the nonlinear function
and its over-/underestimation, respectively. Constraint (11b) models the overestima-
tion of the pressure characteristic and Constr. (12b) the underestimation of the power
characteristic at every grid point. Since the number of grid points is limited, distance
factors εΔp = 0.005 bar and εPo = 0.5W are introduced. These define the minimum
distance between the linear planes and the nonlinear function at the grid points. Thus,
it is ensured that the planes are over/underestimating also between grid points, what
has been checked in the postprocessing. The result for the pressure characteristic is
shown in Fig. 6 and for the power characteristic in Fig. 7.

min
|Qu |∑

x=1

|N v |∑

y=1

(
γi,1,u,vQ

u
x + γi,2,u,vN

v
y + γi,3,u,v

)
−

(
(αi,0 − ζ inst.) (Qu

x )
2 +

2∑

m=1

αi,m (Qu
x )

2−m
(N v

y )
m

) (11a)

subject to

123



Optimization and validation of pumping systems 665

γi,1,u,vQ
u
x + γi,2,u,vN

v
y + γi,3,u,v ≥

(αi,0 − ζ inst.) (Qu
x )

2 +
2∑

m=0

αi,m (Qu
x )

2−m
(N v

y )
m + εΔp

∀x ∈ {1, ..., |Qgrid|}, y ∈ {1, ..., |Qu|}

(11b)

min
|Qu |∑

x=1

|N v |∑

y=1

(
βi,1(Q

u
x )

3 + βi,2(Q
u
x )

2N v
y + βi,3Q

u
x (N

v
y )

2 + βi,4(N
v
y )

3 + βi,5

)
−

(
δi,1,u,vQ

u
x + δi,2,u,vN

v
y + δi,3,u,v

)

(12a)

subject to

βi,1(Q
u
x )

3 + βi,2(Q
u
x )

2N v
y + βi,3Q

u
x (N

v
y )

2 + βi,4(N
v
y )

3 + βi,5 ≥
δi,1,u,vQ

u
x + δi,2,u,vN

v
y + δi,3,u,v + εPo

∀x ∈ {1, ..., |Qgrid|}, y ∈ {1, ..., |Qu|}
(12b)

5 Solving algorithm

The MINLP or piecewise linearized MILP presented in Sect. 4 can be solved with
conventional solvers. This, however, leads to high computation times or large duality
gaps for practically relevant problem sizes. For this reason, we developed a problem
specific, exact solving algorithm,which allows significantly shorter computation times
and leads to an acceptable result accuracy, even for the considered nonconvexMINLP.

The basic idea is to divide the problem into a number of smaller problems and to
explore this solution space systematically. For this purpose, the set of all pumps P
is reduced to a significantly smaller subset P reduced ⊆ P and the purchase decisions
for these pumps are fixed to one. This results in a fixation of the most important first
stage decision variables. The number of pumps in the reduced set |P reduced| is less
than or equal to the maximum number of pumps that can be purchased N buy, which
drastically reduces the number of binary variables: |P reduced| ≤ N buy 
 |P|. If M is
the number of different pump types in P , then we can calculate the total number of
tuples I = |T | with:

I =
(
M + N buy

M + 1

)
= (M + N buy)!

(M + 1)! · (N buy − 1)! . (13)

For the investigated instances (M = 15 and N buy = 4) this results in I = 3876 reduced
MINLPwith |P reduced| ≤ 4.When considering a decentral topology (e.g. test instance

123



666 T. M. Müller et al.

Algorithm 2: Generic description of the solving algorithm.
input : set of pumps P ; load scenarios; instance-specific parameters
output: best topology and control; solution information

// preprocessing
initialize all possible feasible purchase decisions T
I = {1, 2, . . . , I }
L = {L1, L2, . . . , L I }
U = {U1,U2, . . . ,UI }
U ← Uj = ∞∀ j ∈ I
L ← L j = ∑

s∈S Ws Po
hydr
s ∀ j ∈ I

Uglobal = ∞, Lglobal = min(L)

// main part

while Uglobal > Lglobal do
// heuristic for upper-bound-search

estimate primal bound for each tuple, U est
j ∀ j ∈ I

solve reduced MINLP for the most promising tuple (lowest U est
j )

if infeasible or dual bound > Uglobal then
remove tuple

else
update tuple information in: U ,L

update global information: Uglobal = min(U), Lglobal = min(L)
// lower-bound-search
solve reduced MINLP or relaxed, reduced MILP for tuple with lowest dual bound in L
if infeasible or dual bound > Uglobal then

remove tuple
else

update tuple information in: U (only if MINLP was solved), L
update global information: Uglobal = min(U), Lglobal = min(L)

B1.D, cf. 6.1) this yields aMINLPwith 425 variables (64 binary) and 1057 constraints
(41 nonlinear). In contrast to this is a singleMINLPwith |P| = M×N buy = 60 pumps.
This yields 26581 variables (4380 binary) and 82562 constraints (601 nonlinear). The
resulting reduced MINLP is therefore less challenging in terms of combinatorics and
can generally be solved faster. The goal is to efficiently explore the set of possible
purchase decisions T , given the reduced set of available pumps, while also cutting off
non-optimal solutions.

The solving algorithm is shown in Algorithm 2. For better clarity, we define the
index set I = {1, 2, . . . , I } based on Eq. (13). First, the set of pump-tuples T
is created and physically inadmissible tuples are removed during preprocessing. In
addition, a set of lower bounds L = {L1, L2, . . . , L I } for the energy costs of each
tuple Tj ∈ T is analytically calculated based on domain-specific knowledge. Besides,
a set of all primal upper bounds U = {U1,U2, . . . ,UI } is defined and each part is
set to ∞ before optimization. For the considered overall minimization problem, the
primal bound is the minimal primal solution of a tuple U global = min(U) (best found
solution), which is infinite at the start. The dual bound of the overall minimization
problem Lglobal should be raised. Therefore, the weakest dual bound in one of the
subproblems/tuples is determined. Thus, the dual bound of the overall problem is
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bounded by the lowest dual bound of a tuple Lglobal ≥ min(L). It is initialized using
the preprocessed bounds for the energy and the known investment costs of the pumps.
Now the search for better primal and dual solutions is repeated until the overall problem
has been solved to proven global optimality. The global primal and dual bounds are
updated in each step and proven weak solutions or infeasible solutions are cut off. In
the following, the single steps of the solving algorithm are explained in detail.

5.1 Preprocessing

First, the set of purchase decisions Tj ∈ T ∀ j ∈ I is generated, each consisting of a
reduced set of pumpsP reduced

j ⊆ P with j ∈ I. For each tuple Tj ∈ T , it is determined

whether the pumps of the tuple P reduced
j can fulfill the required load demand. There

are three elimination criteria:

(i) The sum of the maximum pressure head of all pumps is smaller than required.
Even a series connection of all pumps could not provide the required pressure.

(ii) The sum of the maximum volume flow of all pumps is smaller than required.
Even a parallel connection of all pumps could not provide the required volume
flow.

(iii) The sum of the maximum hydraulic power of all pumps is smaller than required.
Even if all pumps would be operated at the point of maximum hydraulic power,
it would not be sufficient.

Tuples that comply with any of these criteria are deleted immediately. This can
efficiently reduce the number of tuples. Nevertheless, this excludes only a subset of
all infeasible solutions.

The minimum cost are underestimated for each of the remaining tuples. Since the
purchase decision for a certain pump set is fixed, the investment costs of this pump
set can be calculated directly. The purchase decision for frequency converters is set
to zero. We underestimate the power consumption and thus the energy cost. For each
Tj ∈ T the underestimated power consumption Polb,physs, j is calculated by the hydraulic

power Pohydrs and best efficiency of any pump in the tuple η
pump
best, j in every scenario

s ∈ S. For each tuple j ∈ I the following underestimation is valid:

∑

s∈S
Ws

∑

i∈P
poi,s ≥

∑

s∈S
Ws Po

lb,phys
s, j =

∑

s∈S
Ws Po

hydr
s /η

pump
best,j . (14)

This corresponds to the hypothetical case that the pump with the highest efficiency
provides the required hydraulic power in its best-efficiency point all by itself. The
resulting cost according to Obj. (5a) underestimates the true cost and is thus a lower
bound,which is based on physical principles. This consideration allows to cut offmany
tuples early. The power dissipated in the frequency converter is usually one order of
magnitude smaller than the electrical power in the motor and is therefore neglected in
this estimation.

Finally, the global primal and dual bounds are initialized in preprocessing. The
global primal bound is the value of the best valid solution and is initially set to infinity.
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The global dual bound equals the minimum value of the lower bound of any tuple. It
is initialized to the minimum of the values estimated by Eq. (14).

5.2 Bound improvement

After preprocessing, the gap between the primal and dual bound is attempted to be
reduced over time. On the one hand, better primal solutions are searched for. On the
other hand, the minimum values of the lower bound of the tuples are improved to
increase the dual bound of the overall minimization problem. If the resulting value of
the lower bound of a tuple is above the global primal bound, it can be cut off.

5.2.1 Upper bound search

In order to find a new, better primal solution, the objective value of each tuple Tj ∈ T
is estimated in each step. The exact MINLP is then solved for the tuple with the best
estimated objective value, i.e. the most promising set of pumps.
Estimation of the Objective Value The value of the primal solution of a tuple Tj ∈ T
is estimated using a heuristic. It is assumed that the difference between the lower
bound of the power consumption estimated during preprocessing Polb,physs, j , Eq. (14),

and the power consumptions’ exact value of the primal solution of a tuple Poprimal
s, j is

comparable for all tuples j ∈ I. We calculate this difference for all tuples in T for
which we already know the primal solution by:

vs, j = (Poprimal
s, j − Polb,physs, j )/Polb,physs, j ∀s ∈ S, j ∈ I. (15)

The expected power consumption Poexps,j of tuples for which we have not yet com-
puted a primal solution is estimated using the mean of the deviation vs, j of all tuples
with known primal solution:

∑

s∈S
Ws

∑

i∈P
poi,s ≈

∑

s∈S
Ws Po

exp
s, j

=
∑

s∈S
Ws

(
1 +

∑
m∈Iprimal vs,m

|Iprimal|
)
Polb,physs, j ∀ j ∈ I ,

(16)

where Iprimal = { j ∈ I | ∃Uj < ∞} is the index set of tuples with finite primal
solution. Based on this, the total cost is estimated according to Obj. (5a). Here, the
exact known investment costs of the pumps are considered while the costs for the
frequency converters are neglected.
Search for Better Primal SolutionWhen searching for a new primal solution, the tuple
with the lowest expected cost is selected. The set of pumps is reduced to the purchased
pumps P reduced

j in the selected tuple Tj . The MINLP from Sect. 4 is formulated with
the reduced set of pumps and the purchase decision variables are set to yi = 1 ∀ i ∈
{1, ..., |P reduced

j |}.
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In general, the resulting reduced problems for the tuples in the set T can be solved
considerably faster than the overall problem. Nevertheless, high computation times
may occur for some tuples Tj ∈ T . Depending on the count for selection of the
tuple, the computation time is limited. Starting with 15s for first time computations,
the limit is increased gradually for each reselection of a tuple. By this method, we
try to avoid wasting computation time on suboptimal solutions. When solving the
selected tuple, for feasible tuples, the primal bound Uj and dual bound L j are stored
for the tuple. In turn, when the subproblem of the tuple Tj ∈ T is infeasible, it is
removed from the tuple list T . We expect that the converged solution can already
be cut off at an early stage without the need to solve the reduced problem to global
optimality. In the best case, only a single reduced MINLP needs to be solved to global
optimality. If a subproblem for a tuple Tj ∈ T is solved to proven global optimality,
it will be deactivated for a search for further primal solutions. Unfortunately, it is not
possible to continue or warm-start the computation with the selected programming
framework1 later on. Instead, the computation has to be re-started, this time with a
longermaximumcomputation time (≥ 15 s). For this reason, it is important to carefully
select the maximum computation time for the individual steps.

If there is no promising tuple left, which we define as the lowest expected cost
exceeding 120% of the global primal solution, the search for better primal solutions is
no longer executed. However, the lower bound search (cf. Sect. 5.2.2) also still allows
to find better primal solutions, if the reduced MINLP is solved in a later step.

5.2.2 Lower bound search

Alternating with the search for a better (i.e. lower) primal bound, the dual bound is
attempted to be raised. The procedure is similar to the primal bound search: a suitable
tuple is selected and a reduced optimization problem is solved. The search for a better
(i.e. higher) dual bound is repeated three times before again continuing the search for
a lower primal solution, as we found that it is generally more difficult than finding a
better primal solution. In the dual bound search the tuple with the lowest individual
dual bound min(L) is selected (called weakest tuple). This is the weakest individual
dual bound and determines the dual bound of the overall problem Lglobal ≤ min(L).
To increase the overall dual bound, the dual bound of the weakest tuple has to be
increased by solving the corresponding subproblem. The dual bounds for tuples that
have not yet been examined are the underestimated cost of the preprocessing (cf.
Eq. (14)). In turn, for tuples that have already been examined, the dual bound of the
tuple from the previous step is applied.

The solved optimization problem corresponds to the one from the primal bound
search with a special feature: If the tuple is selected for the first time, the piecewise
linear relaxed problem (PWRMILP, cf. Sect. 4.4) of the reduced MINLP is set up and
solved (computation time limit of 60 s) instead of directly solving the reducedMINLP.
The piecewise linear relaxed MILP is in general easier to solve and the so computed
lower bound is often sufficiently high to cut off the tuple. If the solution could not

1 We implemented the solving algorithm in MATLAB 2019a using amongst others YALMIP (Löfberg
2004) and OPTI Toolbox (Currie et al. 2012).
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be cut off, the tuple is re-selected at a subsequent loop iteration and then the reduced
MINLP is solved, whereby the initial computation time is again limited to 15 s and
subsequently increased in later iterations.

5.2.3 Parallelization

To further reduce computation times, the presented solving algorithm is parallelized.
In each step N optimization problems are solved simultaneously on different cores:
Therefore, not only a single tuplewith the best expected primal bound (in case of primal
search) or lowest dual bound (in case of dual search) is selected, but N tuples with
the best expected primal or lowest dual bounds are solved. If a tuple is solved before
finishing the computation of any of the other first N tuples, the next best/weakest tuple
is solved on the available core. The results of the computed tuples are synchronized
after the computation of the first N tuples is finished.

6 Computational results

In this section the results of the optimization problems are discussed. First, the set
of test instances, which are scenarios of high technological importance, are presented
and the implementation and settings are clarified. Based on this, the performance of
the different solving approaches is presented. Afterwards, a technical discussion of
the results and the significance for practice are given.

6.1 Selection of test instances

The previously presented different systems (Sect. 3) and the wide range of variations
are analyzed carefully to choose technologically meaningful test instances. Tested
instances are numerated in Table 4, in which the different possible physical variants
are listed. For each of the buildings B1–B3 and the test rig three different topologies are
considered. (i) Parallel connection of the pumps for a central booster station (|F | = 1,
Constr. (4) active), hereinafter referred to as parallel. (ii) Unrestricted topology for
a central booster station (|F | = 1, Constr. (4) not active), hereinafter referred to as
central. (iii) Unrestricted topology for a decentral booster station (|F | = 5, Constr. (4)
not active), hereinafter referred to as decentral. The complexity increases significantly
in the order of the listed topologies due to their increasing degrees of freedom. The
heuristic presented in Sect. 3.5 is used to select 15 different pump types for each of
the buildings B1–B3. Each pump type is available N avail = 4 times which leads to
a total set of |P| = 15 × 4 = 60 pumps. In total, up to N buy = 4 pumps can be
purchased and installed per booster station. For the test rig the set of pumps is limited
to the |P| = 13 available pumps (6 different types), where up to N buy = 6 can be
purchased and installed. While for the buildings B1–B3 a frequency converter has to
be installed additionally to allow for speed control, all considered pumps for the test
rig are already equipped with frequency converters and therefore the decision to buy
a frequency converter is disregarded. The characteristic curves as well as costs of the
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Table 4 Instances for testing the
different solution approaches

parallel free topology
central decentral

Building 1 B1.P B1.C B1.D

Building 2 B2.P B2.C B2.D

Building 3 B3.P B3.C B3.D

Test rig TRE.P TRE.C TRE.D

w/ exp. data

pumps and frequency converters are obtained from manufacturer data. The loss factor
ζ inst is determined experimentally for the test rig, whereas it is set to zero for all real
buildings. The load profiles match the load profiles presented in Sect. 3.

The lifetime T = 15 a for pumps is derived from the depreciation table (“AfA
Table”) for the sector “Energy and Water Supply” of the German Federal Ministry
of Finance (AfA table 1995). For the interest rate r = 2.08% the discount rate
(Bundesbank 2019) is used with a remaining lifetime of 15 years (7 year aver-
age, key date Aug 31st 2019). For the energy cost (Celect = 0.3 e /kWh) the
mean value of the household electricity price for the second half of 2018 in Ger-
many is consulted (Destatis 2019). This results in an annuity-present value factor of
APF = ∑T

t=1a 1/(1 + r)t = 12.77. For the investment costs of the pumps and fre-
quency converters, we rely on market prices for the European Union of the year 2018.
The pressure is calculated in bar and the volume flow in m3h−1. For the buildings
B1–B3 the cost are calculated in keand the power in kW, for the test rig in e and W.
Thus, the coefficients of the problem become better scaled.

The three different optimization models, namely the nonlinear (MINLP), piece-
wise linearized (PWL), and piecewise relaxed model (PWR), can be solved using
different off-the-shelf solvers and the developed solving algorithm. In this work the
Solvers GUROBI v8.1.12, SCIP v5.03 and BARON v19.7.134 as well as the solving
algorithm (Algorithm 2 , cf. Sect. 5.1) are trialed to compare computation time and
solution quality. If nothing else is specified, default settings are used. For the PWL,
32 simplices are used for buildings B1-B3 and 50 simplices for the test rig, which are
evenly distributed.We use a 1-4 orientation for each grid, as introduced inMisener and
Floudas (2010). For the PWR a discretization of R = 6 elements in q direction and
K = 3 elements in n direction for the pressure and R = 5, K = 5 for the power is used
for real buildings. For the test rig a discretization of R = 6, K = 2 for the pressure
and R = 4, K = 4 for the power is used. For reasons of simplicity, an equidistant
distribution has been chosen. The PWR is primarily used within the solving algorithm
trying to cut off solutions fast. For this reason, a comparatively small number of grid
points has been chosen, which has proven to be efficient in test runs.

2 GUROBI (2020)
3 Gleixner et al. (2017) (using IPOPT v3.12.9 (Wächter and Biegler 2006) and SoPlex v3.1. (Zuse Institute
Berlin 2020))
4 Tawarmalani and Sahinidis (2005) (using CPLEX v12.9 (IBM 2020))
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Fig. 8 Influence of grid size on deviation to MINLP solution and computation time. The 2% limit is
highlighted in gray. a B1.P, b B2.P, c B3.P, d TRE.P

The optimization model was implemented in Matlab 2019a using YALMIP (Löf-
berg 2004). The solver SCIP is interfaced via theOPTI toolbox (Currie et al. 2012). For
all other solvers, manufacturer interfaces are used. The solving algorithm presented
in Sect. 5.1 has also been developed and executed in Matlab 2019a. All computa-
tions were performed on a Windows 10 machine with an Intel i7-8700 CPU (6 cores
@3.20GHz) and 16GB RAM. ε-optimality (with ε = 0.1) is tried to be achieved
within a time limit of 3 hours.

6.2 Performance of different solution approaches

We first discuss the influence of the grid-size of the PWL-MILP on the computa-
tion time and the deviation from the MINLP solution, cf. Fig. 8. Afterwards, we
compare the different solution approaches and solvers, for which we have com-
puted the instances given in Table 4. A large part of the instances have a gap > ε,
which is why a comparison of the gap at the end of the computation time is per-
formed. As in Pecci et al. (2019), the share of solved instances with a gap smaller δ,
ρ(δ) = (# instances with gap ≤ δ)/(# test instances), is plotted for the remaining gap
δ, cf. Fig. 9.
Comparison of MINLP and MILP The influence of the discretization is investigated
using the comparatively simple instanceswith only parallel pumpconfigurations (B1.P,
B2.P, B3.P, TRE.P). Figure 8 shows the deviation from the best knownMINLP solution
and the normalized computation timeover the number of cells. The deviation converges
towards 0,whereby the computation time increases as a trend. Partly an overestimation,
partly an underestimation of the objective value of the MINLP occurs. On the basis of
the investigation, 32 cells for real buildings and 50 for the test rig are selected. With
an average deviation of less than 2% (corresponding with the order of magnitude of
the measurement errors on the test rig), the level of detail is sufficient.
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MINLP (BARON)
MINLP (SCIP)

MIP PWR (GUROBI)
MIP PWL (GUROBI)

w/ PWR w/ par.
w/o PWR w/ par.

w/o PWR w/o par.
w/ PWR w/o par.

MINLP (Alg. + SCIP)

MINLP (Alg. + SCIP) MINLP (SCIP)
MIP PWL (GUROBI)MINLP (Alg. + BARON)

MIP PWL
(Alg. + GUROBI)
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c d 

MINLP (Alg. + SCIP)

Fig. 9 Solved instances ρ(δ) with a gap smaller δ for different solution approaches. Comparison of a
directly solved MINLP, PWL and PWR, b different options of solving algorithm, c different solvers for
the solving algorithm (settings: w/ PWR, w/par.), and d directly solved MINLP, directly solved PWL and
MINLP solved applying the solving algorithm (settings: w/ PWR, w/par.)

The comparison of the directly solvedMINLP with the directly solved PWL-MILP
and the PWR-MILP (cf. Fig. 9a) shows that more instances can be solved with a
satisfactory gap by using one of the MILPs.

The PWL-MILP is an approximation of theMINLP. The relative deviation between
the primal solution of the PWL-MILP and the best known primal MINLP solution
(calculated for the MINLP with the solving algorithm) is on average 3.6% for all 12
instances. For solutions with a gap of ≤ ε (4/12 instances) the deviation is 1.65%. For
2/12 instances, the same pumps and FCs are purchased as for the best known MINLP
solution. If the PWL-MILP is solved using the solving algorithm, lower gaps can be
achieved (see Fig 9c). In this case, the mean deviation is 1.61% (all instances) or
1.75% (instances with gap ≤ ε) and the investment decisions are the same for 5/12
instances. In comparison to the direct solution of the MINLP, more useful solutions
can be achieved and the approximation quality is acceptable with around 2% for the
given discretization. However, high computation times and large duality gaps still
result, especially when using an off-the-shelf solver.

The dual solution of the PWR-MILP is comparedwith the best found primalMINLP
solution: For solutionswith a gap≤ ε (6/12 instances) the deviation is 7.0%or 19.91%
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(all instances) and investment decisions are the same for 5/12 of the instances. The
high deviation is due to non-converged solutions for difficult instances. In this case,
the dual bound of the PWR-MILP cannot be raised sufficiently, which is why it serves
only as a weak lower bound.

Figure 9 further shows, that the difference between SCIP and BARON to directly
solve the MINLP is not significant. Both solvers can only solve 1/12 of the instances
with a gap ≤ ε. In addition, we occasionally encountered errors with both solvers
during the solution process. For SCIP this can be reduced by a less aggressive pre-
solving. A more detailed discussion can be found in Appendix A. A direct solution
of the MINLP with off-the-shelf solvers is due to the large duality gap and potential
wrong results an unsuitable approach. In the solving algorithm the individual prob-
lems are smaller and errors by SCIP or BARON were rare. However, for SCIP the
presolving-emphasis settings for the calculation with the solving algorithm were set
to “fast” to avoid any problems.
Performance of Solving Algorithm Fig. 9b shows the performance of the solving algo-
rithm with and without the use of PWR (w/ PWR and w/o PWR) and parallelization
(w/ par. and w/o par.). Without the use of PWR, the reduced MINLP is already solved
within the first selection of a tuple, thus the PWR-MILP is not solved before. Without
parallelization, only one tuple is solved instead of N tuples at the same time. SCIP is
used as MINLP solver and GUROBI as PWR-MILP solver. All in all, the deviations
of the different settings are rather small. The results show:

– The use of PWR shows only minor improvements. This could be caused by a too
fine discretization, resulting in a dual bound of the PWR that can only be computed
with high effort.

– The parallelization offers a slight performance increase. The reason it only yields
small improvements could be that when solving N tuple at the same time, the
computation of one tuple takes much longer than for the others. As long as the
first N tuples are not finished, the primal and dual bounds are not updated. This
holds the risk of wasting time on the computation of tuples which are cut off later
anyway. In addition, parallelization causes computational overhead.

In Fig. 9c, BARON and SCIP are compared as underlying MINLP solvers for
the solving algorithm (w/ PWR, w/ par.). The performance of SCIP is slightly bet-
ter. In addition, the PWL-MILP is solved with the solving algorithm (GUROBI as
PWL-MILP solver, w/o PWR, w/ par.). The performance is slightly below that of the
MINLP. A possible cause is the computational overhead of the solving algorithm:
The optimization model has to be set up for each tuple. This is more complex for the
PWLmodel due to the increased number of equations, which can lead to a loss of per-
formance. Nevertheless, compared to directly solving the PWL-MILP, considerably
more instances can be solved (cf. Fig. 9a).

Concluding, the results for the solving algorithm (SCIP, w/ PWR, w/ par.) are com-
pared with directly solved MINLP and PWL-MILP in Fig. 9d: the solving algorithm
allows to solve 50% of the instances with a gap ≤ ε and all instances with a gap ≤
48%. This is substantially more than directly solving theMINLP and also than directly
solving the approximated PWL-MILP.
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Fig. 10 Comparison of the progression of the primal and dual bound for the solving algorithm (SCIP, w/
PWR, w/ par.) and the directly solved MINLP (SCIP, presolving “fast”) for the instances a B2.P, b B2.C
and c B2.D

The progression of the dual and primal bound for the solving algorithm (SCIP, w/
PWR, w/ par.) and the directly solved MINLP (SCIP, presolving “fast”) is shown in
Fig. 10. The number of possible variants in the problem increases from (a) (B2.P) to
(b) (B2.C) to (c) (B2.D). The solving algorithm finds the optimal primal solution very
fast and at all time steps the primal bound as well as the dual bound of the solving
algorithm is better than for the directly solved MINLP.

6.3 Technical discussion of the optimized booster station designs

In the following, the technical aspects of the solutions are discussed. In this section,
we always refer to the best found primal solution of any solver.

Table 5 summarizes the relevant aspects of the optimization results for all instances.
The following conclusions can be drawn:

– For central booster stations the restriction of the topology to solely parallel con-
nections has no disadvantage for the tested real buildings. This may be due to the
selected pump kit, since the existing pumps are designed for parallel connections.
For the test rig, the central solution (unrestricted topology) is slightly superior.

– 20–25% of the total cost can be saved with decentralized systems. The system
performance increases by 50% up to 100%. The latter corresponds to halving the
required power. This requires higher investment costs and more pumps, which is
far outweighed by the energy savings.

– Although the load cases could already be covered by a single pump, always 2–4
pumps are bought due to the achieved energy savings. In some cases different
pump types are used, in others (B3.P, B3.C) solely one pump type is used. Only
about half of the pumps are equipped with FCs.

For building B3, the actual installed pumps are known. In the installed system
four parallelly connected pumps of the same type (all with FC) are used. To be able
to compare the existing system to the optimized system, the investment decision of
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Table 5 Results of the best found primal solution for each instance

building B1 building B2
parallel central decen. parallel central decen

total cost in ke 141.7 141.7 107.4 124.4 124.4 93.9

rel. total cost in % 100 100 75.8 100 100 75.5

invest. cost in ke 32.4 32.4 34.7 30.3 30.3 32.4

# pumps 3 3 4 2 2 4

# diff. types 2 2 4 2 2 4

# FC 1 1 3 1 1 2

mean power in kW 10.9 10.9 7.2 9.3 9.3 6.1

η1sys in % 37.8 37.8 56.9 36.6 36.7 56.1

building B3 test rig TRE
parallel central decen. inst. parallel central decen.

total cost in e 16377 16377 12715 24391 957 933 780

rel. total cost in % 100 100 77.6 148.9 100 97.5 81.5

invest. cost in e 6321 6321 7762 14868 276 244 226

# pumps 2 2 4 4 2 2 2

# diff. types 1 1 2 1 2 2 2

# FC 1 1 2 4 – – –

mean power in W 998 998 491 947 67.6 68.4 55

η1sys in % 22.4 22.4 45.5 23.64 25.7 25.4 31.5

The system efficiency is defined as: ηsys := Pomean
hydr,dec.
Pomean

=
∑

s∈S Ws Pos,hydr,dec.∑
s∈S Ws

∑
i∈P poi,s

the existing system is fixed and the rotational speed optimized (see column “inst.” in
Table 5). In comparison, approx. 50% of the total cost can be saved by optimizing the
investment costs and speed at the same time. Even if costs for an additional redundant
spare pump are taken into account (2053 e, without FC), 32% of the total cost can
still be saved.

All selected pumps are highlighted in Fig. 11. Solid black lines indicate pumps,
that are selected for any setting, while dashed black lines indicate pumps that are only
selected for decentralized settings.

For building B1, the optimal topologies are shown in Fig. 12. The central topology
(a) shows that only the largest pump is equipped with a frequency converter and
operates for every load scenarios. For the load cases with higher power demand,
further pumps are switched on additionally. An interpretation of this chosen topology
can be that the additional pumps run for a small part of the operation time only and
therefore their energy consumption and resulting costs do not weigh enough to equip
either of these pumps with a frequency converter. A complex topology results for the
decentralized solution (b). In scenarios with low hydraulic power demand, one pump
solely supplies the pressure zones 1 and 2. Two pumps connected in series supply the
upper pressure zones. After the first pump a partial volume flow is branched off to

123



Optimization and validation of pumping systems 677

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

VOLUME FLOW in m3/h

PR
ES

S
U

R
E 

H
EA

D
 Δ

in
 b

ar

0 50 100 150
VOLUME FLOW in m3/h

0

5

10

15

PR
ES

S
U

R
E 

H
EA

D
 Δ

in
 b

ar

0 10 20 30
VOLUME FLOW in m3/h

0

2

4

6

8

D
AE

H
E

R
U

S
SE

RP
Δ

r ab
n i

0 50 100 150
VOLUME FLOW in m3/h

0

5

10

15

D
AE

H
E

R
U

S
SE

R P
Δ

rab
ni

c d

ba

unselected pump selected pump selected pump for
decentralized topology only

Fig. 11 Selected pumps after optimization for each building and the test rig. a building B1 b building B2 c
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SOURCE

S L XS M
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a b
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Fig. 12 Optimal topology for the instances a B1.P/C and b B1.D. The labels XS to XXL refer to the
hydraulic power of the pumps at their best efficiency point

supply pressure zone 3. Only for load cases 4 and 5 a further pump is switched on,
which has no frequency converter.

The trade-off between investment costs and energy costs for building B1 is shown
by the Pareto front in Fig. 13. The computationwas done using the ε-constraintmethod
(Ehrgott 2005, pp. 98–101), in which the maximum power consumption was added
as a constraint. The investment costs were weighted very high by setting the lifetime
to 1 month. The optimization was performed with different upper limits on the power
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Fig. 13 Pareto Front of the objective’s investment costs and power consumption for the instances B1.P,
B1.C and B1.D. The filled markers represent the best solution for a lifetime of 15 years (corresponds to
Table 5)

consumption. The Pareto front of the parallel and central topologies coincide exactly.
As expected, the decentralized solution completely dominates either central solution.
The minimum necessary power, calculated by hydraulic power and component effi-
ciency, can almost be reached. This indicates a good choice of the pump kit and thus
confirms the heuristics in Algorithm 1. The optimal solution discussed before (life-
time of 15 years), is in the range of high energy weighting. It should be noted that the
computation time for high weights for the energy increases significantly, since fewer
solutions can be cut off.

7 Experimental validation

In order to validate the methodology, assumptions and models, the results obtained for
the test rig (Sect. 3.3) are experimentally examined. The boundary conditions applied
for the optimization are obtained in two different ways. In case (i), the loss factor ζloss
and the required pressure increase in the load scenarios are determined experimentally.
For case (ii), a hydraulic model is developed, for which the friction coefficients of the
components are estimated on the basis of data given in literature (GF Piping System
2019; Idelchik 2007). The latter case is more practical since experimental surveys
cannot always be carried out in the field. In both cases, manufacturer specifications
are used for the characteristic curves of the pumps and a strictly quadratic relationship
between pressure losses and the volume flow is assumed. It should be noted that not all
friction influences can be taken into account in the model. Depending on the topology,
elbow and tee fittings are necessary to achieve the desired configuration, however,
in the optimization model their friction influence is neglected. For a more detailed
investigation of the friction influence, we refer to Müller et al. (2019a).
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Fig. 14 Optimal topology for the test rig: a parallel (experimental data as well as solely literature data), b
central (experimental data), c central (solely literature data) and d decentral (experimental data as well as
solely literature data). For topology c the setup on the test rig is shown in Fig. 3

The optimal topologies are shown in Fig. 14. Only for the central booster station
(b)/(c) there are deviations in the optimal topology between experimental and literature
data.Without the use of experimental data, the pressure losses are assumed to be lower,
which is why slower rotational speeds are applied.

The shown topologies are set up on the test rig, trying to keep the pressure losses due
to the layout of the connections as low as possible. For every scenario the rotational
speeds are applied and the valves are set so that the same volume flow is achieved on
each floor. The pumps run at a constant speed, i.e. without pressure or volume flow
control-loop.

In Fig. 15, the power consumption (measure for the achievement of the objective)
is plotted against the volume flow (measure for the satisfaction of the load demand)
for all topologies and scenarios.

The correlation between power and volume flow is well matched in computation
and experiment even though there is a deviation between the required and themeasured
volume flows. As expected, the correlation is higher when using the experimental data.

Furthermore, the mean volume flow,

Qmean :=
∑

s∈S
Ws

∑

f ∈F
q f ,s, (17)

the mean power consumption,

Pomean :=
∑

s∈S
Ws

∑

i∈P
poi,s, (18)

123



680 T. M. Müller et al.

optimization validation

0 2 4
VOLUME FLOW in m³/h

0

50

100

150

200

250

0 2 4
VOLUME FLOW in m³/h

0

50

100

150

200

250

0 2 4
VOLUME FLOW in m³/h

0

50

100

150

200

250

0 2 4
VOLUME FLOW in m³/h

0

50

100

150

200

250

0 2 4
VOLUME FLOW in m³/h

0

50

100

150

200

250

0 2 4
VOLUME FLOW in m³/h

0

50

100

150

200

250

RE
W

OP
W

ni
RE

W
OP

W
ni

PO
W

ER
in

 W
PO

W
ER

in
 W

PO
W

ER
in

 W
PO

W
ER

in
 W

a b

d

c

e f

Fig. 15 Power consumption over volume flow for optimization and validation results for all five load
scenarios. Results based on experimental data for a parallel b central and c decentral topologies, and based
on literature data for d parallel e central and f decentral topologies are shown. The error bars are covered
by the markers

and the geodetic system efficiency are investigated cf. Table 6,

ηgeo :=
∑

s∈S Ws�g
∑

f ∈F Δh f q f ,s

Pomean
. (19)

The values are calculated using the density � = 998 kgm−3, the gravitational accel-
eration g = 9.81m s−2, and the geodetic height differenceΔh f = {1m, . . . , 5m} for
the different pressure zones. The geodetic system efficiency ηgeo is a measure for the
deviation of the energy costs and is used to determine the expected total cost:

Cexp
total := Copt

invest + Copt
energy

(
1 + η

opt
geo − η

exp
geo

η
opt
geo

)
. (20)

The results show that the mean volume flow is higher than demanded, i.e. the pressure
losses have been overestimated. As a result, the power consumption is also higher
than predicted. In practice, the deviations would be compensated by a closed loop
control of each pump’s rotational speed. The systems are nevertheless comparable
on the basis of the geodetic efficiency, which is slightly lower than assumed in the
optimization. The deviation is smaller for the pump model based on the experimental
data. For the instanceswhere the pumpSwas installed (cf. Fig. 14b and c), the deviation
is higher, which indicates inaccuracies in the used characteristics of pump S (given
by the manufacturers data sheet). In spite of these uncertainties, the total costs are
lower for decentralized systems. The deviations in efficiency (5-10%) are significantly
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Table 6 Comparison of optimization and validation results

parallel central decentral

based on experimental data Q
opt
mean in m3h−1 1.732 1.732 1.732

Q
exp
mean in m3h−1 1.877 ± 0.027 1.895± 0.027 1.817± 0.026

deviation in % 8.34 9.39 4.88

Po
opt
mean in W 67.578 68.448 55.043

Po
exp
mean in W 74 ±2.36 74.16±1.78 58.86 ±1.77

deviation in % 9.51 8.35 6.94

η
opt
geo in % 18.292 18.06 22.458

η
exp
geo in % 17.88 17.632 21.218

deviation in % −2.26 −2.37 −5.52

C
opt
total in e 957.3 933.7 780.6

C
exp
total in e 972.6 950 811.3

based on literature data Q
opt
mean in m3h−1 1.732 1.732 1.732

Q
exp
mean in m3h−1 1.893± 0.027 1.802± 0.026 1.715 ± 0.026

Deviation in % 9.32 4.05 −0.98

Po
opt
mean in W 66.298 62.148 53.953

Po
exp
mean in W 72.574±2.36 67.202 ±2.36 56.318 ±1.77

Deviation in % 9.47 8.13 4.38

η
opt
geo in % 18.646 19.891 22.912

η
exp
geo in % 17.696 18.343 21.02

Deviation in % −5.1 −7.78 −8.26

C
opt
total in e 944.4 919.4 769.7

C
exp
total in e 978.4 968.1 814.5

smaller than the saving potential compared to conventional parallel design (≈ 50%,
cf. Table 5). In addition, deviations are also to be expected for the conventional design.
This shows that mathematical optimization is suitable for the planning of pumping
system’s design and operation and moreover the level of detail realized in the models
is sufficient.

8 Conclusion and outlook

We presented three different modeling approaches for the optimization of booster sta-
tions in high-rise buildings that are based on a stochastic optimization approach. The
underlying optimizationmodel ismostly linear in its decision variables, but the consid-
eration of the pump characteristics for the booster station design leads to a nonconvex
mixed-integer nonlinear program, which is hard to solve for real-world instances in its
original form. To overcome this drawback, we derived two additional model variants,
allowing for MILP formulations. These are a piecewise linear approximation and a
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piecewise linear relaxation of the nonlinear pump characteristics. Furthermore, we
implemented a problem-specific solving algorithm which is based on these different
methods and additional domain-specific engineering knowledge to derive global-
optimal results for real-world instances efficiently. The solving algorithm reduces
the original MINLP by fixing specific pump purchase decisions and uses a selection
heuristic to find feasible primal solutions in a very short time. This primal solution
search is undertaken alternating with the dual solution search, which is based either on
the reduced MINLP directly or on the implemented piecewise linear relaxation. The
presented solving algorithm improves the solution times considerably in comparison
to the originalMINLP formulation.We presented the computation benefits of the solv-
ing algorithm for three different high-rise buildings as well as for a test rig. The test rig,
constructed for validation purposes, represents the scaled water supply in a high-rise
building. Therefore, we were able to conduct experiments for results of the optimiza-
tion models considering different data sources as well as varying degrees of freedom.
The comparison of optimization and experimental results on the test rig shows that the
degree of detail is adequate and that the introducedmethod is transferable to real-world
infrastructure. Allowing for different degrees of freedom for the alignment of pumps
in the water supply system shows that the decentralized topology of booster stations
can yield approx. 25% of cost savings when compared to an optimized parallel pump
alignment. The latter design is the current common practice. Additionally, frequency
converters were installed for only approx. half of the pumps in booster stations, which
is due to the trade-off of energy costs in operation and investment costs making up
total cost. Compared to a conventionally designed booster station, the mathematical
optimization could achieve a total cost reduction of up to approx. 50%. These results
show that we were able to derive significantly improved system designs by combin-
ing domain-specific engineering knowledge and discrete optimization methods. The
developed approach assists engineers as early as in the design stage to improve the
system design. This is possible, since this approach allows to consider the real load
profile in the implemented two-stage stochastic optimization problem. For the future,
we want to address further open research questions in this area, both in the algorith-
mic and engineering domain. For instance, to obtain reasonable problem sizes, we had
to reduce the number of different pump types in the preprocessing with the help of
an engineering knowledge applying heuristic. Therefore, improving the performance
of the algorithm to consider more pumps could achieve even better system designs.
This objective could be approached by an improved deployment of the underlying
piecewise relaxation or by warm-starting already investigated subproblems. From an
engineering perspective, we want to examine more complex, branched systems and
want to look into the transfer of the methods to different fluid systems. Finally, we
would like to examine the operation in more detail and ensure that the best possi-
ble performance is achieved even with load variations and deviations of the assumed
parameters.
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A Appendix

Within the computational evaluations we encountered problems with the two MINLP
solvers SCIP (v5.0) and BARON (v.19.7.13), which we present in more detail in the
following.Within modeling, we put a lot of effort in the conditioning of the underlying
optimization problem to reduce errors based on an ill-conditioned optimization prob-
lem. A summary can be found in Table 7. While BARON occasionally generated no
output for specific instances, SCIP either indicated larger dual bounds than the value
of the true primal solutions or declared instances as infeasible while we were able to
derive feasible solutions either with BARON or manually by engineering knowledge.
BARON terminated without solution output for 4/12 instances for the original MINLP
given by (5) and (6). SCIP output an incorrect solution for 5/12 instances in the original
MINLP with default presolving settings. We were able to reduce the number of false
results for SCIP by adjusting the presolving emphasis settings to “fast” or “off”, as
indicated in Table 7. A newer version of SCIP or BARON can potentially solve the
encountered issues.

Table 7 Specification of the instances for which an error occurred in the direct solution of the MINLPs

Presolving emphasis settings BARON SCIP
Default Default Fast Off

No output B1.P, B1.D, B2.C, B2.D – – B1.P

Wrongly detected infeasibility – B1.P, B1.D, B3.P – TE.D

Indicated too large dual bound – B3.C, B3.D B2.P –

# Instances with error 4/12 5/12 1/12 2/12
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