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Abstract
The synthesis of energy systems is a two-stage optimization problem where design
decisions have to be implemented here-and-now (first stage), while for the operation of
installed components, we can wait-and-see (second stage). To identify a sustainable
design, we need to account for both economical and environmental criteria lead-
ing to multi-objective optimization problems. However, multi-objective optimization
does not lead to one optimal design but to multiple Pareto-efficient design options
in general. Thus, the decision maker usually has to decide manually which design
should finally be implemented. In this paper, we propose the flexible here-and-now
decision (flex-hand) approach for automatic identification of one single design for
multi-objective optimization. The approach minimizes the distance of the Pareto front
based on one fixed design to the Pareto front allowing multiple designs. Uncertainty
regarding parameters of future operations can be easily included through a robust
extension of the flex-hand approach. Results of a real-world case study show that
the obtained design is highly flexible to adapt operation to the considered objective
functions. Thus, the design provides an energy system with the ability to adapt to a
changing focus in decision criteria, e.g., due to changing political aims.

Keywords Multi-objective optimization · Automatic solution selection · Energy
system design · Two-stage optimization · Robust optimization

1 Introduction

The design of sustainable energy systems needs to balance multiple objectives repre-
senting economical, environmental, and social decision criteria. The resulting design
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822 D. E. Hollermann et al.

problem is therefore best addressed by multi-objective optimization. However, multi-
objective optimization does not yield an optimal design but a Pareto front with many
different designs. Hence, the decision maker is often confronted with the question:
How to select one single design for final implementation? To answer this question we
propose the flexible here-and-now decision (flex-hand) approach.

The remaining article is structured as follows: Sect. 1 introduces the considered
problem class and provides basic definitions, followed by a brief overview of exist-
ing decision support approaches including the research contribution of the article. In
Sect. 2, we introduce the flex-hand approach and provide an illustrative example as
well as an extension for uncertain input values. In the following Sect. 3, a real-world
case study of an industrial park is introduced and the results are evaluated. We give a
summary and conclusions in Sect. 4.

1.1 Two-stagemulti-objective optimization

Two-stage optimization depends on two stages of decision making (Ben-Tal et al.
2004). Thus, there are two sets of variables: X f , the set of feasible solutions for
first-stage variables x f , and X s(x f ), the set of feasible solutions for the second-stage
variables xs which depends on the chosen first-stage solution. First-stage variables x f

are also called here-and-now variables since once these variables are fixed, they cannot
be adapted later. Second-stage variables xs are also calledwait-and-see variables since
they can still be adapted later. As an example, first-stage variables x f may model an
investment in heating equipment (a design decision), while second-stage variables xs

model the way the equipment is run (an operational decision).
In this paper, we use multiple objectives to design sustainable energy systems. As

objectives might be conflicting, we are interested in a set of trade-off solutions. A
solution is called Pareto efficient if there is no other solution that is at least as good in
each objective and strictly better in at least one objective (Ehrgott 2005). For a two-
stage problem as energy system optimization, the two-stage multi-objective problem
with K objectives is given by:

min
(
f1(x

f , xs), . . . , fK (x f , xs)
)

(MOOT S )

s. t. x f ∈ X f

xs ∈ X s(x f ) .

In this article, we assume the set of Pareto-efficient solutions to be discrete and
denote them as (χ

f
1 , χ s

1) , . . . , (χ
f
N , χ s

N ). The set of Pareto-efficient solutions in the
objective space, called Pareto front, is denoted as P∗ = {p1, . . . , pN } with p j =
(ρ1 j , . . . , ρK j ) =

(
f1(χ

f
j , χ s

j ), . . . , fK (χ
f
j , χ s

j )
)

∈ R
K . In general, not all multi-

objective problems have a discrete set of Pareto-efficient solutions. In case of an
infinite number of solutions, we can still apply our approach to a representative subset
of Pareto-efficient solutions. A representative, discrete set of Pareto-efficient solutions
can be obtained, e.g., by using the ε-constraint method (e.g., see Ehrgott 2005). For
upper and lower bounds of the value of ε, the ideal and the nadir point could be chosen
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limiting the possible range of objective functions. If the ideal and the nadir point
do not exist for the regarded problem, bounds have to be defined manually by the
decision maker (Miettinen 2008) or an a priori approach has to be employed to restrict
the regarded region of interest, e.g., by finding knee-regions of the Pareto front (see
Sect. 1.2). In contrast to the points on the Pareto front, we do not assume the feasible
sets X f and X s(x f ) to be discrete.

We call the problem ideal when both first-stage variables x f and second-stage vari-
ables xs can be chosen separately for each efficient solution of the problemMOOT S .
The corresponding set of Pareto-efficient solutions in the objective space P∗ is called
ideal Pareto front. The word ideal emphasizes that the ideal Pareto front is always bet-
ter than the Pareto front with fixed first-stage variables. In energy system optimization,
the ideal Pareto front would imply changing design options (e.g. heating equipment)
along the Pareto front and thus, cannot be reached by energy systems implemented in
the real world.

1.2 Decision support approaches

In literature, several approaches have been suggested to support the decision maker
in the selection of one solution from solutions on the Pareto front of multi-objective
optimization problems. Some approaches reduce the number of relevant solutions, so
that the decisionmaker has then to choose one of fewer options. The approaches can be
categorized into three kinds: a priori, interactive, and a posteriori approaches (Mietti-
nen 2008). A method to focus on the relevant solutions a priori by excluding solutions
before the optimization is proposed by Branke et al. (2004) and Rachmawati and Srini-
vasan (2009). They introduce a preference-based evolutionary approach focusing on
calculating “knee” regions of the Pareto front. Hennen et al. (2017) focus on Pareto-
efficient solutions which are near-optimal with respect to an aggregated criterion that
represents the overall set of objective functions.

Besides a priori approaches, interactive decision making approaches exist with
interaction between human and the algorithm during the solution process (Vallerio
et al. 2015). Wierzbicki (2007) discuss reference point approaches where the decision
maker introduces his/her preferences by updating a reference point. Employing the
NIMBUSapproach byMiettinen andMäkelä (1996, 2002), the decisionmaker assigns
the considered objectives to categories indicatingwhich objectives should be improved
andwhich ones could beworsened. Vallerio et al. (2015) propose an approach based on
the trade-off concept. In their approach, the decision maker updates the scalarization
parameters assigned to each objective. As objective the operational risks are addi-
tionally considered accounting for parametric uncertainties in the model. Eskelinen
et al. (2008) introduce the Pareto navigator which helps the decision maker to explore
the Pareto front in order to identify promising regions. A more detailed overview on
interactive decision making approaches can be found in Miettinen (2008). Interactive
decision making depends on additional input of the decision maker. Hence, an auto-
matic selection of one solution is not possible which might be important if preferences
are uncertain or changing.
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An a posteriori approach to reduce the set of relevant Pareto-efficient solutions is
to cluster solutions, e.g., based on subtractive clustering (Zio and Bazzo 2011), by
k-means classification (Taboada et al. 2007), or by a self-organizing map (Li et al.
2009). Das (1999) focus on relevant Pareto-efficient solutions by evaluating subsets
of the objective functions. The approach has been further developed by Antipova et al.
(2015). But still, in all approaches which reduce the number of relevant solutions, the
decision maker has to select the finally implemented design.

For further reduction of the Pareto-efficient solutions, Taboada et al. (2007) and
Abubaker et al. (2014) propose ranking methods which are based on a prioritization
of objective functions by the decision maker. For ranking solutions without explicit
prioritization, the methods LINMAP (Linear Programming Technique for Multidi-
mensional Analysis of Preference; Srinivasan and Shocker 1973), VIKOR (Duckstein
and Opricovic 1980; Opricovic and Tzeng 2004), and TOPSIS (technique for order
preference by similarity to an ideal solution; Hwang and Yoon 1981; Chen and Hwang
1992) measure the distance to the ideal point and, in TOPSIS, additionally to the nadir
point. The ideal point is assembled by the respective single-objective optimal values
of the objective functions, the nadir point by the worst possible values. The idea of
the three approaches is based on compromise programming, where the solution with
objective values “as close as possible” to the ideal point is chosen, or “as far away as
possible” from the nadir point (Zelany 1974).With the aim to determine key players in
social networks, de la Fuente et al. (2018) employ eleven methods for automatic solu-
tion selection within the set of Pareto-efficient solutions. These include, e.g., shortest
distance to the ideal point (Padhye and Deb 2011), shortest distance to all points,
highest hypercube (Beume et al. 2009), and consensus (Pérez et al. 2017). Single-
stage approaches for a posteriori decision making have been recently reviewed by
Jing et al. (2019). For general multi-objective problems, the introduced ranking meth-
ods are suitable to select one solution. However, for two-stage problems, as the design
of energy systems, the reviewed approaches could miss well-performing solutions as
the approaches depend on pre-calculated efficient solutions. Thereby, well-performing
designs which are not part of the pre-calculated Pareto front are not taken into account
for final selection.

In particular, design optimization of energy systems is a two-stage optimization
problem (Lin et al. 2016). Two-stage optimization problems consist of two sets of
decision variables: The here-and-now variables representing the first stage which
need to be fixed in the beginning, and the wait-and-see variables representing the
second stage which can still be adapted later (Ben-Tal et al. 2004). In energy system
optimization, the here-and-now variables correspond to the design of energy sys-
tems while the operation is determined by the wait-and-see variables on the second
stage.

The approaches for solution reduction discussed so far do not take any advantage
of the two-stage characteristics of energy systems. Thus, these approaches miss the
opportunity to choose a first-stage solution which provides high flexibility on the sec-
ond stage. Exploiting flexibility might be particular important, since future conditions
are not known today. Hence, the capability to adapt operation to changing circum-
stances should be targeted (Shang and Kokossis 2005). Political aims might change;
and thus, the importance of economical, environmental, and social aimsmight change.
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As a result, the sustainable energy system should provide flexible operation to enable
an adaptation to a changing focus within the regarded criteria.

Two-stage characteristics are regarded in design selection by Mattson and Mes-
sac (2003). In their approach, the design options need to be discrete. For each
design option, the corresponding Pareto front is generated separately. Afterwards,
a Pareto filter is applied simultaneously to all generated fronts deleting all domi-
nated solutions. Finally, design options lying inside a pre-defined region of interest
are selected. However, with increasing number of components in the given superstruc-
ture, the design options along the Pareto front might change more frequently within
the region of interest. Hence, a higher number of suitable design options needs to
be taken into account during final selection. A similar approach is proposed by Car-
valho et al. (2012): Based on discrete design options, the corresponding Pareto front
is generated. Design options with the ability to undergo large changes in operation
enable higher resilience and are thus favored. Guo et al. (2013) introduce a two-
stage optimal planning and design method for combined cooling, heating, and power
microgrid systems. On the first stage, the system design is optimized using a generic
multi-objective optimization approach. For several obtained designs, the operational
costs are minimized on the second stage. Wang et al. (2019) additionally regard a
feedback from the second stage to the first stage to ensure the accuracy of the plan-
ning. However, an automatic selection of favored design options is not proposed in
either approaches, e.g., by applying distance measures to assess the generated Pareto
fronts.

All discussed approaches do either take advantage of the two-stage characteristic
of energy systems or propose a ranking of Pareto-efficient solutions. How to select
one single design exploiting the two-stage nature has not been proposed so far to the
authors’ best knowledge.

In this paper, we propose the flex-hand approach to identify one single design
which represents the whole Pareto front best without depending on any additional
information of the decision maker. In our flex-hand approach, we use the ideal Pareto
front as benchmark for evaluating Pareto fronts with fixed design options, i.e., with
fixed first-stage variables. For this purpose, we minimize the distance between the
Pareto front of the synthesis problem, i.e., the Pareto front with changing design
options on the first stage, and the Pareto front induced by one fixed design. The fixed
design with the minimal distance is selected by the proposed approach, since this
design provides high flexibility regarding the considered objective functions. Thus,
the second stage can be well adapted to a changing focus from one to another objective
function.

Since not only future aims are uncertain but also future parameter values such as
demands or costs, we extend our proposed approach by considering uncertain input
data based on scenarios. Uncertainties of input data have been regarded, e.g., by Quin-
tana et al. (2017), Tock and Maréchal (2015) and Lemos et al. (2018), using the
sensitivity against uncertainties to assess Pareto-efficient solutions. Gabrielli et al.
(2019) propose an approach in which Pareto-efficient designs are assessed by perfor-
mance indicators measuring the robustness and the cost optimality. The final selection
of one design depends on the target levels which need to be provided by the decision
maker. Ide and Schöbel (2016) provide an overview of approaches for one-stage robust
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multi-objective problems. Robust multi-objective optimization has been applied to
energy systems by Majewski et al. (2017). Sun et al. (2018) propose a multi-objective
discrete robust optimization algorithm to identify a single solution by converting mul-
tiple objective functions into one unified cost function. Until now, taking uncertainties
into account when automatically identifying one single design for two-stage problems
has been an open research question.

For certain and uncertain two-stage problems, our approach allows automatic
selection of one design regarding multiple decision criteria. While we introduce our
approach in the context of energy systems, the methodology is general and can be
applied to any two-stage multi-objective optimization problem.

2 The flex-hand approach for design selection inmulti-objective
optimization

The selection of energy system designs considering multiple criteria is complex, since
the Pareto front can contain a diverse set of design options. To help the decision maker
implementing one fixed design which allows flexible operation, we propose the flex-
hand approach. The approach automatically identifies the best possible design looking
even beyond the set of Pareto-efficient solutions. We present the flex-hand approach
in Sect. 2.1 and provide an illustrative example in Sect. 2.2. In Sect. 2.3, we introduce
the robust extension of the flex-hand approach.

2.1 The flexible here-and-now decision approach

The goal of the flex-hand approach is to find one fixed design which represents best the
ideal Pareto front of the two-stage multi-objective problemMOOT S allowing mul-
tiple design options. In optimization of energy systems, the operation of an installed
system can be adapted but changing the installed system design is not possible in
the short term. The flex-hand approach chooses the design with the highest ability to
approximate the ideal Pareto front of the two-stagemulti-objective problemMOOT S

by adapting operation. To determine such a highly flexible design, the flex-hand
approach minimizes the distance between the ideal Pareto front and the Pareto front
based on one fixed design but flexible operation. We provide an illustrative example
of the flex-hand approach in Sect. 2.2.

The flex-hand approach is not limited to energy system optimization but can be
applied to any two-stage multi-objective problem where the first-stage variables x f

need to be fixed right now and the second-stage variables xs can be determined later.
For one fixed design, i.e., for a given first-stage solution x f , we calculate Pareto-

efficient solutions:

min
(
f1(x

f , xs), . . . , fK (x f , xs)
)

s. t. xs ∈ X s(x f ) .
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Fig. 1 Comparison of ideal
Pareto front to an arbitrary fixed
first-stage Pareto front, to assess
the quality of the fixed first-stage
solutions x f ; dark green dots:
ideal Pareto front used as
benchmark; orange circles: fixed
first-stage Pareto front with
distance ε to the ideal Pareto
front; lines are included to guide
reader’s eyes

We obtain a Pareto frontP(x f ) =
{
p1(x f ), . . . , pN (x f )(x

f )
}
depending on the first-

stage solution x f with N (x f ) points which we call fixed first-stage Pareto front.
Now the question arises: How to select first-stage variables x f such that we get the

“best” design? Each point on the ideal Pareto front is part of at least one fixed first-
stage Pareto front. However, the flex-hand approach looks even beyond the solutions
on the ideal Pareto front. To determine the quality of an arbitrary first-stage solution
x f , we compare the Pareto front P(x f ) with fixed first-stage to the ideal Pareto front
P∗. For the comparison of two sets of multi-objective solutions, a variety of distance
measures have been developed (for a review see Zitzler et al. 2003). Here, we choose
a comparison metric based on an additive binary ε-indicator. As discussed by Zitzler
et al. (2003), there is no single best way to compare Pareto fronts, but the ε-indicator
is proposed as a good overall method. Employing other metrics would be possible in
our setting.

For two sets P1 = {p1, . . . , pS} and P2 = {q1, . . . , qT } in the K -dimensional
objective space, the binary ε-indicator is obtained by

I (P1,P2) = min
{
ε : ∀l ∈ [T ] ∃ j ∈ [S] s. t. pi j − qil ≤ ε ∀i ∈ [K ]

}
(1)

where we use the notation [Z ] = {1, . . . , Z} for sets with any integer Z ∈ N. For our

approach, themeasure I
(
P(x f ),P∗

)
indicates the distance between a fixed first-stage

Pareto front and the ideal Pareto front.
The comparison metric can be interpreted as follows: Recall that each point of the

ideal Pareto front P∗ may involve changing first-stage solutions x f along the front.
In contrast, the fixed first-stage Pareto front P(x f ) is based on one single first-stage
solution x f where only the second-stage decision can be adapted. Figure1 shows the
comparison of the ideal Pareto front to an arbitrary fixed first-stage Pareto front.

For each point on the ideal Pareto front, a point on the fixed first-stage Pareto front
can be determined such that the difference in each objective function is smaller than
a value of ε. By minimizing ε, the distance between the Pareto fronts is minimized.
In this way, for energy systems, we minimize the distance between the ideal Pareto
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front allowing changing designs as well as operation and the Pareto front based on
one fixed design where only the operation can be adapted.

Since we consider the difference regarding each objective function separately, we
normalize the objective functions based on the value range in P∗ to circumvent mis-
leading effects by different scales of objective values. Towards this end, we use the
normalized objectives f i with

f i (x
f , xs) = fi (x f , xs) − min j∈[N ] fi (χ

f
j , χ s

j )

max j∈[N ] fi (χ
f
j , χ s

j ) − min j∈[N ] fi (χ
f
j , χ s

j )
.

In the following, we write P(x f ) and P∗
to denote normalized Pareto fronts.

Searching for an optimal first-stage variable (x f )∗, i.e., an optimal design, we now
minimize the distance between the Pareto fronts:

min
{
I
(
P(x f ),P∗) : x f ∈ X f

}
.

The problem formulation can also be written as:

min ε

s. t. f i (x
f , xsj ) − f i (χ

f
j , χ s

j ) ≤ ε ∀i ∈ [K ], j ∈ [N ]
x f ∈ X f

xsj ∈ X s(x f ) ∀ j ∈ [N ] .

Here, f i (χ
f
j , χ s

j ) represents the normalized objective function value of point j on the

ideal Pareto front P∗
. Note that given a first-stage solution x f , the number of points

N (x f ) of the resulting fixed first-stage Pareto front P(x f ) might be different from
the number N of points of the ideal Pareto front P∗

. However, for the purpose of
identifying an optimal first-stage solution (x f )∗, it is sufficient to consider exactly N
points on the fixed first-stage Pareto front P(x f ). The key is here that we are looking
for the maximal minimum distance to the N points on the ideal Pareto frontP∗

. Thus,
it is sufficient to identify, for each point on the ideal Pareto front P∗

, one point on
the fixed first-stage Pareto front P(x f ) which minimizes the distance. As a result, we
need the same number of points in general, N (x f ) = N . Any additional points on the
fixed first-stage Pareto front P(x f ) (i.e., N (x f ) > N ) would be redundant and not be
chosen by the binary ε-indicator [Eq. (1)].

The flex-hand approach yields an optimal first-stage solution (x f )∗ which repre-
sents the ideal Pareto front best regarding the chosen measure. We call the optimal
first-stage solution (x f )∗ the flex-hand solution. In general, the flex-hand solution
chosen by our approach is not necessarily part of the solutions of the calculated ideal
Pareto front P∗. Thus, approaches based on sorting or solution-reduction of the ideal
Pareto front would not be able to identify the flex-hand solution in general.

Having found a flex-hand solution, we calculate the corresponding Pareto-efficient
second-stage solution xs in a separate post-processing optimization step. The resulting
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Fig. 2 Application of the
flex-hand approach to a
single-stage optimization
problem; as there is no second
stage, only one point is assessed;
ε1, ε2, ε3, and ε4 represent the
differences of objective values
with ε1 > ε2 and ε3 > ε4; lines
are included to guide reader’s
eyes

Pareto front is called the flex-hand Pareto front. The number of points on the flex-hand
Pareto front might differ from the original number of points N . For energy systems,
this post-processing optimization corresponds to an operational multi-objective opti-
mization based on a fixed design.

Applying the flex-hand approach to single-stage optimization problems is also
possible. For single-stage problems, the flex-hand approach reduces to an approach
minimizing the objective-wise distance to the ideal point. As there is no second stage,
the distance is measured only from a point instead of a whole Pareto front to the ideal
Pareto front. Hence, only the anchor points are decisive when determining theminimal
distance. As we measure the distance objective-wise, the distance is equivalent to the
distance to the ideal point (Fig. 2).

As there is no second stage, the fixed first-stage Pareto front degenerates to only
one point. The inner points on the Pareto front always lead to smaller differences of the
objective values than one of the anchor points (in Fig. 2: ε1 > ε2 and ε3 > ε4). Thus,
only the anchor points are decisive. Since the differences of the anchor points to the
assessed point are identical to the differences regarding the ideal point, the flex-hand
approach reduces to an approach minimizing the objective-wise distance to the ideal
point.

In contrast to single-stage problems, the anchor points are not decisive in general
for two-stage problems, as the following example shows.

2.2 An illustrative example

We now describe the flex-hand approach using a small example problem. In the
example, the flex-hand approach is applied on the two-stage selection problem (see
Kasperski and Zieliński 2017). In the basic problem, we need to select p out of n items;
that is, given a cost vector c = (c1, . . . , cn), the (trivial) one-stage, one-criterion prob-
lem is to solve:

min
∑
i∈[n]

ci xi

s. t.
∑
i∈[n]

xi = p
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xi ∈ {0, 1} ∀i ∈ [n] .

In the two-stage problem, we can decide to buy some items now, and complete these
items to a full selection of p items later. Hence, the sets of first-stage and second-stage
feasible solutions X f and X s(x f ), respectively, are defined by:

X f =
⎧
⎨
⎩x ∈ {0, 1}n :

∑
i∈[n]

xi ≤ p

⎫
⎬
⎭ and

X s(x f ) =
⎧
⎨
⎩x ∈ {0, 1}n :

∑
i∈[n]

xi + x f
i = p, xi + x f

i ≤ 1 ∀i ∈ [n]
⎫
⎬
⎭ .

Given a cost vector C = (C1, . . . ,Cn) of first-stage costs and c = (c1, . . . , cn) of the
second-stage costs, the two-stage problem becomes:

min
∑
i∈[n]

Ci x
f
i + ci x

s
i

s. t.
∑
i∈[n]

x f
i + xsi = p

x f
i + xsi ≤ 1 ∀i ∈ [n] .

x f
i ∈ {0, 1} ∀i ∈ [n] .

xsi ∈ {0, 1} ∀i ∈ [n] .

Now, let us assume that two objective functions are given

f1
(
x f , xs

) =
∑
i∈[n]

Ci x
f + ci x

s
i (2)

f2
(
x f , xs

) =
∑
i∈[n]

Ci x
f + di x

s
i (3)

with an additional cost vector d = (d1, . . . , dn) of second-stage costs. The ideal Pareto
front is the same as the Pareto front of the problem:

min
(
f1

(
x f , xs

)
, f2

(
x f , xs

))
(MOOT S

EX )

s. t.
∑
i∈[n]

x f
i + xsi = p

x f
i + xsi ≤ 1 ∀i ∈ [n] .

x f
i ∈ {0, 1} ∀i ∈ [n] .

xsi ∈ {0, 1} ∀i ∈ [n] .

123



Flexible here-and-now decisions for two-stage multi-objective… 831

Table 1 Cost vectors for n = 6
items of the illustrative example

item 1 2 3 4 5 6

C 58 84 38 35 22 82

c 60 48 17 100 3 27

d 75 11 67 27 45 88

Table 2 Solutions and objective
function values of the ideal
Pareto front of the illustrative
example

Number x f
i xsi f1 f2

1 {} {3, 5, 6} 47 200

2 {4} {3, 5} 55 147

3 {} {2, 3, 5} 68 123

4 {3, 4} {5} 76 118

5 {4} {2, 5} 86 91

6 {4, 5} {2} 105 68

7 {5} {2, 4} 170 60

In the flex-hand approach, we take into account that it is usually not possible to change
thefirst-stage solution x f , even if the preference of the decisionmaker changeswhether
criterion f1 or f2 is more important. Hence, a first-stage solution x f is desired leading
to a good approximation of the whole ideal Pareto front such that the decision maker
obtains a satisfying solution even though his/her preference might change.

In this example, the task is to choose p = 3 items out of n = 6 items over the first
and second stage, minimizing objective functions (2) and (3). The corresponding cost
vectors providing the costs of the items are given in Table1.

For selecting p = 3 elements, the ideal Pareto front of problemMOOT S
EX com-

prises seven points, see Table2. Note that we allow the first-stage variables x f to differ
between solutions of the ideal Pareto front. In the following, we write {i} if item i is
selected and xi is equal to 1.

In the example, the flex-hand approach chooses one first-stage solution x f and
extends it to up to seven full solutions with 3 items each such that the ideal Pareto
front is approximated. Here, we dispense with the normalization in order to retain
comprehensibility of the example. Table3 presents details of an optimal flex-hand
solution. Note that none of the solutions found this way are actually on the ideal
Pareto front in this case and thus the selected highly flexible first-stage solution with
selected item 3 would not have been identified by a posteriori selection methods.

In Table3 we also indicate the differences in the two objective values f1 and f2,
i.e., the objective-wise distances ε1 and ε2. The maximum distance ε∗ is reached in
solution number six, with a difference of 26 in the second objective with costs of 94
instead of 68. Hence, the objective value of the flex-hand approach is ε∗ = 26. Both
Pareto fronts are visualized in Fig. 3.
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Table 3 Flex-hand solution with
corresponding objective function
values and objective-wise
distances of the illustrative
example

number
(
x f
i

)∗ xsi f1 f2 ε1 ε2

1 {3} {5, 6} 68 171 21 0

2 {3} {5, 6} 68 171 13 24

3 {3} {2, 5} 89 94 21 0

4 {3} {2, 5} 89 94 13 0

5 {3} {2, 5} 89 94 3 3

6 {3} {2, 5} 89 94 0 26

7 {3} {2, 4} 186 76 16 16

Fig. 3 Ideal and flex-hand Pareto
fronts of the illustrative example

2.3 The robust flex-hand approach

In optimization of energy systems, decisions are based on input parameters which are
inherently uncertain. Thus, we extend the proposed flex-hand approach for problems
comprising uncertain parameters in the objective functions and constraints, and intro-
duce the robust flex-hand approach. As the flex-hand approach, the robust flex-hand
approach can also be applied to any other two-stage multi-objective problem where
the first-stage needs to be determined in advance.

The robust flex-hand approach automatically selects first-stage solutions taking
uncertainties into account. For this purpose, we assume multiple scenarios which are
contained in the discrete uncertainty set U . In each scenario, we compare the ideal
Pareto front for the current scenario to a fixed first-stage Pareto front which is based on
one fixed set of first-stage variables for all scenarios simultaneously.We thenminimize
the distance between the Pareto fronts in the worst case and thereby find the robust
optimal first-stage solution.

For this purpose, we calculate the ideal Pareto front P∗(ξ) in each scenario ξ ∈ U
separately. Here, the number of elements inP∗(ξ) is denoted by N (ξ). The objectives
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Fig. 4 Idea of the robust flex-hand approach: For each scenario separately, the ideal Pareto front (dark green
filled marks) and a robust fixed first-stage Pareto front (orange unfilled marks) are compared; triangles,
circles, and squares represent scenario ξ1, ξ2, and ξ3, respectively; the distance ε is calculated regarding
all scenarios; here, Pareto fronts are presented without normalization; lines are included to guide reader’s
eyes

are parametrized also through scenarios ξ ∈ U , i.e., we use fi
(
x f , xs(ξ), ξ

)
. Again,

we normalize objectives which we denote by f i
(
x f , xs(ξ), ξ

)
, for each scenario ξ .

To minimize the worst-case distance between the ideal Pareto front and the fixed first-
stage Pareto front, we minimize the maximum value of the ε-indicator [Eq. (1)] over
all ξ ∈ U :

min ε

s. t. f i
(
x f , xsj (ξ), ξ

)
− f i

(
χ

f
j (ξ), χ s

j (ξ), ξ
)

≤ ε ∀ξ ∈ U , i ∈ [K ], j ∈ [N (ξ)]
x f ∈ X f

xsj (ξ) ∈ X s(x f , ξ) ∀ξ ∈ U , j ∈ [N (ξ)] .

Here,X s(x f , ξ) is the set of feasible second-stage variables given a first-stage solution
x f and a scenario ξ . The optimal first-stage solution (x f )∗ is the identified robust flex-
hand solution.

Anexample is given inFig. 4. The ideal Pareto front is calculated for eachof the three
scenarios (ξ1, ξ2, ξ3) separately. The robust fixed first-stage Pareto fronts are based
on one fixed set of first-stage variables for all scenarios; however, the corresponding
robust fixed first-stage Pareto fronts are calculated for each scenario separately by
adapting the second-stage variables xs .

We now compare the robust flex-hand approach with other existing robust opti-
mization approaches (see Aissi et al. 2009; Gabrel et al. 2014; Yanıkoğlu et al. 2019
for general surveys). We can rewrite the flex-hand approach as the following problem:

min
x f ∈X f

max
ξ∈U

max
y f (ξ)∈X f ,

ys (ξ)∈X s
(
y f (ξ),ξ

)
min

xs (ξ)∈X s (x f ,ξ)
max
i∈[K ]

(
f i

(
x f , xs(ξ), ξ

) − f i
(
y f (ξ), ys(ξ), ξ

))
,
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that is, we first decide on a first-stage solution x f , then an adversary determines both
a comparator solution (y f (ξ), ys(ξ)) as well as a scenario ξ ∈ U . We then extend
x f with a second-stage solution xs(ξ) to get as close as possible to the comparator
f i

(
y f (ξ), ys(ξ), ξ

)
under scenario ξ . The objective value of the flex-hand approach

is then determined by the index i ∈ [K ] leading to the largest difference between the
achieved objective value f i

(
x f , xs(ξ), ξ

)
and the comparator f i

(
y f (ξ), ys(ξ), ξ

)
.

Because of the min–max–min–max objective, we are not in the classical settings of
strict (min–max; Soyster 1973) or adjustable robustness (min–max–min; Ben-Tal et al.
2004).

Now, we consider the case of a single objective function, i.e., K = 1. Then our flex-
hand approach is simplified by removing the last maximum. The resulting problem has
the form of a two-stagemin–max regret problem. Problems of this type are challenging
to analyze and the object of current research, see Poursoltani and Delage (2019) for
some theoretical insights. In particular, the optimal solution of the resulting problem
might change if the uncertainty set U is replaced by its extreme points.

3 Case study

In this section, we apply the flex-hand approach to design the energy system of a
real-world industrial park. The case study is introduced in Sect. 3.1. The results of the
flex-hand approach are presented and discussed in detail in Sect. 3.2 and in Sect. 3.3
for the robust flex-hand approach.

To compute Pareto fronts, we use the adaptive normal boundary intersectionmethod
(Das and Dennis 1998). For calculation, we employ 4 threads of a computer with 3.24
GHz and 64 GB RAM. The problem is formulated in GAMS 24.7.3 (McCarl and
Rosenthal 2016) and solved by the solver CPLEX 12.6.3.0 (IBM Corporation 2015)
to machine accuracy.

3.1 The real-world example

The real-world example is based on our previous work (Voll et al. 2013) on the opti-
mization of a distributed energy supply system. We consider an industrial site with
one power grid, one heating grid and two separate cooling grids (Site A and Site B).
The thermal demands and their uncertainties are given in Fig. 5.

The design of the energy system corresponds to sizing and installing any number
of components from the following types of energy conversion components: boilers
B, combined heat and power engines CHP, absorption chillers AC , and compression
chillers CC . Natural gas can be used at costs of pgas = 6 ct/kWh with ±40% of
uncertainty. Furthermore, we assume a connection to the electricity grid. Electricity
can be purchased for pel,buy = 16 ct/kWh and sold for pel,sell = 10 ct/kWh. For
purchasing and selling, an uncertainty of ±46% is considered. All possibly uncertain
input parameters depend on the scenario ξ and are additionally marked using a tilde.
The values for uncertainty are deduced from Majewski et al. (2017). To design a
sustainable energy system, we employ an economical and an environmental objective
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Fig. 5 Thermal demands of the
industrial site and their
uncertainties represented by
error bars; adopted from
Majewski et al. (2017)

function: the total annualized costs TAC and the global warming impact GWI . In
principle, the method could also consider social criteria (Mota et al. 2015).

The total annualized costs TAC are defined by:

TAC
(
U̇ , U̇ el,buy, V̇ el,sell , INVESTk; ξ

)

=
∑
t∈[T ]

[
Δτt

(
p̃gas(ξ) ·

∑
k∈B∪CHP

U̇kt (ξ) + p̃el,buy(ξ) · U̇ el,buy
t (ξ)

− p̃el,sell(ξ) · V̇ el,sell
t (ξ)

)]

+
∑
k∈K

(
1

PVF
+ pmk

)
· INVESTk (4)

Here, k represents a component in the set of all componentsK = B∪CHP∪ AC∪CC
which might be installed. For each time step t ∈ [T ], Δτt represents its length. The
corresponding input energy flows of natural gas for boilers B and combined heat
and power engines CHP are denoted by U̇kt . The input and the output energy flow of
electricity are denoted by U̇ el,buy

t and V̇ el,sell
t , respectively. For each component k, pmk

represents the annual maintenance costs as share of the investment costs INVESTk . For
annualizing the investment costs INVESTk , we use the present value factor (Broverman
2010)

PVF = (i + 1)h − 1

(i + 1)h · i

with an interest rate i = 8% and a time horizon h = 4 a.
In the case study, the second-stage variables xs comprise time-dependent opera-

tional variables U̇kt , U̇
el,buy
t and V̇ el,sell

t . The first stage consists of the design variables
(see Sect. 1), besides the corresponding investment costs INVESTk .
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The global warming impact is given by:

GWI
(
U̇ , U̇ el,buy, V̇ el,sell ; ξ

)

=
∑
t∈[T ]

Δτt

[ ∑
k∈B∪CHP

U̇kt (ξ) · GWIgas +
(
U̇ el,buy
t (ξ) − V̇ el,sell

t (ξ)
)

· G̃WI
el
(ξ)

]
. (5)

We employGWIgas = 244 gCO2-eq./kWh for the specific global warming impact of
gaswhich is not subject to remarkable variation. For the specificglobalwarming impact
GWIel of electricity purchased from the grid, we employ a value of 561 gCO2-eq./kWh.
Since the future electricity mix might change significantly, we assume the specific
global warming impact GWIel to be uncertain lying within 430 gCO2-eq./kWh and
610 gCO2-eq./kWh. When selling electricity to the grid, a credit for global warming
impact is given, following the idea of the avoided burden (Baumann and Tillman
2004). Here, the global warming impact GWI depends only implicitly on the first-
stage variables x f due to the constraints. A direct influence would be given if the
global warming impact induced by the manufacturing of the components was taken
into account. However, since the global warming impact of the operation has usually
a significantly higher impact (Guillén-Gosálbez 2011), we neglect this dependency.
The complete flex-hand optimization model is presented in “Appendix A”.

For the design optimization, we assume a “green field” without existing energy
components. However, the flex-hand approach could also be applied to retrofit an
energy system.

3.2 The flex-hand design

We now employ the flex-hand approach to design the sustainable energy system in
order to obtain the best solution for the first-stage variables x f which determine
the flex-hand design. For this purpose, we first calculate the ideal Pareto front as a
benchmark. The ideal Pareto front is obtained by allowing a different design for each
point on the front. The largest optimization problem for calculating a point on the ideal
Pareto front consists of 1950 equations, 576 variables, and 310 binary variables after
presolve. In total, the whole ideal Pareto front is calculated in 317 s. The flex-hand
problem has 5099 equations, 2023 variables, and 751 binary variables after presolve.
Here, computing the flex-hand Pareto front takes 152 s. Both the ideal Pareto front and
the flex-hand Pareto front are shown in Fig. 6.

Compared to the fixed first-stage Pareto fronts of the ideal designs, the flex-hand
Pareto front of the selected design is “stretched out”. Thus, the flex-hand design allows
for flexible operation providing a high ability to adapt to changing future objectives.
The flex-hand design can be operated such that the total annualized costs TAC are very
low at 7.8Mio.e/a or the global warming impact GWI is very low at 22.6 ktCO2-eq./a.

In this case study, the minimal distance ε∗ between the ideal and the flex-hand
Pareto front is limited, e.g., by the anchor points with minimal total annualized costs
limits (Fig. 6). The corresponding scaled value for the minimized distance is ε∗ =
0.128. For unscaled values, the minimal total annualized costs for the ideal design are
TACideal = 7.51Mio.e/a and for the flex-hand design TAC f lex-hand = 7.78Mio.e/a,
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Fig. 6 Comparison of ideal
Pareto front (dark green dots)
and the flex-hand Pareto front
(orange circles) with minimal
distance ε∗ to the ideal Pareto
front; small dark green dots:
fixed first-stage Pareto front of
ideal designs, i.e.,
Pareto-efficient operation for
each design of the ideal Pareto
front; here, Pareto fronts are
presented without
normalization; lines are included
to guide reader’s eyes

respectively. Hence, the maximal deviation for total annualized costs is 0.27Mio.e/a
which corresponds to a maximal loss of only 3.6% compared to the ideal design with
minimized total annualized costs. Regarding the minimal global warming impact, the
maximal deviation is only 2.17%. Thus, the flexibility of the flex-hand design is very
high regarding both objective functions.

When having a closer look at the identified design, we cannot identify a unique
reason for its higher ability to adapt operation (Fig. 7).

In general, solutions with lower global warming impact prefer installing higher
thermal power of combined heat and power engines, since the specific global warming
impact of the electricity mix of the grid is higher than the impact of the combined heat
and power engines in combination with absorption chillers. The flex-hand design does
not show remarkable differences compared to the other ideal designs but provides
an excellent compromise. Without the proposed approach, this highly flexible design
would most likely not have been identified by the decision maker.

3.3 The robust flex-hand design

We now apply the robust flex-hand approach to the proposed case study taking uncer-
tainties into account. The uncertainties are introduced in Sect. 3.1. Here, we consider
three representative scenarios ξ1, ξ2, and ξ3. Scenario ξ2 corresponds to values of
the problem without uncertainties discussed in Sect. 3.2. In scenario ξ1, we assume
all uncertain values to take their smallest values within the uncertainty range and in
scenario ξ3 their largest values, respectively. However, any other scenario could be
chosen.

To evaluate the robust flex-hand design, we compare the robust flex-hand Pareto
fronts in all three scenarios to the flex-hand Pareto fronts generated for each scenario
separately. Figure8 shows that the flex-hand Pareto fronts generated for each scenario
separately do not coincide with the robust flex-hand Pareto fronts. In scenario ξ3,
the robust flex-hand design leads to smaller total annualized costs than the flex-hand
design computed for scenario ξ3 but to a higher global warming impact. In total, the
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Fig. 8 Triangles, circles, and squares represent scenario ξ1, ξ2, and ξ3, respectively; dark green filledmarks:
ideal Pareto front generated for each scenario separately, orange unfilled marks: robust flex-hand Pareto
front in each scenario; small light blue marks: flex-hand Pareto front for separately considered scenarios;
here, Pareto fronts are presented without normalization

Fig. 9 All Pareto fronts for
scenario ξ1; dark green filled
triangles (�): ideal Pareto front
of scenario ξ1; orange unfilled
triangles (�): robust flex-hand
Pareto front in scenario ξ1; small
light blue triangles (�):
flex-hand Pareto front of
scenario ξ1; small light blue
unfilled circles and squares (◦
and �): flex-hand Pareto front in
scenario ξ1 based on flex-hand
design computed for scenario ξ2
and ξ3, respectively; here, Pareto
fronts are presented without
normalization

robust flex-hand Pareto front is less “streched out” than for the nominal case (Sect. 3.2)
leading to an optimal distance ε∗ of 0.625. The reduced adaptability to the ideal Pareto
fronts is due to the fact that the robust flex-hand Pareto fronts need to approximate
three ideal Pareto fronts simultaneously, instead of just one Pareto front. Thus, a good
performance of a flex-hand design in one scenario might lead to a poor performance
in another scenario if uncertainties are not regarded during design (Fig. 9). In contrast,
the robust flex-hand design is a compromise solution performing well in all three
scenarios simultaneously.

In Fig. 9, we take a closer look on the computed Pareto fronts in scenario ξ1.
Here, the robust flex-hand design (�) clearly performs better than the flex-hand design
identified for scenario ξ2 (◦) and the flex-hand design identified for scenario ξ3 (�).
In scenario ξ1, only the flex-hand Pareto front of scenario ξ1 (�) approximates the
ideal Pareto front (�) better than the robust flex-hand Pareto front (�). However, the
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flex-hand design of scenario ξ1 is infeasible for scenario ξ2 and ξ3. In contrast, the
robust flex-hand design is feasible and performs well for all scenarios.

Having a closer look at the design (Fig. 10), we observe that the total thermal power
of the three flex-hand designs increases from scenario ξ1 to ξ3. This is due to the fact
that values of uncertain input parameter increase as well. With increasing demands
and also increasing specific global warming impact of the electricity grid, larger com-
bined heat and power engines and boilers are installed combined with a higher thermal
power of absorption chillers and smaller compression chillers. The robust flex-hand
design does not differ remarkably from the three flex-hand designs. Thus, the robust
flex-hand approach is necessary to identify the excellent compromise given by the
robust flex-hand design.

4 Conclusions

The sustainable optimization of energy systems is inherently a two-stage optimization
problemwithmultiple decision criteria.Applyingmulti-objective optimization usually
generates different designs for each point on the Pareto front.We propose the flex-hand
approach for identifying a single design which performs well regarding all decision
criteria. The idea of the flex-hand approach is to approximate the Pareto front with
changing design options (ideal Pareto front) by a Pareto front with one fixed design
for the whole front. The design leading to the minimal distance between both Pareto
fronts is the designwhich is identified by the flex-hand approach. The identified design
(flex-hand design) is able to adapt to all regarded criteria well, and thus, provides high
flexibility to reach future aims for which focus might change between the considered
objective functions.

Our real-world case study demonstrates the resulting high adaptability with respect
to the considered criteria. For designing the sustainable energy system, we choose total
annualized costs and the global warming impact as economical and environmental cri-
teria, respectively. The calculated Pareto front of the flex-hand design is “stretched
out” in comparison to the Pareto fronts obtained by operational optimization of designs
lying on the ideal Pareto front. The objective function values of flex-hand design dif-
fer by less than 3.6% from the ideal values which highlights the excellent quality
of the identified flex-hand design. The flex-hand design does not show remarkable
differences compared to the designs lying on the ideal Pareto front. Thus, without the
flex-hand approach, the decision maker would possibly not have chosen the identified
design. This effect becomes even more pronounced when considering multiple sce-
narios simultaneously to account for uncertainty, in which case our approach is able
to find a robust solution.

To conclude, the flex-hand approach takes advantage of the two-stage nature of
energy systems to automatically select one single design which provides a high flexi-
bility to adapt operation to all considered criteria.
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Appendix A: Model formulation

In the following, we provide the problem formulation of the robust flex-hand opti-
mization for the distributed energy supply system considered in our case study based
on the model formulation provided by Voll et al. (2013) (Sect. 3). In the case study,
we consider the total annualized costs TAC and the global warming impact GWI as
objective functions. Uncertainties are regarded for tariffs for purchasing gas p̃gas(ξ)

and electricity p̃el,buy(ξ) as well as for selling electricity p̃el,sell(ξ). Furthermore, the

specific global warming impact of the electricity mix of the grid G̃WI
el
(ξ) is assumed

to be uncertain as well. In the constraints, the energy balances are affected by uncertain

energy demands ˜̇Eheat
(ξ), ˜̇Ecool

(ξ), and ˜̇Eel
(ξ).

min ε (6)

s. t. TAC
(
U̇ , U̇ el,buy , V̇ el,sell , γ, V̇ N ; ξ, j

)
− TAC

∗
(ξ, j) ≤ ε ∀ξ ∈ U, j ∈ [N (ξ)] (7)

GWI
(
U̇ , U̇ el,buy , V̇ el,sell ; ξ, j

)
− GWI

∗
(ξ, j) ≤ ε ∀ξ ∈ U, j ∈ [N (ξ)] (8)

∑
k∈B∪CHP

V̇kt (ξ, j) −
∑
k∈AC

U̇kt (ξ, j) = ˜̇Eheat

t (ξ) ∀t ∈ [T ], ξ ∈ U, j ∈ [N (ξ)] (9)

∑
k∈AC∪CC

V̇kt (ξ, j) = ˜̇Ecool

t (ξ) ∀t ∈ [T ], ξ ∈ U, j ∈ [N (ξ)] (10)

∑
k∈CH P

V̇ el
kt (ξ, j) −

∑
k∈CC

U̇kt (ξ, j)

+ U̇ el,buy
t (ξ, j) − V̇ el,sell

t (ξ, j) = ˜̇Eel

t (ξ) ∀t ∈ [T ], ξ ∈ U, j ∈ [N (ξ)] (11)
∑
h∈[H ]

γkh ≤ 1 ∀k ∈ K (12)

γkh · V̇ N ,lb
kh ≤ V̇ N

kh ≤ γkh · V̇ N ,lb
kh+1 ∀ k ∈ K,∀h ∈ [H ] (13)

ρmin ·
∑
h∈[H ]

V̇ N
kh ≤ V̇kt (ξ, j) ≤

∑
h∈[H ]

V̇ N
kh ∀k ∈ K, t ∈ [T ], ξ ∈ U, j ∈ [N (ξ)] (14)

V̇kt (ξ, j) = ηk · U̇kt (ξ, j) ∀k ∈ K, t ∈ [T ], ξ ∈ U, j ∈ [N (ξ)] (15)
V̇ el
kt (ξ, j) = ηtotk · U̇kt (ξ, j) − V̇kt (ξ, j) ∀k ∈ CHP, t ∈ [T ], ξ ∈ U, j ∈ [N (ξ)] (16)

ε ∈ R+ (17)

U̇ el,buy(ξ, j), V̇ el,sell (ξ, j), V̇ el (ξ, j), U̇ (ξ, j), V̇ (ξ, j) ∈ R
|K|×T
+ ∀ξ ∈ U, j ∈ [N (ξ)] (18)

γ ∈ {0, 1}|K|×H , V̇ N ∈ R
|K|×H
+ (19)
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The total annualized costs TAC and the global warming impact GWI are defined by

TAC
(
U̇ , U̇ el,buy, V̇ el,sell , γ, V̇ N ; ξ, j

)

=
∑
t∈[T ]

[
Δτt

(
p̃gas(ξ) ·

∑
k∈B∪CHP

U̇kt (ξ, j) + p̃el,buy(ξ) · U̇ el,buy
t (ξ, j)

− p̃el,sell(ξ) · V̇ el,sell
t (ξ, j)

)]

+
∑
k∈K

(
1

PVF
+ pmk

)
·

∑
h∈[H ]

[
γkh · κkh + mkh ·

(
V̇ N
kh − γkh V̇

N ,lb
kh

)]

︸ ︷︷ ︸
=:INVESTk

GWI
(
U̇ , U̇ el,buy, V̇ el,sell; ξ, j

)

=
∑
t∈[T ]

Δτt

[ ∑
k∈B∪CHP

U̇kt (ξ, j) · GWIgas

+
(
U̇ el,buy
t (ξ, j) − V̇ el,sell

t (ξ, j)
)

· G̃WI
el
(ξ)

]
.

Bars above the total annualized costs TAC and the global warming impact GWI in
the optimization problem denote the normalization of the objective values. Objective

values on the normalized ideal Pareto fronts are denoted by
(
TAC

∗
(ξ, j),GWI

∗
(ξ, j)

)

for each point j ∈ [N (ξ)] and each scenario ξ in the uncertainty set U .
The duration of a time step t ∈ [T ] is given by Δτt . Maintenance costs are

determined by the share pmk of the investment costs INVESTk . The investment costs
INVESTk are annualized by the present value factor PVF. GWIgas represent the spe-
cific globalwarming impact of purchased gas. Purchased and sold electricity is denoted
by U̇ el,buy

t and V̇ el,sell
t , respectively. U̇kt and V̇kt specifies input and output energy

flows in time step t of component k ∈ K. Components include boilers B, combined
heat and power engines CHP, absorption chillers AC , and compression chillers CC .
Input and output energy flows are coupled by the thermal efficiency ηk . For combined
heat and power engines, the total efficiency ηtotk is given by the sum of the thermal
and the electrical efficiency ηtotk = ηk + ηelk . The minimal part-load of a component k
is defined by the fraction ρmin of the installed nominal capacity. The operational vari-
ables U̇kt , V̇kt , U̇

el,buy
t and V̇ el,sell

t depending on time step t relate to the second-stage
variables xs .

The first constraints (7) and (8) refer to the additional constraints to limit the
binary ε-indicator. The energy balances for heating, cooling and electricity are given
in Eqs. (9)–(11). Constraint (12) is part of the linearization of the investment costs
INVESTk which is explained in detail in the followingparagraph.Thenominal installed
thermal power and the operational power are limited by constraints (13) and (14),
respectively. Equations (15) and (16) relate output energy to the input energy depend-
ing on the efficiency.
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Fig. 11 Piecewise linearization
of the investment costs INVESTk
of a newly installed component
k is presented. Here, h is the
active line segment; thus, the
binary variable γkh is equal to 1

The investment costs INVESTk of a newly installed component k are linearized

by piecewise linearization with
∑

h∈[H ]
[
γkh · κkh + mkh ·

(
V̇ N
kh − γkh V̇

N ,lb
kh

)]
(see

Fig. 11). mkh is the slope for each line segment h ∈ [H ] and is defined by

mkh := κkh+1 − κkh

V̇ N ,lb
kh+1 − V̇ N ,lb

kh

∀ k ∈ K, h ∈ [H ] .

Here, parameters V̇ N ,lb
kh+1 and V̇ N ,lb

kh represent the nominal capacities of the lower and
upper supporting point of line segment h and parameters κkh and κkh+1 the corre-
sponding specific investment costs. Binary variables γkh determine if line segment h
is active (γkh = 1). Since the sum

∑
h∈[H ] γkh is equal to or less than 1 (Eq. (12)),

only one line segment can be active at the time. Thus, only one value for the nominal
capacity V̇ N

kh of all line segments is unequal to 0; hence, the nominal capacity V̇ N
k of

an installed component k is given by the sum
∑

h∈[H ] V̇ N
kh . In the case study, first-stage

variables x f are the design decisions V̇ N
kh and γkh with investment costs INVESTk for

each installed component k.
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