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Abstract
The objective of this research is to efficiently solve complicated high dimensional 
optimization problems by using machine learning technologies. Recently, major 
optimization targets have been changed to more complicated ones such as discon-
tinuous and high dimensional optimization problems. It is necessary to solve the 
high-dimensional optimization problems to obtain an innovate design from topol-
ogy design optimizations that have enormous numbers of design variables in order 
to express various topologies/shapes. In this research, therefore, an efficient global 
optimization method via clustering/classification methods and exploration strat-
egy (EGOCCS) is developed to efficiently solve the high dimensional optimization 
problems without using probabilistic values as standard deviation, that are generally 
given/utilized in Gaussian process, and to reduce the construction cost of response 
surface models. Two optimization problems are solved to verify the usefulness of 
the developed method of EGOCCS. First optimization is executed to demonstrate 
the validity of the EGOCCS in 2, 10, 40, 80 and 160-dimensional analytic function 
problems that are also solved by the Bayesian optimization for comparison purposes. 
It is confirmed that the EGOCCS with radial basis function interpolation approach 
can obtain the best solutions in many analytic function problems with larger num-
bers of design variables. Second optimization is executed to examine the effect of 
the EGOCCS in high dimensional aerodynamic shape optimization problems for 
a two-dimensional biconvex airfoil that are also solved by a genetic algorithm for 
comparison purposes. It is confirmed that the EGOCCS can be efficiently used in 
the high dimensional aerodynamic shape optimization problems.
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1  Introduction

Design optimization techniques have already been used in actual designs such as 
a winglet shape design of Mitsubishi Regional Jet (Takenaka et al. 2008) and a 
nose shape design of the Bullet Train 700 series (Igarashi 2008). Recently, major 
optimization targets have been changed to more complicated ones such as dis-
continuous optimization problem, robust optimization problem, high dimensional 
optimization problem and so on. Such complicated optimization problems often 
appear in topology design optimizations due to the complexity of its topology/
shape expressions. The topology optimization is a design approach to obtain an 
optimal layout including the changes of size, shape and topology. In the aircraft 
design, for example, the topology optimization can determine not only the opti-
mal size and shape of aircraft, but also the number of blades, fuselages, engines 
and so on. By applying the topology optimization instead of the conventional 
shape optimization, it is possible to explore innovative optimal design configura-
tions that exceed the designer’s idea/experience.

The optimization methods in numerical simulation fields can be roughly 
divided into two groups, invasive and noninvasive types. The noninvasive optimi-
zation methods include evolutionary strategies such as genetic algorithms (GA) 
and differential evolution. These methods have the feature to explore global opti-
mal solutions even with complicated objective functions. As one of famous non-
invasive approaches for high dimensional functions, there is an intense stochastic 
search method which is based on evaluation and optimization of a hypercube and 
is called the hypercube optimization (HO) algorithm (Rahib and Mustafa 2015). 
The hypercube is used to describe searching areas, and the algorithm can explore 
a global optimal solution by mimicking the behavior of a dove discovering new 
areas for food in natural life. The HO algorithm was executed in optimization 
problems with 1000, 5000 and 10,000 dimensions, and then it was demonstrated 
that the algorithm was a potential candidate for optimization of both low and high 
dimensional functions. However, required numbers of functional evaluations were 
from 500,000 to 50 million. The invasive optimization method often includes 
adjoint-based approach. In the adjoint approach, the gradient of the objective 
function with respect to all design variables can be obtained at once by solving 
the adjoint equation, and optimal solutions are explored by using gradient based 
optimization methods. It has the feature to be able to explore a local optimal solu-
tion even in high dimensional optimization problems. Therefore, the topology 
design optimization is generally executed with the adjoint approach (Fujii et al. 
2000; Lars et al. 2002) since the topology design optimization requires an enor-
mous number of design variables in order to express various topologies/shapes. 
In Fujii et  al. (2000), an effective gradient-based method for the topology opti-
mization of 3D structures has been presented. A flat cantilever beam problem of 
32,000 dimensions, MBB beam problem of 60,000 dimensions, and 3D beam 
design problem of 144,000 dimensions were solved by the adjoint-based optimi-
zation approach. However, the adjoint approach requires to develop the program 
code to solve the adjoint equation and is not possible to search global optimal 
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solutions. In addition, the adjoint approach cannot set integer/binary type con-
straints such as the acceptable number of objects. To tackle these issues, there is 
an example of topology design optimization using evolutionary algorithms (Payot 
et al. 2017). Payot et al. applied an R-snake method to the topology design optimi-
zation as a topology expression method, and then the topology design optimiza-
tion was conducted in supersonic flow conditions using a differential evolutional 
optimization method. As a result, the topology optimization revealed optimum 
profiles that have both features of the Busemann biplane and conventional single 
body optimal airfoils. However, there is a problem in terms of optimization costs 
since the differential evolutional optimization approach was directly used in this 
research. In the topology design optimization in the field of aerodynamics, flow 
simulations are generally used to evaluate the objective function whose computa-
tional cost is not trivial. Therefore, it is necessary to reduce the number of evalua-
tions of aerodynamic objective functions.

To realize efficient global topology design optimization at supersonic flow condi-
tions, it is necessary to efficiently solve three challenging optimization problems, 
i.e. discontinuous optimization problem, optimization problem with infeasible 
regions and high dimensional optimization problem. With respect to the discontinu-
ous optimization problem, the objective functions have discontinuities due to shock 
waves that have to be treated in optimization problems. With respect to the optimi-
zation problem with infeasible regions, the generation of large shock waves yields 
large infeasible regions of design space. In addition, the negative thickness of air-
foil occurs depending on the definition of the ranges of design variables, and then 
the negative thickness of airfoil leads to an infinite loop in the optimization pro-
cess by iteratively selecting a same additional sample point in the infeasible regions. 
In our previous research, an efficient global optimization method for discontinuous 
optimization problems with infeasible regions using classification method (EGO-
DISC) (Ban and Yamazaki 2019) has been developed to efficiently solve discontinu-
ous optimization problems as well as optimization problems with large infeasible 
regions by using machine learning technologies. By developing the EGODISC algo-
rithm, an efficient global optimization could be executed without the infinite loop in 
the optimization process. However, it is still necessary to develop an efficient opti-
mization approach for high-dimensional optimization problems since the topology 
design optimization generally has an enormous number of design variables in order 
to express various topologies/shapes.

There are several efficient optimization methods to solve the complicated opti-
mization problems by using noninvasive approaches and machine learning tech-
niques. For example, there is an optimization method using the Bayesian approach 
such as Gaussian process (Kriging) (Jones et al. 1998). The Bayesian optimization 
method has already been applied to a design optimization problem of supersonic 
transport, and it could obtain design knowledge of a twin-body/biplane-wing con-
figuration (Ban et al. 2016, 2018). Although the Bayesian optimization isn’t a state-
of-the-art algorithm, it is still often utilized in many research fields. In addition, sev-
eral advanced approaches using multi fidelity information have also been proposed 
(Han and Görtz 2012; Yamazaki and Mavriplis 2013). In the Bayesian optimization 
approaches, however, the Gaussian process is used to construct a response surface 
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model, and it takes large calculation cost to solve inverse matrices whose calcula-
tion cost is proportional to the cube of the number of sample points. In addition, it 
is necessary to optimize hyperparameters in the Bayesian optimization, and a gradi-
ent-based optimization method or GA is generally used for the optimization of the 
hyperparameters. Therefore, although the Bayesian optimization method enables to 
reduce the number of evaluations of objective functions (number of sample points), 
it requires huge construction costs of the response surface model especially with 
larger number of sample points. Since the number of sample points tend to become 
larger in higher dimensional optimization problems to explore higher dimensional 
design space, it is difficult to utilize the Bayesian method in high dimensional opti-
mization problems. In addition, the prediction accuracy of the Gaussian process 
regression decreases at the high dimensional optimization problems and it was indi-
cated that the upper limit of the dimensionality of the design variables space to effi-
ciently obtain global optimal solutions was about 10 (Ziyu et al. 2013). There are 
several other methods to efficiently solve the high-dimensional optimization prob-
lems, such as GPEME and KPLS. The Gaussian Process surrogate model assisted 
Evolutionary algorithm for Medium-scale computationally Expensive optimization 
problems (GPEME) uses dimension reduction machine learning techniques for tack-
ling the “curse of dimensionality”. In GPEME, the Sammon mapping is introduced 
to transform the design variables space to take advantage of the Gaussian process 
surrogate modeling in a low-dimensional space (Liu et  al. 2014). However, since 
the dimension reduction method may lose some neighborhood information of the 
training data points in the original space, it is difficult to obtain comparable results 
with the direct Bayesian optimization. Another optimization method for the high-
dimensional optimization problems has been proposed as the Kriging model with 
the Partial Least Squares technique to obtain a fast predictor (KPLS). The combi-
nation of Kriging and Partial Least Square (PLS) is abbreviated KPLS and allows 
us to build a fast Kriging model because it requires fewer hyper-parameters in its 
covariance function. The KPLS method is used for many academic and industrial 
verifications, and promising results have been obtained for problems with up to 
100 dimensions (Bouhlel et al. 2016). However, it was also shown in (Bouhlel et al. 
2016) that the KPLS has lower prediction accuracy than the Gaussian process (Krig-
ing) model with a lot of sample points, which is not adequate to use in high dimen-
sional optimization problems. As a state-of-the-art algorithm in the optimization, 
the reinforcement learning has been proposed (Volodymyr et  al. 2016) to achieve 
the balance of “exploration at unknown region” and “utilization of prediction” that 
are similar principles to the Bayesian optimization. The reinforcement learning is a 
method to select actions by maximizing the assessment from environments such as 
recognitions, judgements and actions, and then it is used for the controls of complex 
systems such as automatic driving, game AI and robot. On the other hand, since the 
reinforcement learning needs an enormous number of iterations (Volodymyr et al. 
2016), it is considered not to be appropriate for the design optimization problems 
discussed in this research.

Furthermore, there are several efficient optimization methods by combining the 
above-mentioned approaches such as gradient-enhanced Kriging and DynDGA. The 
gradient-enhanced Kriging method (Mohamed and Joaquim 2019; Rumpfkeil et al. 
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2011; Han et al. 2017) utilizes the gradient of the objective function with respect to 
all design variables obtained by solving the adjoint equation and more accurate sur-
rogate models can be constructed. This approach can reduce the number of optimi-
zation iterations thanks to the accurate surrogate model. However, this approach still 
has an issue of the invasive optimization approach. A distributed genetic algorithm 
that divides and merges individuals dynamically (DynDGA) (Sugimoto et al. 2019) 
utilizes both of simulation and Kriging estimation to reduce the number of simula-
tions for GA. In this approach, the number of simulation calls reduces to approxi-
mately 63% while maintaining the performance. However, this approach still has an 
issue of the Kriging method for the high dimensions.

In summary, the conventional approaches to solve the high dimensional optimiza-
tion problems can be classified into five types even though the state-of-the-art algo-
rithms. The first is to use the HO algorithm or evolutionary algorithms as GA by 
evaluating an enormous number of objective functions. The second is the gradient-
based optimization using the adjoint sensitivity analysis whose solution is consid-
ered to be a local optimum. The third is to use the Bayesian optimization despite its 
difficulties. The fourth is to introduce some dimension reduction methods despite 
loss of neighborhood information of the training data points. The fifth is to combine 
the above-mentioned approaches. Our proposed approach is completely different 
from the five conventional approaches. A novel optimization method is developed 
using machine learning technologies to efficiently solve the high dimensional opti-
mization problems without Gaussian process. The present paper is organized as fol-
lows. The optimization methods and performance evaluation methods used in this 
research are concisely described in Sect. 2. Then, several surrogate models used in 
this research are concisely introduced and construction/utilization costs of them are 
compared in Sect.  3. And then, optimization results obtained by the conventional 
Bayesian/GA approaches and the developed approach are compared/discussed in 
Sect. 4. Finally, concluding remarks are provided in Sect. 5.

2 � Optimization and evaluation methods

2.1 � Bayesian optimization

2.1.1 � Algorithm of Bayesian optimization

Several surrogate model-based optimization methods have been proposed to effi-
ciently explore global optimal solutions on blackbox functions such as the Bayesian 
approaches (Jones et al. 1998; Yamazaki and Mavriplis 2013; Forrester et al. 2008; 
Williams and Carl 1996) (Kriging response surface model-based approaches). The 
Gaussian process regression is used to construct a prediction model for mean and 
standard deviation values at unknown locations in design variables space, and then 
GA is used to explore promising locations in the design variables space in the gen-
eral Bayesian optimization approach. The expected improvement (EI) is calculated 
from the mean and standard deviation values to achieve the balance of “explora-
tion at unknown region (with larger standard deviation values)” and “utilization of 
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prediction by response surface model (with lower mean values)”, and an additional 
point is selected at the maximum location of the EI value.

2.1.2 � Gaussian process regression

The Gaussian process regression was introduced in Williams and Carl (1996) and 
Rasmussen and Williams (2006). The regression problem is considered for an 
unknown blackbox function giving the input/output relationship when the observa-
tion values y =

{
y1, y2,… , yn

}
 and the input values x =

{
x1, x2,… , xn

}
 are given. 

Mean �y∗|y and variance �y∗|y of the posterior distribution of Gaussian distribution 
are expressed by the following equations.

where C is a gram matrix having Ci,j = k
(
xi, xj

)
 as an element, and k

(
xi, xj

)
 is 

referred to as a kernel function, and then the following ARD Matern 5/2 kernel is 
used in this research.

where D represents the number of design variables.

2.1.3 � Genetic algorithm

GA is one of the metaheuristic methods inspired by the process of natural selection 
such as selection, crossover and mutation. GA simulates the selection of the indi-
viduals by considering the relationship between the applicability to the environment 
and the probability to survive (Selection). Then, it simulates the natural evolution of 
the individuals by generating child individuals from the selected parental individu-
als (Crossover). In addition, it maintains the diversity of the population by altering 
a part of the genes of the child individuals (Mutation). In this research, a tourna-
ment selection, the blend cross over (BLX-α) (Eshleman and Schaffer 1993), and a 
polynomial mutation (Deb and Deb 2014) are used as the selection, crossover, and 
mutation methods.

2.2 � Efficient global optimization method via clustering/classification methods 
and exploration strategy, EGOCCS

In the conventional Bayesian optimization, the Gaussian process regression is used 
to construct a response surface model, and it takes large calculation cost to solve 

(2.1.2.1)�y∗|y = kTC−1y = �, �y∗|y = c − kTC−1k = �2

(2.1.2.2)c = k(x∗, x∗), k =
[
k
(
x1, x

∗
)
k
(
x2, x

∗
)
⋯ k

(
xn, x

∗
)]T

(2.1.2.3)
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inverse matrices whose size is n × n (n: number of sample points) since the calcula-
tion cost is proportional to the cube of the number of sample points. In addition, 
it is necessary to optimize hyperparameters in the Bayesian optimization [ �i in 
Eq. (2.1.2.3)], and a gradient-based optimization method or GA is generally used for 
the optimization of the hyperparameters. Therefore, since the Bayesian optimization 
requires huge construction cost for the response surface model and the prediction 
accuracy of the Gaussian process regression decreases at high dimensional optimi-
zation problems, it is difficult to utilize for high dimensional optimization problems. 
To tackle these problems, a novel efficient global optimization method without 
using probabilistic values as the standard deviation given in the Gaussian process is 
proposed, and then its construction cost is also reduced to efficiently obtain global 
optimal solutions in the high dimensional design variables space. In the proposed 
method, optimization problems are solved only with predicted functional values 
without the uncertain metrics of the surrogate model (standard deviation) which is 
used for calculating EI value in the conventional Bayesian optimization approach. 
Therefore, the proposed approach will bring higher compatibility with arbitrary 
response surface models such as radial basis function interpolation, inverse distance 
weighting, neural network regression, support vector regression, random forest 
regression and so on. For example, the inverse distance weighting can be used when 
the optimization cost is necessary to be reduced, and the neural network can be used 
when big data (a very large number of design variables) has to be taken into consid-
eration in the optimization.

2.2.1 � Algorithm of EGOCCS

The flowchart of efficient global optimization method via clustering/classification 
methods and exploration strategy (EGOCCS) is shown in Fig. 1, and an outline 
diagram of EGOCCS is shown in Fig. 2. In this algorithm, firstly, initial sample 

Fig. 1   Flowchart of EGOCCS
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points are generated in the design variables space by the Latin hypercube sam-
pling method (Fig. 2a). Then, generation of computation grids and evaluation of 
objective function are carried out for the models corresponding to the initial sam-
ple points (Fig. 2b). And then, the response surface model is constructed based on 
the objective function values (Fig. 2c). Sparse regions of sample points are con-
sidered as the candidates to generate an additional sample point and are defined 
by using the machine learning methods of the density-based clustering method 
(DBCM) (Fig.  2d) and support vector machine classification method (SVM) 
(Fig. 2e). By generating additional samples in the sparse regions, bias/concentra-
tion of the distributions of sample points can be reduced. The DBCM is a method 
to group sample points using a distance parameter � , and it is used to make a 
group of sample points in which the current optimal solution belongs in. The 
SVM is a method to classify the design variables space, and it is used to classify 
the design variables space into two groups, one of which is the group obtained by 
the DBCM. The SVM has a feature to create a separating hyperplane by maxi-
mizing a margin between two groups. It means that the separating hyperplane 
represents the sparsest region of sample points between two groups. In other 
words, it is possible to efficiently generate additional sample points considering 
the predicted value of the objective function as well as the separating hyperplane. 
In this research, GA is used to search an additional sample point where the pre-
dicted objective function value is the lowest on the separating hyperplane (sparse 
region of sample points) (Fig. 2f).

Fig. 2   Outline of EGOCCS
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2.2.2 � Density‑based clustering method (DBCM)

Density-based clustering method (DBCM) is used to classify input datasets into two 
groups via unsupervised learning. This method is similar to the density-based spatial 
clustering of applications with noise (DBSCAN) (Ester et al. 1996), and it is pos-
sible to classify sample points into two groups based on the distance between points. 
The outline of this algorithm is summarized in Fig. 3. In this algorithm, firstly, a 
starting point Ps and a reference distance � are defined as a criterion of the cluster-
ing (Fig. 3a, b). The starting point corresponds to the current optimal sample point 
in this research. Then, sample points within the reference distance � are classified 
into the group same with the starting point (Fig. 3c), and then other sample points 
are checked again whether they are within the reference distance � from the sample 
points of the group (Fig. 3d). By iteratively performing this process until there are 
no more points to add (Fig. 3e–g), finally, the sample points can be divided into two 
groups whether the starting point belongs in or not (Fig. 3h). The reference distance 
� can be changed at each iteration as an exploration strategy explained in Sect. 2.2.4.

2.2.3 � Support vector machine classification method (SVM)

The support vector machine (SVM) is one of the two-classes classification methods 
proposed by Corinna and Vapnik (Corinna and Vladimir 1995) and one of the popu-
lar machine learning algorithms (Alex and Bernhard 2004). It is possible to obtain 
the optimal separating hyperplane even in the nonlinear data by mapping the data to 
a high dimensional space by using a kernel method. In addition, SVM separates the 
two-classes data with the idea of the maximum-margin hyperplane, and it is known 
to have high accuracy to predict for unknown data. The characteristic of the maxi-
mum-margin is important for EGOCCS algorithm.

Fig. 3   Outline of density-based clustering method
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2.2.4 � Exploration strategy in EGOCCS

Consideration of “exploration at unknown regions” and “utilization of predictions 
by response surface models” with a proper balance is required in efficient global 
optimizations. With respect to the “exploration at unknown regions”, the idea of 
Bayes is to generate an additional sample point at the maximum standard devia-
tion location on the probabilistic prediction model in the design variables space. 
The idea of EGOCCS is to generate an additional sample point at the sparsest 
region in the design variables space. Of course, it is difficult to obtain exact 
global optimal solutions when only the “exploration at unknown regions” is con-
sidered to obtain additional sample points, so that the “utilization of predictions 
by response surface models” should be considered to explore better solutions. In 
the minimization problem, the idea of Bayes is to generate an additional sample 
point at the minimum mean location on the probabilistic prediction model in the 
design variables space. The idea of EGOCCS is similar with that, to generate an 
additional sample point at the minimum location on the prediction model in the 
design variables space. However, it is difficult to obtain global optimal solutions 
by falling into local optimal solutions when only the “utilization of predictions by 
response surface models” is considered to obtain additional sample points. There-
fore, the balance between them is important for the efficient global optimization. 
This can be achieved by using EI value in the Bayesian optimization, while this 
can be considered by using following strategy in EGOCCS.

The exploration strategy of GA is modeled into the EGOCCS algorithm as 
“exploration at unknown region” and “utilization of predictions by response sur-
face models”. In the optimization process of GA, individuals are widely distrib-
uted in the design variables space at the initial stage of the optimization, and then 
the distribution becomes narrower with the advancement of generations and con-
verges to global optimal solutions. In other words, the proper balance between 
“exploration at unknown regions” and “utilization of predictions by response sur-
face models” can be expressed by modeling the exploring strategy of GA. It is 
modeled by using the parameter of � used in DBCM which determines the details 
of exploration. � should be set to a large value at the initial stage of the opti-
mization for the “exploration at unknown regions”, and then it decreases with 
the advancement of optimizations for the exploration around the current optimal 
solution, in other words for the “utilization of predictions by response surface 
models”.

In this research, the DBCM is used to classify input datasets into two groups, 
and then the SVM is used to obtain a separating hyperplane by maximizing a 
margin between the two groups. It is possible to efficiently determine the loca-
tion of an additional sample point by minimizing the predicted objective function 
value on the separating hyperplane. In the EGOCCS, it is necessary to set an 
appropriate value of � to carry out an efficient iterative process of optimization. 
The balance of “exploration at unknown regions” and “utilization of predictions 
by response surface models”, in other words the balance between global/local 
search is modeled as follows by changing the parameter � . Examples of the explo-
ration strategy in this research are summarized in Fig. 4, and typical parameters 



531

1 3

Efficient global optimization method via…

settings of this method are summarized in Table 1. Figure 4a is the general set-
tings of � among the total number of sub iterations ( tmax ) whose value is set to 
200. The value of � is represented as follows:

where ti and r are respectively the integer number of sub iterations between 1 to 
tmax and random real number between 0 to 1. The values of ti and r change in each 
sub iteration. In Fig. 4a, 𝜀̄ indicates the value of � with r = 0.5 . f

(
ti
)
 represents a 

monotonically decreasing function with increasing of the sub iteration as following 
equation.

mut(r, p) is defined as the same formulation with the polynomial mutation of 
the GA (Deb and Deb 2014), and it models the mutation of the GA as following 
equation.

(2.2.4.1)� = F
(
mut

(
r, f

(
ti
)))

(2.2.4.2)f
(
ti
)
= 1 −

ti

tmax

Fig. 4   Variable definition of reference distance �

Table 1   Parameters settings 
for exploration strategy of 
EGOCCS

# of dim (nd) Pattern

2 Coarse 1.0 × 10−3 ×
√
n
d

2.0 × 10−1 ×
√
n
d

2 Middle 1.0 × 10−5 ×
√
n
d

2 Fine 1.0 × 10−7 ×
√
n
d

10 Coarse 1.0 × 10−3 ×
√
n
d

40 Coarse 1.0 × 10−3 ×
√
n
d

80 Coarse 1.0 × 10−3 ×
√
n
d

160 Coarse 1.0 × 10−3 ×
√
n
d
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The value of mut(r, p) is given between 0 to 1. The probabilistic distribution 
of the polynomial mutation can be adjusted by the additional parameter of � in 
which smaller � leads to lower probability of p , while larger � leads to higher 
probability of p . In other words, smaller � should be adopted when global search 
is necessary to focus as well as larger � should be adopted when local search is 
necessary to focus. In this research, � is set to 100 to aim to obtain exact optimal 
solutions. The example of the polynomial mutation is summarized in Fig.  5, in 
which the histogram is calculated from 1000 samples generated at even intervals 
between 0 and 1. F(x) is defined as follows which determines the reference dis-
tance �.

where �min and �max are respectively the user-specified minimum and maximum val-
ues of � . In this equation, since the value of x is mainly decided by the iteration 
number ti as seen in Eq. (2.2.4.2) and the value is fluctuated by the effect of r and � 
as shown in Fig. 6 and Eq. (2.2.4.3), F(x) decreases exponentially with decreasing 
of x as well as increasing of the iteration number ti . In the actual optimization pro-
cess on the EGOCCS algorithm, since it is difficult to set an appropriate number of 
the optimization iterations beforehand, the total number of iterations is divided into 

(2.2.4.3)mut(r, p) = p +

{ (
2r + (1 − 2r)(1 − p)𝜂+1

) 1

𝜂+1 − 1 if r ≤ 0.5

1 −
(
2(1 − r) + (2r − 1)p𝜂+1

) 1

𝜂+1 if r > 0.5

(2.2.4.4)F(x) = 10(log10 �min+x(log10 �max−log10 �min))

Fig. 5   Histogram of polynomial mutation
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several sets of the sub iterations as shown in Fig. 4b in which the total number of 
iterations is set to 1000 while the total number of sub iterations is set to 200.

The example of the global optimization by the EGOCCS is summarized in 
Figs. 7 and 8. Two dimensional Rosenbrock function is used as an analytic func-
tion to be minimized. When the relationship between the design variables (x 
and y coordinates) and output (color) is given at several locations as the white 
filled points in Figs. 7a-1 and 8a-1, functional values at arbitrary locations on the 
design variables space can be predicted by any interpolation (response surface) 
methods as shown in Figs. 7a-1 and 8a-1. In this example, the Gaussian process 
regression is used to construct the prediction model. Figures 7a-2 and 8a-2 indi-
cate the distance to the separating hyperplane which is created by maximizing 
a margin between two groups of black filled points and the other (white filled) 
points in Figs. 7a-2 and 8a-2. An additional sample point is generated at the posi-
tion where the predicted objective function value is the lowest on the separating 
hyperplane (red filled point). In the example of Fig. 7, the reference distance � is 
fixed to 0.2 and the maximum number of iterations tmax is set to 10. In the exam-
ple of Fig. 8, the reference distance � is decreased monotonically from 0.2 to 0.1 
and the maximum number of (sub) iterations tmax is set to 10. It is confirmed that 
the additional sample points in Fig. 7j-1 are widely distributed on lower objec-
tive function regions while the additional sample points in Fig. 8j-1 are widely/
effectively distributed on lower objective function regions. In other words, the 
decreasing of the reference distance � in the optimization process leads to smaller 
numbers of sample points in the group including the current optimal solution 

Fig. 6   Variation tendency of reference distance �
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(black points), which results in that additional sample points are efficiently gener-
ated around the current optimal solution as a function of local search.

2.3 � Computational fluid dynamics analysis method

An inhouse Computational Fluid Dynamics (CFD) code using a gridless method is 
used to evaluate aerodynamic objective functions in present optimization problems. 

Fig. 7   Optimization process of EGOCCS-GPs approach with fixed �
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In the gridless method (Ma et al. 2008; Suga and Yamazaki 2015), computational 
points are distributed in the calculation domain and a spatial differential term 
of a physical quantity around the computational point is approximated by a least 
squares method. Therefore, this method is unnecessary to construct the grid con-
nectivity information and can analyze flow fields around complicated shapes. 
Two-dimensional inviscid compressible Euler equations are solved by the gridless 
method. The Euler equations express the conservation law of mass, momentum and 

Fig. 8   Optimization process of EGOCCS-GPs approach with decreasing �
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energy in inviscid and compressible fluids. The two-dimensional Euler equations are 
expressed as follows.

where � represents the vector of conservative variables, and � and � represent flux 
vectors. � , u , v, p, e respectively represent fluid density, velocity components in X/Y 
directions, pressure and total energy per unit volume. The specific heat ratio � of the 
ideal gas is set to 1.4.

3 � Comparison of regression methods

The EGOCCS algorithm has higher compatibility with any kind of surrogate mod-
els such as radial basis function interpolation, inverse distance weighting, neural 
network regression, support vector regression, random forest regression and so on. 
In this research, Gaussian process regression, radial basis function, and inverse dis-
tance weighting are considered. In this section, these methods are concisely intro-
duced and then construction and utilization costs of them are compared.

3.1 � Inverse distance weighting (IDW)

Inverse distance weighting (IDW) is a method to predict functional values at 
unknown points with a weighted average of the information of known sample points 
(Shepard 1968). The interpolated function is expressed as following equations.

where d is the distance from the known sample point xi to the unknown point x and 
the power parameter P is set to 2 in this research. n and yi are the total number of 
known sample points used in the interpolation and the output functional values of 
the known sample points xi . Since IDW has a feature that there is almost no con-
struction cost of the surrogate model, it is expected that the optimization cost will be 
dramatically reduced in high dimensional problems by using the IDW as the predic-
tion model of EGOCCS.
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3.2 � Radial basis function interpolation (RBF)

Radial basis function interpolation is one of the methods to predict functional values 
at unknown points (Press et al. 2007). The interpolated function can be expressed as 
following equation by using known output data yi and input data xi {i = 1, 2,… , n}.

where the approximating function f (x) is represented as the sum of n radial basis 
functions, each associated with the center point xi , and weighted by an appropri-
ate coefficient �i . � is a kernel function, and there are various kernel functions as 
follows.

where � is a hyperparameter and it is generally determined by cross-validation 
approaches. In this research, since the optimization cost reduction is one of the 
aims of EGOCCS, the linear kernel �linear is used as the kernel function. There is 
no hyperparameter in the linear kernel. The weights �i can be estimated as follows.

3.3 � Calculation times of various regression methods

In the RBF, the calculation cost for the inverse matrix for n × n is also expensive 
which is proportional to the cube of the number of sample points. However, since 
the hyperparameters are not included in the linear kernel �linear contrary to the 
Gaussian process regression and the calculation of the inverse matrix is only once, it 
can dramatically reduce the construction cost of the surrogate model. For example, 
comparing with the Gaussian process regression in which the hyperparameters are 
optimized by GA with 100 population and 100 generation, the construction cost of 
the RBF becomes 1∕10000.
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The construction cost and utilization cost of the Gaussian process regression, 
RBF, and IDW are compared using the Rosenbrock analytic function as shown in 
Fig. 7. The Rosenbrock analytic function is expressed as follows.

In Fig.  9, the horizontal axis indicates the number of sample points to con-
struct a surrogate model, and the vertical axis indicates the construction time 
for the surrogate model and utilization time for 40,000 predictions which cor-
responds to the execution of GA with 200 populations and 200 generations. All 
simulations were processed in a Processor Intel(R) Xeon(R) CPU E7-8867 v3 @ 
2.50 GHz. The hyperparameters of the Gaussian process regression are optimized 
by a gradient-based optimization method in which optimization is executed with 
the scaled conjugate gradients (SCG) method of 500 iterations. The calculation 
times are investigated at various dimensions ( nd ) of 2, 4, 8, 16, 32, 64, 128, and 
the color lines are averaged values of 10 times trials. It is confirmed that the con-
struction time is increased with larger numbers of sample points and with larger 
numbers of dimensions in the Gaussian process regression and RBF, and it is also 
confirmed that the construction cost of RBF is much smaller than the Gaussian 
process regression whose ratio is about 1/1000. Therefore, the adoption of the 
RBF interpolation can reduce the construction cost. It is also confirmed that IDW 
has the lowest construction/prediction costs among the three surrogate model 
approaches.
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Fig. 9   Construction and prediction costs of representative surrogate models
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4 � Results and discussion

Two optimization problems are solved to verify the usefulness of the developed 
method of EGOCCS. First optimization is executed to demonstrate the validity of 
the EGOCCS in 2, 10, 40, 80, 160-dimensional analytic function problems within 
a limited number of functional evaluations. Second optimization is executed to 
examine the effect of the EGOCCS in 2, 10, 40, 80 dimensional aerodynamic 
shape optimization problems of a biconvex airfoil, and to demonstrate the appli-
cability of the EGOCCS to more realistic optimization problems than Sect. 4.1.

4.1 � Optimization of various analytic functions

In order to verify the usefulness of the EGOCCS, optimization problems of 
various analytic functions are solved by both of the conventional Bayesian opti-
mization and the developed algorithm of EGOCCS. The analytic functions are 
Sumsquares function (Eq.  4.1.1), Quadric function (Eq.  4.1.2), Schwefel func-
tion (Eq.  4.1.3), Ackley function (Eq.  4.1.4), Rosenbrock function (Eq.  4.1.5), 
and Levy function (Eq. 4.1.6), and the two-dimensional analytical functions are 
visualized in Fig.  10. The Sumsquares/Quadric functions are concave analytic 
functions, the Schewefel function is a discontinuous analytic function, the Ack-
ley function is a multi-modal function, and the Rosenbrock/Levy functions are 
complex functions (Crina and Ajith 2009). The geometric mean of 10 optimiza-
tion histories are summarized in Figs.  11, 12, 13, 14 and 15. The optimization 

Fig. 10   Analytic functions in two-dimensional design variables space
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conditions of the 40, 80 160-dimensional variables space are almost same with 
that of the 10-dimensional variables space excepting the number of initial sample 
points (20 → 80, 160, 320).

Fig. 11   Optimization histories of various function problems in 2-dimensional variable space

Fig. 12   Optimization histories of various function problems in 10-dimensional variable space
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Firstly, the optimizations of the analytic functions are solved in the 2-dimensional 
variables space. Each optimization problem was solved 10 times by the Bayesian 
approach and EGOCCS with three different strategies of Coarse, Middle, Fine as 
shown in Table 1. The type of the surrogate model used in EGOCCS is the Gaussian 

Fig. 13   Optimization histories of various function problems in 40-dimensional variable space

Fig. 14   Optimization histories of various function problems in 80-dimensional variable space
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process regression to examine the pure effect of the difference between the algo-
rithms. The number of initial sample points is 8, and then 200 additional sample 
points are evaluated. In higher dimensional optimization problems, initial surrogate 
models are necessary to be accurate for efficient optimizations and the number of 
initial sample points becomes larger. Then, the number of additional sample points 
is desired to be smaller to reduce the construction cost of surrogate models in the 
optimization. In many global optimization problems motivated by engineering 
applications, the number of function evaluations is severely limited by time or cost 
(Julien et al. 2009). In this research, the number of additional functional evaluations 
is limited to 200. The setting of major parameters of GA is the mutation rate of 0.1, 
population size of 100 and number of generations of 50. In the optimization history 
of Fig. 11, the horizontal axis represents the number of optimization iterations, and 
the vertical axis represents the objective function to be minimized. The black line 
is the optimization history of the Bayesian approach, and the red, blue and green 
lines are respectively the optimization histories of the EGOCCS approach with 
the strategies of Coarse, Middle and Fine. It is confirmed that EGOCCS-Fine can 
explore better optimal solutions in the Sumsqares, Quadric, Schwefel, Ackley and 
Levy functions compared with the EGOCCS-Middle and EGOCCS-Coarse, while 
the EGOCCS-Fine cannot reach exact optimal solutions in the Rosenbrock function. 
This result indicates the tradeoff relationship between local/global searches, and the 
Fine-strategy can reach exact optimal solutions while that is sometimes difficult to 
reach the vicinity of the global optimal solution. On the other hand, the Coarse-
strategy can reach the vicinity of the global optimal solution while that is difficult 
to reach the exact optimal solutions. It is also confirmed that EGOCCS-Middle can 
obtain better solutions in all analytic functions compared with the conventional 

Fig. 15   Optimization histories of various function problems in 160-dimensional variable space
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Bayesian optimization, which indicates that the EGOCCS has the ability to explore 
better solutions in various optimization problems.

Secondly, in the 10-dimensional variables space. According to another report 
(Ziyu et  al. 2013), the 10-dimensiuonal variables space is almost the upper limit 
of the Bayesian approach to explore exact global optimal solutions. Each optimiza-
tion problem was solved 10 times by the Bayesian optimization and EGOCCS with 
three different surrogate models of Gaussian process regression (GPs), radial basis 
function interpolation (RBF), and inverse distance weighting (IDW). The exploring 
strategy is set to �min = 1.0 × 10−3 ×

√
nd and �max = 2.0 × 10−1 ×

√
nd as seen in 

Fig. 4 and Table 1. The number of initial sample points is 20, and then 200 addi-
tional sample points are evaluated. The setting of major parameters of GA is the 
mutation rate of 0.1, population size of 200 and number of generations of 200. In 
the optimization history of Fig. 12, the black line is the optimization history of the 
Bayesian approach, and the red, blue and green lines are respectively optimiza-
tion histories of the EGOCCS with GPs, RBF and IDW. It is confirmed that EGO-
CCS-GPs can obtain better solutions in all cases compared with the conventional 
Bayesian optimization, which indicates that the EGOCCS algorithm has ability to 
explore better solutions in various optimization problems in this strategy and also in 
10-dimensional variables space. However, since the EGOCCS-GPs uses the Gauss-
ian process regression for the surrogate model, the optimization cost is not reduced 
compared with the conventional Bayesian optimization. It is also confirmed that the 
EGOCCS-RBF can obtain better solutions in the Schwefel, Ackley and Levy func-
tions compared with the Bayesian optimization. The EGOCCS-IDW can obtain the 
best solution in the Schwefel, Rosenbrock and Levy functions. These results indicate 
that the EGOCCS algorithm has the ability to obtain better solutions while reduc-
ing the construction cost for the surrogate model in several function cases. In the 
10-dimensional variables space, it is considered that the EGOCCS-GPs is the most 
appropriate to obtain global optimal solutions since optimization problems in the 
10-dimensional variables space don’t require much cost for the construction and 
the EGOCCS-GPs has the ability to obtain better solutions in various optimization 
problems compared with the conventional Bayesian optimization.

Thirdly, in the 40-dimensional variables space. It is considered that the optimiza-
tion in the 40-dimensional variables space is difficult to obtain the global optimal 
solutions with the Bayesian approach. It is confirmed from Fig. 13 that the EGO-
CCS-RBF can obtain better solutions in the Quadric, Schwefel, Ackley, Rosenbrock 
and Levy functions compared with the Bayesian optimization while it cannot obtain 
better solution in the Sumsquares function. Since the Sumsquares function is the 
simplest function and the Gaussian process regression can easily fit the exact func-
tional shape, the Bayesian optimization can explore better solutions compared with 
the EGOCCS. It is also confirmed that the EGOCCS-IDW can obtain the best solu-
tions in the Quadric and Schwefel, while it falls into local optimal solutions in the 
other functions. Since IDW is the simplest prediction method only using the neigh-
boring sample points information, the prediction accuracy should be lower than the 
other response surface models so that the optimization falls into local optimal solu-
tions in the analytic functions. In the 40-dimensional variables space, it is consid-
ered that the EGOCCS-RBF is the most appropriate to obtain the global optimal 
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solution robustly since the EGOCCS-RBF can obtain better solutions in the various 
analytic functions and can dramatically reduce the optimization cost.

Fourthly, in the 80-dimensional variables space. It is considered that to obtain 
global optimal solutions in the 80-dimensional variables space with the Bayesian 
optimization is impossible. It is confirmed from Fig. 14 that the EGOCCS-RBF can 
obtain the best solutions in all analytic functions. Therefore, it is considered that the 
EGOCCS-RBF is the most appropriate to obtain better solutions in the 80-dimen-
sional variables space.

Fifthly, in the 160-dimensional variables space. It is considered that to obtain 
global optimal solutions in the 160-dimensional variables space with the Bayes-
ian optimization is impossible. The optimization in the Schwefel function cannot 
be executed since the function value exceeds the maximum number of considera-
ble digits. It is confirmed from Fig. 15 that the EGOCCS-RBF can obtain the best 
solutions in all analytic functions. However, it is also confirmed that the update of 
optimal solutions seldom occurs in the optimization process and then the obtained 
solutions by the EGOCCS-RBF are not at the vicinities of exact global optimal solu-
tions. Therefore, it is considered that the EGOCCS-RBF should be used in the opti-
mization problems whose number of design variables is less than 160, in which the 
update of optimal solutions continuously occurs in the optimization process. It can 
be expected that the EGOCCS-RBF can finally obtain exact optimal solutions by 
iteratively performing the sub iterations as Fig. 4b.

For more quantitative comparison, gradient-based optimizations were executed 
from the optimal solutions obtained by the Bayesian/EGOCCS in the cases of the 
Ackley and Levy functions that are multimodal functions. The conjugate gradi-
ent algorithm was used as the gradient-based optimization algorithm (Hestenes 
and Stiefel 1952). When the final objective function value was less than 10−5, it 
was considered as reaching the global optimal solution. In Table 2, the numbers 
of cases reaching the global optimal solution (among 10 trials) were summarized. 
It was confirmed that most optimal solutions of the EGOCCS-RBF reached the 
global optimal solutions in 10, 40 and 80 design variables in the Ackley function 
while that of the Bayesian optimization falls into local optimal solutions. This 
means that the EGOCCS could reach the vicinities of the global optimal solutions 
within the limited number of functional evaluations. In other words, the EGOCCS 
would be utilized as the preprocess for the local search using the gradient-based 
optimization. It was confirmed that most optimal solutions of the Levy function 

Table 2   Number of cases reaching the global optimal solutions

Ackley Levy

10 dim 40 dim 80 dim 160 dim 10 dim 40 dim 80 dim 160 dim

Bayesian optimization 5 0 0 0 2 0 0 0
EGOCCS-GPs 9 0 0 0 0 0 0 0
EGOCCS-RBF 10 10 9 1 0 0 0 0
EGOCCS-IDW 7 0 0 0 4 0 0 0
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couldn’t reach the global optimal solutions. It is considered that the Levy func-
tion is too complex to reach the vicinities of the global optimal solutions within 
the limited number of functional evaluations. The optimization costs with vari-
ous number of design variables are summarized in Fig. 16. The horizontal axis 
represents the number of dimensions, and the vertical axis represents the com-
putational time required in each optimization algorithm. The computational time 
is calculated by averaging 60 times optimizations (6 analytic function × 10 times 
optimizations). It is confirmed that the EGOCCS-GPs has higher computational 
cost compared with the Bayesian optimization due to additional computational 
cost for SVM classifier. It is also confirmed that the EGOCCS-RBF and EGO-
CCS-IDW have lower costs than the Bayesian optimization due to the cost reduc-
tion in the construction of surrogate models. It can be confirmed that the devel-
oped EGOCCS algorithm can obtain better optimal solutions inexpensively than 
the conventional Bayesian optimization in the high dimensional design variables 
space.

Sumsquares function

Quadric function

Schwefel function
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Ackley function

Rosenbrock function

Levy function

4.2 � High dimensional aerodynamic shape optimization problem of biconvex 
airfoil

Since the performance of the EGOCCS has been validated in 4.1 with the various ana-
lytic function problems by comparing with the conventional Bayesian approach, high 
dimensional aerodynamic shape optimization problems in two-dimensional supersonic 
flow field are solved in this section to demonstrate the applicability of the EGOCCS 
to more realistic optimization problems. The baseline airfoil is set to a biconvex airfoil 
(Fig. 17a, c, black line). New airfoil shapes are given as symmetrical airfoils, and the 
shape of the one side surface is modified by 2, 10, 40, 80 Hicks-Henne bump functions 
arranged in even intervals (Fig. 17b). A Hicks-Henne bump function is expressed as 
following equation.

where xbump and tc are the bump apex position and the thickness of the biconvex 
airfoil at xbump . hmax indicates the maximum height of the bump, and it can be 
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adjusted by the design variable dvi . The displacement of a new airfoil at a location x 
is expressed by a summation of 2, 10, 40, 80 bump functions as following equation.

A new airfoil is created by adding the displacement (Fig. 17c, blue line) on the base-
line biconvex airfoil (Fig. 17c, red line), and then the y-coordinate of the new airfoil 
is rescaled to keep a constant airfoil area (Fig. 17c, green line). The negative thick-
ness of airfoil never occurs with this definition of design variables. In this problem, 
the drag coefficient of airfoil is minimized. The aerodynamic performance is evalu-
ated at the freestream Mach number of 1.7 and angle of attack of 0 degree by using 
inviscid CFD computations. This optimization problem is solved three times with 
different sets of initial sample points at all conditions of the number of design vari-
ables. The numbers of initial sample points are set to 8 at nd = 2 and 200 at the other 
cases. New sample points are iteratively added 200 times within a set of sub itera-
tions. Table 3 shows the objective function values of the obtained optimal solutions, 
and Fig. 18 shows the average of the three times optimization histories. The dotted 
lines indicate the results using the GA directly to the 10, 40 and 80 design variables 
problems, that were also executed for comparison purposes. The setting of major 
parameters of GA is the mutation rate of 0.1, population size of 200 and 3, 5 and 7 
generations that correspond to the same numbers of functional evaluations with the 
EGOCCS cases. It is confirmed that the EGOCCS algorithm can obtain lower drag 

(4.2.2)Δy(x) =

nd∑
i=1

hi(x), 0 < x < 1, 0 < dvi < 1

Fig. 17   Example of shape modification
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coefficient values than the GA in all cases. This result can emphasize the superi-
ority of the developed EGOCCS algorithm over the conventional approach. Since 
the three optimizations by EGOCCS with different sets of initial sample points give 
almost same objective function values in all numbers of design variables, it could 
be confirmed that the developed EGOCCS algorithm worked robustly even in 80 

Table 3   Objective function values of optimal solutions at every 200 iteration

init. 200 400 600 800 1000 1200

EGOCCS (nd = 2)
Trial 1 0.02137 0.02133
Trial 2 0.02138 0.02133
Trial 3 0.02139 0.02133
Average 0.02138 0.02133
EGOCCS (nd = 10)
Trial 1 0.02076 0.02054 0.02052
Trial 2 0.02071 0.02055 0.02053
Trial 3 0.02069 0.02056 0.02053
Average 0.02072 0.02055 0.02053
EGOCCS (nd = 40)
Trial 1 0.02073 0.02018 0.02007 0.02002 0.01995
Trial 2 0.02054 0.02023 0.02013 0.02006 0.02000
Trial 3 0.02060 0.02021 0.02012 0.02003 0.01998
Average 0.02062 0.02021 0.02011 0.02003 0.01997
EGOCCS (nd = 80)
Trial 1 0.02064 0.02039 0.01981 0.01970 0.01957 0.01946 0.01939
Trial 2 0.02062 0.01969 0.01957 0.01956 0.01952 0.01943 0.01940
Trial 3 0.02076 0.01987 0.01957 0.01944 0.01936 0.01926 0.01917
Average 0.02067 0.01998 0.01965 0.01956 0.01948 0.01938 0.01932
GA (nd = 10)
Trial 1 0.02070 0.02060 0.02054
Trial 2 0.02075 0.02066 0.02056
Trial 3 0.02071 0.02066 0.02054
Average 0.02072 0.02064 0.02055
GA (nd = 40)
Trial 1 0.02053 0.02034 0.02018 0.02014 0.02011
Trial 2 0.02067 0.02037 0.02037 0.02017 0.02011
Trial 3 0.02056 0.02047 0.02035 0.02034 0.02023
Average 0.02059 0.02039 0.02030 0.02021 0.02015
GA (nd = 80)
Trial 1 0.02052 0.02049 0.02009 0.02009 0.02003 0.01998 0.01982
Trial 2 0.02065 0.02032 0.02024 0.02003 0.01985 0.01985 0.01983
Trial 3 0.02047 0.02031 0.02006 0.02001 0.01996 0.01971 0.01963
Average 0.02055 0.02037 0.02013 0.02004 0.01995 0.01985 0.01976
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dimensional design variables space. Figures 19 and 20 show the shapes and pressure 
visualizations around optimal designs obtained by the EGOCCS algorithm. With 
respect to the optimal designs, it was demonstrated that the theoretical optimal shape 
with minimum pressure drag has a blunt trailing edge (Chapman 1951; Klunker and 
Harder 1952). In addition, an optimal profile is shown in Payot et al. (2017) at the 
freestream Mach number of 2.0 (1.7 in this research) and angle of attack of 0 degree, 
and the optimal profile also has the blunt trailing edge. Therefore, it is considered 
that the obtained optimal designs have thicker trailing edge shapes to express the 
blunt trailing edge within the given degree of freedom. Larger numbers of design 

Fig. 18   Optimization histories in various numbers of design variables

Fig. 19   Shapes of optimal solutions obtained by EGOCCS
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variables enable to express the airfoil shape in more detail, and then the optimal 
airfoil should have better performance than that obtained with smaller numbers of 
design variables. It is confirmed from Figs. 18, 19 and 20 that the optimal designs 
with larger numbers of design variables have thinner leading edge and thicker trail-
ing edge, and the static pressure around the leading edge becomes lower, and then 
the objective function value becomes lower. Since better solutions were obtained 
with larger numbers of design variables (with more degree of freedom) monotoni-
cally, it was confirmed that the EGOCCS algorithm could be appropriately used in 
the present high-dimensional aerodynamic shape optimization problems without to 
be caught in local optimal solutions.

5 � Concluding remarks

In this research, an efficient global optimization method via clustering/classifi-
cation methods and exploration strategy (EGOCCS) has been developed to effi-
ciently solve high-dimensional optimization problems. The conventional Bayes-
ian optimization method takes a huge calculation cost to construct a response 
surface model, and the accuracy of that decreases at high-dimensional cases. To 
tackle these issues, a novel efficient global optimization method without using 
probabilistic values as standard deviation obtained in the Gaussian process was 
proposed and aimed to reduce the construction cost of the response surface model 
and to efficiently obtain global optimal solutions in high-dimensional optimiza-
tion problems. The developed algorithm has achieved better performance than 

Fig. 20   Pressure visualizations around optimal solutions obtained by EGOCCS
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conventional approaches by using the machine learning methods of a density-
based clustering method and a support vector machine classification method.

Two optimization problems were solved to verify the usefulness of the devel-
oped method of EGOCCS. First optimization was executed to demonstrate the 
validity of the EGOCCS in 2, 10, 40, 80, 160-dimensional analytic function prob-
lems that were solved by both of the Bayesian optimization and the EGOCCS. In 
the 2-dimensional analytic functions, the EGOCCS could obtain better solutions 
in all analytic functions compared with the conventional Bayesian approach by 
adopting an appropriate exploration strategy. In the 10-dimensional analytic func-
tions, the EGOCCS on the Gaussian process regression had the ability to obtain 
better solutions in many problems compared with the conventional Bayesian opti-
mization. In the 40, 80 and 160-dimensional analytic functions, the EGOCCS 
with the radial basis function interpolation was the most appropriate to obtain 
better optimal solutions. In addition, it was also confirmed that the EGOCCS 
with the radial basis function interpolation and inverse distance weighting could 
execute with much lower computational costs than the Bayesian optimization. 
Second optimization was executed to examine the effect of the EGOCCS in 2, 
10, 40, 80-dimensional aerodynamic shape optimization problems of a biconvex 
airfoil. The biconvex airfoil was deformed by 2, 10, 40, 80 Hicks-Henne bump 
functions, to minimize its drag coefficient at the freestream Mach number of 1.7 
and angle of attack of 0 degree. Larger numbers of design variables could express 
optimal airfoil shapes in more detail, and then the optimal airfoils had better 
objective function values compared with that with smaller numbers of design 
variables. Since better solutions were obtained with larger numbers of design 
variables (with more degree of freedom) monotonically, it was confirmed that the 
EGOCCS algorithm could be appropriately used in the present high-dimensional 
aerodynamic shape optimization problems without to be caught in local optimal 
solutions.

The proposed EGOCCS algorithm brings higher compatibility with other 
response surface models such as neural network regression, support vector 
regression, random forest regression and so on. For example, the neural network 
can be used when a very large number of design variables has to be taken into 
consideration. The compatibility with the other response surface models will be 
examined as future work. In addition, since the EGOCCS has been developed as 
noninvasive approaches, it can be applied to optimization problems of other dis-
ciplines. It is necessary to efficiently solve three challenging optimization prob-
lems that are discontinuous optimization problem, optimization problem with 
infeasible regions and high dimensional optimization problem, to realize efficient 
global topology optimizations in supersonic flow conditions. By using the devel-
oped EGODISC (Ban and Yamazaki 2019) and EGOCCS algorithms, an efficient 
global optimization method for the three challenging optimization problems can 
be constructed. Therefore, the topology optimization in supersonic flow condi-
tions will be carried out as our future works.
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