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Abstract
As indicated in the recent studies about primal-dual interior-point methods (IPMs) 
based on kernel functions, a kernel function not only serves to determine the search 
direction and measure the distance of the current iteration point to the �-center, but 
also affects the iteration complexity and the practical computational efficiency of 
the algorithm. In this paper, we propose a new IPM for semidefinite optimization 
(SDO) based on a parameterized kernel function which is a generalization of the one 
presented by Bai et al. (Optim Methods Softw 17(6):985–1008, 2002). By using the 
good properties of the parameterized kernel function, we deduce that the iteration 
bound for large-update method is O(

√

n log n log
n

�
) for q = O(n) , which is the best 

known complexity results for such methods. In our knowledge, this result is the first 
instance of primal-dual interior point method for SDO which involving the kernel 
function. Some numerical results have been provided.
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1 Introduction

Semidefinite optimization problems (SDO) are convex optimization problems over 
the intersection of an affine set and the cone of positive semidefinite matrices. It 
is not only widely used in the field of mathematical programming, but also widely 
used in other fields, such as control theory, combinatorial optimization, statistics, 
etc. Interested reader can refer to Wolkowicz et al. (2000), Alizadeh (1991), Boyd 
et al. (1994) for more concrete description. The first paper dealing with SDO prob-
lems dates back to the early 1960s. However, SDO was out of interest for a long 
time afterwards, because of lacking of powerful and effective algorithm to solve. 
The situation changed dramatically around the beginning of the 1990s when it 
became clear that the algorithm for linear optimization (LO) can often be extended 
to the more general SDO case.

Since the groundbreaking paper of Karmarkar (1984), some scholars are com-
mitted to the study of IPMs and numerous results have been proposed (see Roos 
et al. 1997; Wright 1997; Ye 1997). IPMs have led to increasing interest both in the 
theoretical research and application of SDO. As far as we know, Nesterov and Nemi-
rovskii first extended IPMs from LO to SDO, at least in a theoretical sense (Nesterov 
and Nemirovskii 1994). Subsequently, many IPMs designed for LO have been suc-
cessfully extended to SDO. Among the different variants of IPMs, it is generally 
agreed that the most efficient methods are the so-called primal-dual IPMs from a 
computational point of view (Andersen et al. 1996).

Most of IPMs for LO are based on the logarithmic barrier function. Recently, 
there is an active research on the primal-dual IPMs proposed by Peng et al. (2001a) 
based on the a new nonlogarithmic kernel function for LO and SDO, which called 
self-regular kernel function, the prototype of the self-regular kernel function is given 
by

Such a function is strongly convex and smooth coercive on its domain: the positive 
real axis. The self-regular kernel function is used to determine the search direction 
and measure the distance of the current iteration point to the �-center of the algo-
rithm. Based on the self-regular kernel function, the complexity bound of the large-
update primal-dual IPM for LO has been significantly improved from O(n log n

�
) to 

O(
√

n log n log
n

�
) (Peng et al. 2001b). Furthermore, Bai et al. introduced a class of 

eligible kernel functions, and gave a scheme to analyze the primal-dual IPMs for 
LO that the iteration bounds for both large-update and small-update methods can 
be obtained based on the eligible kernel functions (Bai et al. 2004). El Ghami et al. 
(2012) first introduced a trigonometric kernel function and derived the worst case 
complexity bound for large-update IPMs is O(n

3

4 log
n

�
) . Recently, a lot of (trigono-

metric) kernel functions have been proposed. For example, Bouafia et  al. (2016b) 
proposed a new trigonometric kernel function, with the various values of its param-
eter, generalizes the complexity algorithm found by various researchers (to see 
Bai et al. 2002a, 2004; El Ghami et al. 2012; Peyghami et al. 2014; Peyghami and 

Υp,q(t) =
tp+1 − 1

p(p + 1)
+

t1−q − 1

q(q − 1)
+

p − q

pq
(t − 1), t > 0, p ≥ 1, q > 1.
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Hafshejani 2014; Cai et al. 2014; Kheirfam and Moslem 2015). They also proposed 
a new kernel function with logarithmic barrier term which is the first function of 
this type giving the best complexity algorithmics  (Bouafia et  al. 2018). For more 
studies with primal-dual IPMs based on a kernel function, we refer to Li and Zhang 
(2015), Bouafia et al. (2016a).

Moreover, the methods of solving LO based on a kernel function were 
extended to SDO. For example,  Lee et  al. (2013) proposed a primal-dual inte-
rior-point algorithm for SDO based on a class of kernel functions which are both 
eligible and self-regular, and obtained the best known complexity results for 
both small- and large-update methods.  Wang et  al. (2015) presented a class of 
large- and small-update primal-dual interior-point methods for SDO based on a 
parameterized kernel function with a trigonometric barrier term, and derived the 
worst case iteration bounds, namely, O(n

2

3 log
n

�
) and O(

√

n log
n

�
) , respectively. 

Recently, Fathi-Hafshejani et  al. (2018) presented a new generic trigonometric 
kernel function, which is constructed by introducing some new conditions on 
the kernel function. They proved that the large-update primal-dual interior-point 
method for solving SDO problems with this new kernel function enjoys as worst 
case iteration complexity bound which matches the currently best known com-
plexity bound for large-update methods. For more studies with primal-dual IPMs 
based on a kernel function please refer to El Ghami et al. (2009, 2010), Choi and 
Lee (2009),  Qian et  al. (2008),  Peyghami et  al. (2016), Kheirfam (2012). It is 
worth noting that although most IPMs for SDO can be viewed as natural exten-
sions of IPMs for LO and have similar polynomial complexity results, in fact, 
obtaining a valid search direction in SDO case is much more difficult than in the 
LO case.

Motivated by the previous research, very recently, Li et al. (2019) introduced a 
parameterized version of a kernel function that was previously presented by Bai 
et  al. (2002b). Although almost all the early proposed kernel functions have been 
parameterized, as we can see, no one has put forward its parameterized version so 
far. The new parameterized kernel function is not self-regular, but it is eligible. They 
gave the iteration bound and numerical results of the primal-dual IPMs based on the 
kernel function for LO. In this paper we present a new primal-dual interior-point 
algorithm for SDO based on this kernel function. We adopt the basic analysis used 
in Li et al. (2019) and revise them to be suited for the SDO case. we also develop 
some new analytic tools that are used in the complexity analysis of the algorithm. 
Finally. we derive the currently best known iteration bounds for the algorithm with 
large-update methods. The iteration bounds are as good as the bounds for the LO 
case. To our knowledge, this is the first primal-dual interior-point algorithm for 
SDO based on the kernel function. We also give some numerical results.

The paper is organized as follows. In Sect. 2, we recall the notions of the cen-
tral path and search direction, which are the basic concepts of the primal-dual IPMs 
for SDO. We also give a generic primal-dual IPM for SDO in Fig.  1. The kernel 
function and its properties are recalled in Sect. 3. Section 4 is devoted to analyzing 
the convergence of the algorithm and deriving the iteration bound for large-update 
method. Moveover, we give few numerical results in Sect.  5. Finally, concluding 
remarks are given in Sect. 6.
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Some notations used throughout the paper are as follows: The Rn denotes the set 
of n-dimensional vectors, the set of n-dimensional nonnegative vectors and positive 
vectors are denoted as Rn

+
 and Rn

++
 , respectively. Sn , Sn

+
 and Sn

++
 denote the cone of 

symmetric, symmetric positive semidefinite and symmetric positive definite n × n 
matrices, respectively. Furthermore, ∥ ⋅ ∥ denotes the Frobenius norm for matrices, 
and the 2-norm of a vector. Given A and B in Sn

++
 , the Löwner partial order “ ⪰ ” 

(or “ ≻ ”) on positive semidefinite (or positive) matrices means A ⪰ B (or A ≻ B ) 
if A − B is positive semidefinite (or positive). The matrix inner product is defined 
as A ⋅ B = tr(ATB) . For any Q,V ∈ Sn

++
 , Q

1

2 denotes its symmetric square root. 
We assume that the eigenvalues of V are arranged in non-increasing order, that is, 
�1(V) ≥ �2(V) ≥ ⋯ �n(V).

2  Preliminaries

2.1  Kernel function and its barrier function

It is well known that the barrier function Ψ(�) is determined by the univariate ker-
nel function �(t) . A twice differentiable function �(t) ∶ R++ → R+ is called a kernel 
function if �(t) satisfies the following conditions:

Obviously, the kernel function �(t) attains its minimal value at t = 1 and goes to 
infinity if either t ↓ 0 or t → ∞ , hence �(t) can be completely determined by its sec-
ond derivative as follows:

The barrier function Ψ(�) determined by its kernel function �(t) is

Using the concept of a matrix function (Horn and Johnson 1985), we are ready to 
show how a matrix function can be obtained from a kernel function �(t).

Definition 2.1 Suppose the matrix V is a diagonalizable with eigen-decomposition

where QV is nonsingular. The matrix function �(V) is defined by

𝜓(1) = 𝜓
�(1) = 0; 𝜓

��(t) > 0, ∀t > 0; lim
t↓0

𝜓(t) = lim
t→∞

𝜓(t) = ∞.

(2.1)�(t) = ∫ t

1
∫ �

1
�

��(�)d�d�.

(2.2)Ψ(�) ∶=

n
∑

i=1

�(�i).

(2.3)V = Q−1
V
diag(�1(V), �2(V),… , �n(V))QV ,

(2.4)�(V) = Q−1
V
diag(�(�1(V)),�(�2(V)),… ,�(�n(V)))QV .
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In particular, if V is symmetric then QV can be chosen to be orthogonal, i.e., 
Q−1

V
= QT

V
.

Since �(t) is a twice differentiable function, the derivatives � �(t) and � ��(t) are well-
defined for t > 0 . Replacing �(�i(V)) in  (2.4) by � �(�i(V)) and � ��(�i(V)) , respec-
tively. Then for each i, the matrix functions � �(V) and � ��(V) are defined. Similarly to 
the case LO, we denote by Ψ(V) the trace of the matrix function �(V) , i.e.,

The usual concepts of differentiability can be naturally extended to matrices of func-
tions, by interpreting them entry-wise. Let M(t) and N(t) be two matrices of func-
tions, then we have 

Remark 2.1 In the rest of this paper, when we use the function �(⋅) and its deriva-
tives � �(⋅) and � ��(⋅) , it always denotes a matrix function if the argument is a matrix 
and it means a general function from R to R if the argument is also in R.

2.2  The central path

Consider the standard form of SDO

and its dual problem

where each Ai ∈ Sn , b, y ∈ Rm and C ∈ Sn . The matrices Ai are linearly independent.
It is well known that solving an optimal solution of (P) and (D) is equivalent to 

solving the following system:

(2.5)Ψ(V) = tr(Ψ(V)) =

n
∑

i=1

�(�i(V)).

(2.6a)
d

dt
M(t) = M�(t);

(2.6b)
d

dt
tr(M(t)) = tr(M�(t));

(2.6c)
d

dt
tr(�(M(t))) = tr(�(M�(t))M�(t));

(2.6d)
d

dt
(M(t)N(t)) = M�(t)N(t) +M(t)N�(t).

(P) min{C ⋅ X ∶ Ai ⋅ X = bi, i = 1, 2,… ,m, X ⪰ 0}

(D) max

{

bTy ∶

m
∑

i=1

yiAi + S = C, S ⪰ 0

}

,
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The third equation in (2.7) is so-called complementarity condition for (P) and (D), 
and the basic idea of primal-dual IPMs is to replace the complementarity condition 
in (2.7) by the parameterized equation XS = 𝜇E(u > 0) . Therefore, we consider the 
system as below:

A solution exists in (2.8) if and only if (P) and (D) satisfy the interior-point condi-
tion (IPC) from Roos et al. (1997), i.e., there exists (X0, y0, S0) such that

Without loss of generality, we can assume that the IPC is satisfied. In fact we may, 
and will, even assume that X0 = S0 = E, � = 1 . Then for each 𝜇 > 0 , a unique solu-
tion of (P) and (D) exists. The solution of  (2.8) is denoted as (X(�), y(�), S(�)) , 
where X(�) is called the �-center of (P) and (y(�), S(�)) is called the �-center of (D). 
The set of �-center gives a homotopy path, which is called the central path of (P) 
and (D). If � → 0 , then the limit of the central path yields optimal solutions for (P) 
and (D) (Wolkowicz et al. 2000; Nesterov and Nemirovskii 1994).

2.3  The search direction

The search direction of the primal-dual IPMs is determined by Newton’s method, 
and this yields the following equations:

A crucial observation for SDO is that the ΔX in the above system is not necessarily 
symmetric. Several ways have been proposed for symmetrizing the third equation 
in the Newton system such that the resulting new system has a unique symmetric 
solution. In this paper, we consider the symmetrization scheme from which the NT 
direction (Nesterov and Nemirovskii 1994; Nesterov and Todd 1998) is derived.

Define

(2.7)

⎧

⎪

⎨

⎪

⎩

Ai ⋅ X = bi, i = 1, 2,… ,m, X ⪰ 0,
∑m

i=1
yiAi + S = C, S ⪰ 0,

XS = 0.

(2.8)

⎧

⎪

⎨

⎪

⎩

Ai ⋅ X = bi, i = 1, 2,… ,m, X ⪰ 0,
∑m

i=1
yiAi + S = C, S ⪰ 0,

XS = �E.

Ai ⋅ X
0 = bi, i = 1, 2,… ,m,

m
∑

i=1

y0
i
Ai + S0 = C, X0 ⪰ 0, S0 > 0.

(2.9)

⎧

⎪

⎨

⎪

⎩

Ai ⋅ ΔX = 0, i = 1, 2,… ,m,
∑m

i=1
ΔyiAi + ΔS = 0,

XΔS + ΔXS = �E − XS.
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The matrix D can be used to scale X and S to the same matrix V defined by Peng 
et al. (2002) as below:

Note that the matrices D and V are symmetric and positive definite. Let us further 
define

After some elementary reductions, then (2.9) is equivalent to the following system:

The third equation in (2.13) is called the scaled centering equation. Define the so-
called classical logarithmic barrier function and its kernel function as follows:

Then the right-hand of the third equation in (2.13) is exactly equal to �c(V) . In this 
paper, we use a new kernel function �(t) instead of the classical logarithmic kernel 
function �c(t) (Peng et al. 2002). Thus V−1 − V  in (2.13) is replaced by −� �(V) , the 
system (2.13) can be rewritten as

Now one easily obtains the scale search direction DX and DS by solving (2.15), and 
after some elementary reductions by  (2.12), we can derive the centering search 
direction (ΔX,Δy,ΔS) . From the orthogonality of ΔX and ΔS , it is trivial to see that

(2.10)P ∶= X
1

2 (X
1

2 SX
1

2 )
−

1

2X
1

2 = S
−

1

2 (S
1

2XS
1

2 )
1

2 S
−

1

2 and D ∶= P
1

2 .

(2.11)V ∶=
1

√

�

D−1XD−1 =
1

√

�

DSD.

(2.12)

Ai =
1

√

�

DAiD, i = 1, 2,… ,m;

DX ∶=
1

√

�

D−1ΔXD−1;

DS ∶=
1

√

�

DΔSD.

(2.13)

⎧

⎪

⎨

⎪

⎩

AiDX = 0, i = 1, 2,… ,m,
∑m

i=1
ΔyiAi + DS = 0,

DX + DS = V−1 − V .

(2.14)Ψc(�) ∶=

n
∑

i=1

(

�
2
i
− 1

2
− log �i

)

, �c(t) =
t2 − 1

2
− log t.

(2.15)

⎧

⎪

⎨

⎪

⎩

AiDX = 0, i = 1, 2,… ,m,
∑m

i=1
ΔyiAi + DS = 0,

DX + DS = −� �(V).

tr(DXDS) = tr(DSDX) = 0.



300 M. Li et al.

1 3

Thus we have

From what has been discussed above, we may safely draw a conclusion that if 
(X, y, S) ≠ (X(�), y(�), S(�)) , then (ΔX,Δy,ΔS) is nonzero. By taking a step along 
the search direction, with the step size � defined by some line search rules. The new 
point is then computed by

A generic primal-dual algorithm for SDO is given in Fig. 1 as follows:
The parameters �, � and the step-size � described in the algorithm are chosen to 

ensure that the number of iterations is as small as possible. Moreover, if the parame-
ter � which we choose is a constant independent of the dimension n of the problem, 
such as � =

1

2
 , then the algorithm is called a large-update method. If the parameter � 

which we choose depends on the dimension n of the problem, for instance � =
1
√

n
 , 

then we call the algorithm a small-update method.
In the theoretical analysis, small-update methods are much more efficient than 

large-update methods, however, in practice, large-update methods perform bet-
ter (Roos et  al. 1997; Wright 1997; Ye 1997). This implies that there is a gap 
between the theoretical behavior and practical computational efficiency of the algo-
rithm (Renegar 2001). In this paper, we mainly analyze large-update methods.

3  The kernel function and its properties

Bai et al. introduced the following kernel function in Bai et al. (2002b):

DX = DS = 0n×n ⇔ �
�(V) = 0n×n ⇔ V = E ⇔ Ψ(V) = 0.

(2.16)X+ = X + �ΔX; y+ = y + �Δy; S+ = S + �ΔS.

Fig. 1  Algorithm 1
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Li et al parameterized it and obtained a new kernel functions as follows (Li et al. 
2019):

In the following convergence analysis of the method we also use the norm-based 
proximity measure �(V) defined by

Bai et al. gave five more conditions on the kernel function in the literature (Bai et al. 
2004), namely, 

For simplicity of presentation, let M =
(e−1)q+1

e
 . Some straightforward computa-

tions yield the first three derivatives of the kernel function �(t) as follows: 

Following (Bai et al. 2004), a kernel function �(t) is called an eligible kernel 
function if �(t) satisfies conditions (3.4a), (3.4c), (3.4d) and (3.4e). Moreover, If 
�(t) satisfies (3.4b) and (3.4c), then �(t) satisfies (3.4e). Now one easily checks 
that �(t) is eligible.

(3.1)𝜓A(t) =
t2 − 1

2
+

(e − 1)2

e(et − 1)
−

e − 1

e
, t > 0.

(3.2)𝜓(t) =
t2 − 1

2
+

(e − 1)q+1

qe(et − 1)q
−

e − 1

qe
, t > 0, q ≥ 1.

(3.3)�(V) ∶ =
1

2
‖�

�(V)‖ =
1

2

�

�

�

�

n
�

i=1

� �(�i(V))
2 =

1

2
‖Dx + Ds‖.

(3.4a)t𝜓 ��(t) + 𝜓
�(t) > 0, t < 1;

(3.4b)t𝜓 ��(t) − 𝜓
�(t) > 0, t > 1;

(3.4c)𝜓
���(t) < 0, t > 0;

(3.4d)2𝜓 ��(t)2 − 𝜓
�(t)𝜓 ���(t) > 0, t < 1;

(3.4e)𝜓
��(t)𝜓 �(𝛽t) − 𝛽𝜓

�(t)𝜓 ��(𝛽t) > 0, t > 1, 𝛽 > 1.

(3.5a)�
�(t) = t −

Met

(et − 1)q+1
,

(3.5b)�
��(t) = 1 +

M(qe2t + et)

(et − 1)q+2
,

(3.5c)�
���(t) = −

M[q2e3t + (3q + 1)e2t + et]

(et − 1)q+3
.
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Theorem 3.1 (Li et al. 2019, Theorem 4.1) �(t) is an eligible kernel function.

In the following lemma we list some formulas that are equivalent to (3.4a).

Lemma 3.1 (Peng et  al. 2001a,  Lemma  2.1.2) The following three formulas are 
equivalent if �(t) is a twice differentiable function for t > 0 : 

(1) �(
√

t1t2) ≤ 1

2
(�(t1) + �(t2)) , t1, t2 > 0;

(2) 𝜓
�(t) + t𝜓 ��(t) ≥ 0, t > 0;

(3) �(e�) is convex.

In fact, a twice differentiable function is called exponential convex or e-convex if 
it satisfies the property described in Lemma 3.1, and this property has been proved 
to be essential in analyzing the convergence of the primal-dual IPMs based on ker-
nel functions. It is clear that that our kernel function �(t) is e-convex by Lemma 3.1.

Define 𝜓b(t) ∶=
(e−1)q+1

qe(et−1)q
−

e−1

qe
, t > 0, q ≥ 1 . One may easily verify that �b(t) is 

monotonically decreasing and � �
b
(t) is monotonically increasing for t ∈ (0,∞) . We 

also have �b(1) = 0 and � �
b
(1) = 1.

The following lemmas give several crucial properties which are important in 
the analysis of the algorithm.

Lemma 3.2 (Li et al. 2019, Lemma 4.3) 1
2
(t − 1)2 ≤ �(t) ≤ 1

2
�

�(t)2 , if t > 0, q ≥ 1.

Lemma 3.3 (Li et al. 2019, Lemma 4.4) Let � ∶ [0,∞) → (0, 1] denote the inverse 
function of the restriction of − 1

2
�

�(t) to the interval (0, 1]. Then

Lemma 3.4 (Li et  al. 2019,  Lemma  4.5) Let � ∶ [0,∞) → [1,∞) be the inverse 
function of �(t) for t ∈ [1,∞) . Then

Lemma 3.5 �(V) ≥
√

Ψ

2
.

Proof By using Lemma 3.2, we obtain

which means

1

e�(s) − 1
≤
(

2s + 1

M

)
1

q+1

, q ≥ 1.

√

1 + 2s ≤ � ≤ 1 +
√

2s.

�(t) ≤ 1

2
�

�(t)2,

Ψ(V) =

n
�

i=1

�(�i(V)) ≤ 1

2

n
�

i=1

�
�(�i(V))

2 =
1

2
‖Ψ�(�i(V))‖

2 = 2�(V)2.
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Thus we have

It completes the proof.   ◻

The following Theorem 3.2 gives the influence of the parameter q on the kernel 
function.

Theorem  3.2 (Li et  al. 2019,  Theorem  4.2) �(t, q) decreases as parameter q 
increases for t ∈ (0, 1) , and increases as parameter q increases for t ∈ [1,∞).

The effects of different values of the parameter q on �(t) are illustrated in Fig. 2.

4  Complexity analysis of the algorithm

Note that our algorithm consists of two parts: inner iteration and outer iteration. 
Every time before the outer iteration of the algorithm begins, just before the �−
update with the factor 1 − � , 0 < 𝜃 < 1 , we have Ψ(V) ≤ � . The vector V is divided 
by the factor 

√

1 − � in the outer iteration, which in general leads to an increase 
in the value of Ψ(V) . Then the algorithm starts executing the inner iterations if 
Ψ(V) > 𝜏 , and the inner iterations will decrease the value of Ψ(V) . The algorithm 
returns to the outer iteration again when Ψ(V) ≤ � . Repeat the above iteration pro-
cess until � is small enough, say, until n� ≤ � , at this stage we have found an �−
solution of (P) and (D).

�(V) ≥
√

Ψ

2
.

Fig. 2  Comparisons of the effects with different q on the kernel function
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In order to investigate the convergence of the algorithm, we first briefly analyze 
the growth behavior of the barrier function in the outer iteration, then discuss the 
decrease behavior of the barrier function and the choice of step size � in the inner 
iteration. Finally, we deduce the iteration bound of the algorithm.

4.1  Growth behavior

From the above analysis we conclude that the largest value of Ψ(V) occur after the 
�-update, just before the inner iteration begins. What we want is to find an upper 
bound of Ψ(V) to research the amount of decrease of the barrier function during an 
inner iteration. Due to the fact that �(t) is eligible, and also El Ghami et al. (2009), 
we have the following lemma.

Lemma 4.1 Let � be as defined in Lemma 3.4, and 𝜐 ≻ 0, 𝛽 ≥ 1 , then

Defining

Obviously, if Ψ(V) ≤ � and � =
1

√

1−�
 , then L

�
(n, �, �) is an upper bound for 

Ψ

�

V
√

1−�

�

 by using Lemma 4.1.

Lemma 4.2 Using the notations of (4.1), we have

Proof Since �b(t) is monotonically decreasing for t ≥ 1 , and �b(1) = 0 , we get

Using above results, Lemma 3.4 and �(t) is monotonically increasing for t ∈ [1,∞) , 
we have

Ψ(�V) ≤ n�

(

��

(

Ψ(V)

n

))

.

(4.1)L
�
(n, �, �) ∶= n�

�

1
√

1 − �

�

�

�

n

��

.

L
�
(n, �, �) ≤ n� + 2

√

2n� + 2�

2(1 − �)
.

�(t) =
t2 − 1

2
+ �b(t) ≤ t2 − 1

2
, t ≥ 1, q ≥ 1.

L
�
(n, �, �) = n�

�

�(
�

n
)

√

1 − �

�

≤ n�

�1 +

�

2�

n
√

1 − �

�

≤ n

�

1+
√

2�

n
√

1−�

�2

− 1

2
=

n� + 2
√

2n� + 2�

2(1 − �)
.
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Hence the lemma is proved.   ◻

4.2  Decrease behavior and the choice of step size

This section serves to analyze the decrease behavior of the barrier function and the 
choice of step size during an inner iteration. After a damped step we have

and

Thus we obtain

One can easily verify that V2
+
 is similar to the matrix 1

�
X

1

2

+S+X
1

2

+ . Then the eigenvalues 
of the matrix V+ are the same as those of the matrix 
(

(V + �DX)
1

2 (V + �DS)(V + �DX)
1

2

)
1

2 . Since the proximity after one step is defined 
by Ψ(V+) , from (2.5), we have

Using the Lemma 3.1, one can get

Defining

which denotes the decrease of the barrier function on each inner iteration. An imme-
diate consequence follows from (4.3) is

The first second derivatives of f1(�) are given as follows:

X+ = X + �ΔX = X + �

√

�DDXD =
√

�D(V + �DX)D,

S+ = S + �ΔS = S + �

√

�D−1DSD
−1 =

√

�D−1(V + �DS)D
−1.

(4.2)V+ =
1

√

�

(D−1X+S+)
1

2 .

Ψ(V+) = Ψ

(

(

(V + �DX)
1

2 (V + �DS)(V + �DX)
1

2

)
1

2

)

(4.3)Ψ(V+) ≤ 1

2
(Ψ(V + �DX) + Ψ(V + �DS)).

f (�) ∶= Ψ(V+) − Ψ(V),

f (�) ≤ f1(�) ∶=
1

2
(Ψ(V + �DX) + Ψ(V + �DS)) − Ψ(V).

(4.4)f �
1
(�) =

1

2
tr(Ψ�(V + �DX)DX + Ψ�(V + �DS)DS),



306 M. Li et al.

1 3

We thus have

and

With �(V) as defined in (3.3), then we use the following notations:

Now we cite following lemmas which will be used in analyzing the convergence of 
the algorithm.

Lemma 4.3 (El Ghami et al. 2009, Lemma 3.3) f ��
1
(�) ≤ 2�2� ��(�1(V) − 2��).

Putting vi = �i(V) , we have f ��
1
(�) ≤ 2�2� ��(�1(v1) − 2��) from 4.3, which is 

equivalent to the results of Lemma 4.1 in Bai et al. (2004). From this stage one 
can apply word-by-word the same arguments as in Bai et  al. (2004) for the LO 
case to obtain the following results.

Lemma 4.4 (Bai et al. 2004, Lemma 4.2) If � satisfies the inequality

then f �
1
(�) ≤ 0.

Lemma 4.5 (Bai et al. 2004, Lemma 4.3) Using the notions of Lemma 3.3, if step 
size � satisfies (4.6), then the largest step size � is given by

Lemma 4.6 (Bai et al. 2004, Lemma 4.4) Let � and �̄� be as defined in Lemma 4.5, 
then

and we will use �̃� as the default step size.

Lemma 4.7 If �̃� is defined as Lemma 4.6, then

(4.5)f ��
1
(�) =

1

2
tr(Ψ��(V + �DX)D

2
X
+ Ψ��(V + �DS)D

2
S
).

f (0) = f1(0) = 0

(4.6)
f �
1
(0) =

1

2
tr
(

�
�(V)DX + �

�(V)DS

)

=
1

2
tr
(

�
�(V)(DX + DS)

)

=
1

2
tr
(

�
�(V)(−� �(V))

)

=
1

2
tr
(

− �
�(V)2

)

= −2�(V)2.

�1(V) ∶= �min(V), � ∶= �(V).

(4.7)−� �(�1(V) − 2��) + �
�(�1(V)) ≤ 2�,

(4.8)�̄� ∶=
1

2𝛿
(𝜌(𝛿) − 𝜌(2𝛿)).

(4.9)�̄� ≥ �̃� ∶=
1

𝜓 ��(𝜌(2𝛿))
,
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Proof By using � defined in Lemma 3.3, we may assume that t = �(2�) for t ∈ (0, 1] . 
Thus we have

Combining the above results and Lemma 4.6, through the simple calculation, we 
derive that

This proves the lemma.   ◻

Lemma 4.8 (Bai et al. 2004, Lemma 4.5) If the step size � is such that 𝛼 ≤ �̄� , then

Lemma 4.9 One has

Proof According to Lemmas 4.6, 4.7 and 4.8, we have

Hence, the results of this lemma holds.   ◻

4.3  Iteration complexity

Our aim in this section is to analyze the convergence of the algorithm. The ques-
tion now is to count how many inner iterations are required to return to the situation 
where Ψ(V) ≤ � . To investigate this, we define the value of Ψ(�) after each �−update 
as Ψ0 , and the subsequent values during inner iterations as Ψ

�
, � = 1, 2,… ,K . Thus 

K is the number of iterations in the inner iteration after once �−update.

�̃� ≥ 1

2(9q + 4)(4𝛿 + 1)
q+2

q+1

,

�
��(�(2�)) = �

��(t) = 1 +
M(qe2t + et)

(et − 1)q+2

≤ 1 + (4� + 1)
q+2

q+1M
−

1

q+1 (qe2t + et)

≤ 4(2q + 1)(4� + 1)
q+2

q+1 , t ∈ (0, 1].

�̃� =
1

𝜓 ��(𝜌(2𝛿))
≥ 1

4(2q + 1)(4𝛿 + 1)
q+2

q+1

.

(4.10)f (�) ≤ −��2.

(4.11)f (�̃�) ≤ −
𝛿
2

𝜓 ��(𝜌(2𝛿))
≤ −

𝛿

q

q+1

4
(

2q + 1
)

(

4 +
1

𝛿

)
q+2

q+1

.

f (�̃�) ≤ −
𝛿
2

𝜓 ��(𝜌(2𝛿))
≤ −

𝛿
2

4(2q + 1)(4𝛿 + 1)
q+2

q+1

≤ −
𝛿

q

q+1

4(2q + 1)
(

4 +
1

𝛿

)
q+2

q+1

.
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By using Lemmas 4.1, 4.2 and the definition of Ψ0 , we have LΨ ≥ Ψ0 ≥ Ψ ≥ � . 
In what follows we assume L

�
≥ Ψ0 ≥ Ψ ≥ � ≥ 2 . From Lemma 3.5, we deduce 

that � ≥
√

Ψ

2
≥ 1 . Substitution into (4.10) gives

which implies

To derive an upper bound for the total number of inner iterations in an outer itera-
tion, we give the following technical lemma, and its elementary proof please refer 
to Peng et al. (2001a).

Lemma 4.10 Let t0, t1,… , tK be a sequence of positive numbers such that

where 𝛽 > 0 and 0 < 𝛾 ≤ 1 . Then K ≤ ⌊

t
�

0

��

⌋

.

Lemma 4.11 The following inequality holds:

Proof Let t
�
= Ψ

�
, � =

1

64(2q+1)
, � =

q+2

2(q+1)
 . Using Lemma 4.10 and substitution 

gives, we have

This completes the proof of the lemma.   ◻

The Lemma 4.11 gives an upper bound for the number of iterations in the inner 
iteration after once �−update. Multiplication the number K by the number of barrier 
parameter updates yields an upper bound for the total number of iterations (Roos 
et al. 1997), where the number of barrier parameter updates is bounded by

(4.12)f (�̃�) ≤ −
𝛿

q

q+1

4(2q + 1)
(

4 +
1

𝛿

)
q+2

q+1

≤ −
Ψ

q

2(q+1)

64(2q + 1)
,

(4.13)Ψ
�+1 ≤ Ψ

�
−

Ψ

q

2(q+1)

�

64(2q + 1)
, � = 0, 1, 2,… ,K − 1.

t
�+1 ≤ t

�
− �t1−�

�
, � = 0, 1, 2,… ,K − 1,

K ≤ 128(2q + 1)Ψ

q+2

2(q+1)

0
, q ≥ 1.

K ≤ Ψ
�

0

��
=

128(2q + 1)(q + 1)Ψ

q+2

2(q+1)

0

q + 2

≤ 128(2q + 1)Ψ

q+2

2(q+1)

0
, q ≥ 1.

1

�
log

n

�
.
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Thus we obtain that an upper bound for the total number of iterations as follows:

Recall that L
�
≥ Ψ0 , and L

�
 is bounded by Lemma 4.2, combining the above results 

and Lemma 4.11, we immediately obtain following theorem:

Theorem 4.1 The total number of iterations required by the algorithm is at most

Set � = O(n) and � = Θ(1) , as a consequence, we conclude that the iteration 
bound of the large-update method is

Note that �(t) is precisely the kernel function proposed by Bai et  al. (2002b) if 
q = 1 , and the iteration bound for large-update method is O(n

3

4 log
n

�
) . By choos-

ing q = O(log n) , the iteration bound becomes O(
√

n log n log
n

�
) , which is the best 

known bound for such methods.

5  Numerical results

In this section, some numerical results of the large-update primal-dual IPMs for 
SDO are given. Consider the SDO problems with the following setting:

Problem 5.1 For the SDO problem with

Starting with the initial feasible solution of the test problem is (X0, y0, S0) , where 
X0 = S0 = E and y0 = (1, 1, 1)T.

K
1

�
log

n

�
≤ Ψ

�

0

���
log

n

�
.

128
(n� + 2

√

2n� + 2�)
q+2

2(q+1) (2q + 1)

�[2(1 − �)]
q+2

2(q+1)

log
n

�
, q ≥ 1.

O
(

qn
q+2

2(q+1) log
n

�

)

.

A1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0

1 2 0 0 − 1

0 0 0 0 1

0 0 0 − 2 − 1

0 − 1 1 − 1 − 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, A2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 − 2 2 0

0 2 1 0 2

−2 1 − 2 0 1

2 0 0 0 0

0 2 1 0 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

A3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 2 − 1 − 1 1

2 0 2 1 1

−1 2 0 1 0

−1 1 1 − 2 0

1 1 0 0 − 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, b =

⎡

⎢

⎢

⎢

⎣

−2

2

−2

⎤

⎥

⎥

⎥

⎦

, C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3 3 − 3 1 1

3 5 3 1 2

−3 3 − 1 1 2

1 1 1 − 3 − 1

1 2 2 − 1 − 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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Problem 5.2 For the SDO problem with

Starting with the following initial feasible solution:

Problem 5.3 For the SDO problem with

where k = 1, 2, 3 , and

Starting with the following initial feasible solution:

Problem 5.4 For the SDO problem with

where k = 1, 2, 3,… ,m , and

Starting with the following initial feasible solution:

In all experiments, we set threshold parameter � = 2.5 , the accuracy parameter 
� = 10−6,the barrier update parameter � ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.99} . By using 
MATLAB2012 we obtain the iteration numbers of the algorithms based on dif-
ferent kernel functions that are stated in Tables 1, 2, 3, 4, 5, and 6. Some kernel 
functions we used in our experiments are as follows:

A1 =

[

1 − 1

−1 1

]

, A2 = E, b =

[

1

1

]

, C =

[

−2 0

0 − 2

]

.

X0 =

[

0.5 0

0 0.5

]

, y0 =

[

0

−3

]

, S0 = E.

Ak(i, j) =

⎧

⎪

⎨

⎪

⎩

1 if i = j = k or i = j = k + 1;

−1 if i = k, j = k + 1 or i = k + 1, j = k;

0 otherwise,

A4 = E, b = (2, 2, 2, 4)T , C =

⎡

⎢

⎢

⎢

⎢

⎣

2 − 1 0 0

−1 2 0 0

0 0 2 − 1

−1 1 1 − 2

0 0 − 1 2

⎤

⎥

⎥

⎥

⎥

⎦

.

X0 = S0 = E, y0 = (1, 0, 1, 0)T .

Ak(i, j) =

⎧

⎪

⎨

⎪

⎩

1 if i = j = k;

1 if i = j and i = k + m;

0 otherwise,

m ∈ {5, 15, 25}, n = 2m, b = (2, 2,… , 2)T , C = −E.

X0 = S0 = E, y0 = (−2,−2,…− 2)T .
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The first kernel function �new(t) is proposed in this paper, and it is exactly the kernel 
function presented by Bai et  al. (2002b) for q = 1 . �1(t) is the classical logarith-
mic kernel function. �2(t) is a self-regular kernel function presented by Peng et al. 
(2000). �3(t) is a trigonometric kernel function (El Ghami et al. 2012). �4(t) (Bai 
et al. 2012) and �5(t)  (Fathi-Hafshejani and Fakharzadeh 2018) are parameterized 
kernel function, which obtain the best iteration complexity for q = O(log n).

From the numerical results in Tables 1, 2, 3, 4, 5, and 6, we can get the following 
conclusions:

• The results in Tables 1, 2, 3, 4, 5, and 6 show that the larger � is, the less or the 
same iteration numbers will be.

• For Problems 5.1–5.4 the best numerical results are obtained by performing 
algorithms 1 based on the new proposed kernel function �(t) with q = 3.

• Compared with the original kernel function, that is, when the parameter q = 1 , 
the numerical result are significantly improved.

• In most cases, our kernel function �(t) have better numerical results than several 
other kernel functions �1−5(t).

These results imply that our kernel function is quite efficient and promising.

6  Concluding remarks

We have extended a pimal-dual interior-point algorithm for LO to SDO and derived 
the currently best known bound for the algorithm with large-update method, namely, 
O(

√

n log n log
n

�
) , which is the same iteration bounds as the LO case. Finally, we 

present some numerical results, and the practical performance seems quite promis-
ing and significant based on our kernel function for SDO.

Some interesting topics for further research remain. Firstly, the search directions 
used in this paper are all based on the NT-symmetrization scheme. It may be pos-
sible to design similar algorithms using other symmetrization schemes and to obtain 
polynomial time iteration bounds. Secondly, the extension to symmetric cone opti-
mization (SCO) deserves to be investigated.

�new(t) =
t2 − 1

2
+

(e − 1)q+1

qe(et − 1)q
−

e − 1

qe
, q = 1, 2, 3,

�1(t) =
t2 − 1

2
− log t, �2(t) =

t2 − 1

2
+

t−1 − t

2
,

�3(t) =
t2 − 1

2
+

6

�
tan(h(t)), h(t) =

�(1 − t)

4t + 2
,
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1
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