
Vol.:(0123456789)

Optimization and Engineering (2021) 22:217–245
https://doi.org/10.1007/s11081-020-09507-w

1 3

RESEARCH ARTICLE

How to catch a lion in the desert: on the solution
of the coverage directed generation (CDG) problem

Raviv Gal1 · Eldad Haber2 · Brian Irwin2  · Bilal Saleh1 · Avi Ziv1 

Received: 13 September 2019 / Revised: 22 April 2020 / Accepted: 22 April 2020 /
Published online: 26 May 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The testing and verification of a complex hardware or software system, such as
modern integrated circuits found in everything from smartphones to servers, can be
a difficult process. One of the most difficult and time-consuming tasks a verifica-
tion team faces is reaching coverage closure, or hitting all events in the coverage
space. Coverage-directed-generation (CDG), or the automatic generation of tests
that can hit hard-to-hit coverage events, and thus provide coverage closure, holds the
potential to save verification teams significant simulation resources and time. In this
paper, we propose a new approach to the CDG problem by formulating the CDG
problem as a noisy derivative free optimization problem. However, this formulation
is complicated by the fact that derivatives of the objective function are unavailable,
and the objective function evaluations are corrupted by noise. We solve this noisy
optimization problem by utilizing techniques from direct optimization coupled with
a robust noise estimator, and by leveraging techniques from inverse problems to esti-
mate the gradient of the noisy objective function. We demonstrate the efficiency and
reliability of this new approach through numerical experiments with a noised quad-
ratic function and an abstract model of part of IBM’s NorthStar processor, a super-
scalar in-order processor designed for servers.

Keywords  Hardware verification · Coverage directed generation · Derivative free
optimization · Statistical parameter estimation · Inverse problems

1  Introduction

Verification of a complex hardware or software system, such as modern integrated
circuits (ICs), can be a challenge. In principle, one would like to test every state or
event that the system can reach, and observe that the system functions as intended.
However, for complex systems, this is impossible, as the number of possible states is

 *	 Brian Irwin
	 birwin@eoas.ubc.ca

Extended author information available on the last page of the article

http://orcid.org/0000-0002-6086-4359
http://orcid.org/0000-0002-6309-250X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-020-09507-w&domain=pdf

218	 R. Gal et al.

1 3

so large that it is impractical to test each state individually. To this end, it is common
to define a large, but finite, random set of tests or test instances, also referred to as
test stimuli, that are drawn from the distribution of all possible tests, and apply them
to the design-under-test (DUT) to be tested.

This paper targets verification environments that utilize biased random stimuli
generators to generate test stimuli. The stimuli generator uses test templates as its
input. The test templates bias the test stimuli generation toward targeted areas and
features of the verified design. A test template comprises a set of parameters, or
directives, where each parameter is a set of weight-value pairs. We refer to the out-
put stimuli of the random stimuli generator as a test instance.

Even with a smart choice of test stimuli, one may have great difficulty hitting a
number of key events to be tested. These events are often referred to as hard-to-hit
events. This is because the mapping from test parameters to events is unknown, and
can be highly nontrivial. Therefore, one of the most difficult and time-consuming
tasks a verification team faces is reaching coverage closure, or, in other words, hit-
ting all coverage events, including hard-to-hit events. Understanding why certain
events are difficult to hit, and how they can be hit, requires both verification exper-
tise and a deep understanding of the design under test. Moreover, generating test
instances that hit such events is often an iterative trial and error process that con-
sumes significant simulation resources and verification team time. Therefore, it is
desirable to have an automatic solution for improving the probability of hitting hard-
to-hit events.

Coverage-directed-generation (CDG), or the automatic generation of test
instances, is a concept that has long been on the wish list of verification teams, and
the target of a vast amount of research. Many techniques have been proposed to
tackle the CDG problem, ranging from formal methods, via AI algorithms, to data
analytics and machine learning techniques (see Mishra and Dutt 2002; Nativ 2001;
Fine and Ziv 2003 and references within). For microprocessors, the simplest of these
techniques involves exciting all the functions described in the data-sheet (Mishra
and Dutt 2002). More advanced techniques, such as those in Fine and Ziv (2003),
use the response of the processor to inputs to build a model to help predict which
inputs will improve the probability of hitting hard-to-hit events. Almost all these
techniques employ some form of statistical sampling. However, these techniques did
not mature to be widely used in industry for various reasons, including the scalabil-
ity of the solution, difficulty in applying it, and the quality of the proposed solution.
As a result, reaching coverage closure remains almost entirely a manual process.

The goal of this work is to propose a new approach for the solution of the CDG
problem and increasing the probability of hitting hard-to-hit events. Finding how to
hit a low probability event in a large space is sometimes humorously referred to as
finding “how to catch a lion in the desert”, originated by the seminal paper of Pétard
(1938). We propose a method that solves the problem by minimizing a cost function
that increases the probability of hitting the hard-to-hit event(s). We show that such
an approach can lead to an efficient solution of the problem, especially if it is cou-
pled with a robust and efficient optimization algorithm.

The rest of the paper is organized as follows. In Sect. 2, we give a mathematical
background to the proposed approach. In Sect. 3, we discuss solution techniques for

219

1 3

How to catch a lion in the desert: on the solution of the coverage…

the problem. These techniques are based on direct optimization methods coupled
with a robust noise estimator. In Sect. 4, we describe the main experimental environ-
ment used to test the proposed approach. In Sect. 5, we perform a number of experi-
ments that demonstrate the efficiency of our approach, and we summarize the paper
in Sect. 6.

2 � Mathematical background

Let us mathematically formalize the testing process. Throughout the rest of the
paper in general, bold letters, such as � , represent vectors. Non-bold letters, such as
� , represent scalar quantities. Subscripts represent elements of a vector, such as sk ,
and superscripts are used to represent a single vector in a group of vectors, such as
�l.

Let �(�) denote a random variable, referred to as a test instance of test template
� , and representing a test to be run by the DUT. Using directives, the test template
� can be represented as a vector � = [�1, �2,… , �L] composed by concatenating L
directive weight vectors �l, l = 1, 2,… , L . As a result, � is M-dimensional where
dim(�) = M =

∑L

l=1
dim(�l) . The directive weight vectors �l parametrize each direc-

tive, and each �l is normalized to present a probability distribution. The space of
all possible test templates is denoted by T  , and is also known as the test templates
skeleton. It is important to note that, while each test instance �(�) is random, the
directives and the test templates are not. The directives and test templates are deter-
ministic parameters that define the random space and control the distribution of the
test instances.

In the testing and verification process, the main goal is to hit every event in the
coverage space C = {c1, c2,… , cK} , or space of all events. Given a test instance
�(�) , chosen from a probability space defined by the vector � ∈ T  , one runs a simu-
lation to obtain a random vector

that is defined as a hit coverage vector. The entries of the hit coverage vector � are
binary. If a particular event in the coverage space was hit by the specific test instance
� , the entry of the corresponding index in � is 1, and it is 0 otherwise.

Clearly, since the test instances are generated randomly in a manner dependent on
the parameters of the test template � , the vector � is also random and depends on � .
To this end, let

be the expected value of the hit coverage vector � , and let

�(�) = [s1, s2,… , sK], sk ∈ {0, 1} ∀k, k = 1, 2,… ,K

(1)�(�) = �� [�(�(�))]

(2)�N(�) =
1

N

N∑
i=1

�i

220	 R. Gal et al.

1 3

be the empirical expectation of the hit coverage vector estimated using N test
instances generated from test template � . Note that while sk ∈ {0, 1} ∀k , the vec-
tor � = [e1, e2,… , eK] and its empirical values are real. The k-th value in �(�) , ek ,
represents the probability of hitting the event ck using a test instance � generated
according to the distribution defined by � . To compute the empirical expectation
�N(�) of a hit coverage vector, given a test template � , we can run N simulations,
obtain �i, i = 1, 2,… ,N hit coverage vectors, and average them. Clearly, such a pro-
cess is computationally expensive, especially if we are to estimate �(�) accurately. To
demonstrate the above definitions, let us consider the following simple, but concrete
example.

Example 1: Testing the multiplication of two numbers Assume that we build a
calculator that can compute the product of two numbers in the interval [0, 1]. In
a test instance, we need to randomly pick two numbers within the interval and
compute their product. In this case, we have L = 2 directive weight vectors,
�1 and �2 , that define how we choose each of the two numbers. For simplicity,
in this case we assume that �1 = �2 = � , and therefore the test template � is just
the single directive weight vector � = � . Next, we choose the parametrization of
the test template, which defines the numbers in the interval [0, 1]. For simplicity,
we split the interval [0, 1] into M equally sized increments. Formally, we assume
that � = [t1, t2,… , tM] are the probabilities of choosing a number in the interval
[0, 1∕M], (1∕M, 2∕M],… , (1 − 1∕M, 1].

Recall the space C is the space of all events, or coverage space. Let us define
K = M different events that correspond to the k cases that the output of the multi-
plication falls into one of the intervals [0, 1∕K], (1∕K, 2∕K],… , (1 − 1∕K, 1] . Now,
consider choosing the probability density parameterized by � . One tempting choice
is to simply use the uniform distribution, setting tm = 1∕M,m = 1, 2,… ,M . Clearly,
this choice leads to less than optimal sampling of the coverage space. For this case,
it is easy see that

If we further refine the intervals in the T and C spaces by letting K → ∞ , then the
likelihood of hitting an event that is at the right edge (close to 1) will approach 0,
and therefore using a uniform distribution may not lead to a complete sampling of
the coverage space, and we may end up with some unhit events. Understanding this
problem allows one to choose a sampling routine that gives a higher probability to
numbers that are close to 1, and improve the probability of sampling the whole cov-
erage space.

The above multiplication example can be clearly analyzed to obtain an optimal
sampling scheme. However, in practice, this is very frequently not the case. The sys-
tem under test may be highly nonlinear. In this case, one typically performs some
probing of the space by randomly testing a number of sampling schemes, and then
tries to improve the coverage and sample as intelligently as possible. However, as
previously discussed, hitting a hard-to-hit event may be difficult and require manual
and labor intensive processes. Our goal is to improve over such processes by auto-
matically increasing the probability of hitting hard-to-hit events.

e1 ≫ eK

221

1 3

How to catch a lion in the desert: on the solution of the coverage…

Obtaining �N(�) from � is an unknown function that is dictated by the simulator,
and can be written as

Here, �(�) is a noise vector that depends on � . This noise vector � gets a different
value every time we compute �N , giving us a noisy realization of the expected value
of the hit coverage vector.

Let us define the target event(s), �tar(�) = �⊤�(�) . Depending on the specific
problem, �tar can be a vector or a number. For example, if we only want to hit the
k-th event, we can define �⊤ as the k-th row of the identity matrix. In some cases,
we aim to increase the probability of hitting a group of hard-to-hit events, and
in this case �⊤ corresponds to a few rows of the identity matrix. Maximizing the
probability of hitting the events in �tar can now be formulated as the simple opti-
mization problem

where 1 is a vector of all ones.
There are a number of problems when attempting to solve the maximization

problem defined by Eq. 4. First, we do not have access to the objective function
directly. The objective function can only be evaluated up to some unknown noise.
Second, this noise is not necessarily stationary. That is, every time the objective
function is called, a different noise vector is generated, and, on top of that, the
noise level ‖�‖ can be different for different values of � . Third, for a fixed � , the
noise corrupting the measurement of �(�) is likely different for each entry. In other
words, the noise level is likely different for each event ek . Fourth, a critical differ-
ence between this problem and the common problem of minimization under the
expectation is that for the canonical stochastic programming problem, the random
variable is drawn from a fixed distribution. Here, the distribution is parameterized
by � , and therefore, as we change the values of the parameters we optimize, we
obtain a different distribution with a possibly different noise signature. To illus-
trate the above, we continue with our discussion of Example 1.

Example 1: Testing the multiplication of two numbers-continued We choose
M = K = 100 segments, and choose the entries of � to grow quadratically in the
interval [0, 1], and normalize such that they sum to 1. This implies that we have
a higher probability of choosing larger numbers compared with smaller numbers.
Given this test template, we compute the empirical hit coverage vector, �N(�) , for
N = 10p, p = {2, 3, 4, 5, 6} . The results are plotted in Fig. 1.

The results demonstrate how noisy the function can be when the number of
realizations is small, and how the probability converges as the number of samples
grows. Also note how low the probability of choosing numbers close to 1 is, even
when � is chosen to grow quadratically. To find a � that further improves the prob-
ability of hitting the rightmost element in the empirical hit coverage vector �N ,
by setting 1⊤�⊤ = [0,… , 0, 1] , one can compute an objective function that maxi-
mizes the probability of hitting the rightmost element.

(3)�N(�) = �(�) + �(�)

(4)max
�

{
𝜙(�) = 1

⊤�tar(�) = ��

[
1
⊤�⊤�(𝜃(�))

]}

222	 R. Gal et al.

1 3

3 � Solution techniques

The main problem under consideration here, the CDG problem, can be formu-
lated as a derivative free optimization (DFO) problem where the objective func-
tion under consideration is noisy. The topic has been considered by many authors,
such as Kelley, Nocedal, and Scheinberg, using different techniques, ranging
from stochastic methods (Conn et al. 2009), direct search methods (Kelley 2011),
and gradient based methods (Berahas et al. 2019). In this paper, we experiment
with three optimization techniques: an implicit filtering based technique, a steep-
est descent based technique, and a Broyden–Fletcher–Goldfarb–Shanno (BFGS)
based technique. While we have directly used an implicit filtering technique, we
have modified existing steepest descent and BFGS techniques from non-noisy
unconstrained optimization in order to better deal with the noise in the problem.
Below, we describe the algorithmic framework we used to solve the problem.

Fig. 1   Evaluation of �N for the values N = 10p, p = {2, 3, 4, 5, 6} on the simple two number multiplica-
tion model problem. We choose M = K = 100 segments, and choose the elements of � to grow quadrati-
cally in the interval [0, 1], and normalize such that they sum to 1. Note how noisy the function can be
when the number of realizations is small, and how the probability converges as the number of samples
grows. Also note the low probability of hitting events at either end (close to 0 or 1) of the multiplication
interval

223

1 3

How to catch a lion in the desert: on the solution of the coverage…

3.1 � Optimization problem setup

Given an objective function f (�) , we decompose it as

We assume that �(�) is a smooth function, and that �(�) is noise. The noise � is
assumed to be uncorrelated with zero mean, and some unknown standard deviation
� . We assume that the standard deviation �(�) changes slowly with respect to �.

For the CDG problem, we are unable to obtain the derivatives of � with respect
to � , and therefore we turn to DFO methods. While there are many DFO methods,
we turn our attention to local methods that are based on the numerical estimation
of the gradient. Such methods have been studied extensively in the last 30 years
(Rios and Sahinidis 2013), yielding successful software packages such as MCS,
TOMLAB/LGO, and NEWUOA (Huyer and Neumaier 1999; Pintér 1996; Powell
2006) (also see references within).

However, when experimenting with the problem, we found that standard
approaches based on gradient estimation methods fail or work poorly when the
noise level is high. To explain this problematic observation, we first review the
standard approach to such problems. A typical algorithm for such problems is
composed of the following steps.

1.	 Evaluate the function f, its gradient ∇f  , and its approximate Hessian � ≈ ∇2f .
2.	 Compute a descent direction �.
3.	 Update the solution using some relaxed line search or trust region method.

Function and gradient evaluations are typically done using finite differences. Let
us review the process at some depth. Assume that we would like to compute the
directional derivative of f (�) in the direction � . It is common to use a central
finite difference approach computing

which gives

where 𝜔̄ is a random variable generated by combining the zero mean errors in the
function evaluations, and Nres(�(�), �) is the nonlinear residual. It is evident that
the approximation for �⊤�f (�) is polluted with two types of errors. The first type of
error, corresponding to the second term in Eq. 7, is the error due to the noisy estima-
tion of the function, and the second type of error, corresponding to the third term
in Eq. 7, is an error due to the nonlinearity of �(�) . Unfortunately, these error terms
have contradicting behaviours. While the second term in Eq. 7 requires as large an h
as possible to reduce the error, the third requires a small h to obtain the same goal.

(5)f (�) = �(�) + �(�)

(6)�⊤�f (�) ≈
f (� + h�) − f (� − h�)

2h

(7)�⊤�f (�) ≈ �⊤�𝜙(�) +
𝜔̄

2h
+ h2Nres(𝜙(�), �)

224	 R. Gal et al.

1 3

In some cases, when the noise is small, and it is possible to obtain an estimate of the
magnitude of the nonlinear residual, one can balance these terms, choosing

where N̄res is an estimate of the nonlinear residual Nres . This approximation can be
used in order to obtain a reasonable estimate of the gradient. However, even with
this choice of approximation, the estimate of the gradient may not be sufficiently
accurate.

Furthermore, estimating the noise and the nonlinear errors can be computation-
ally difficult, and require additional function evaluations using different sized sten-
cils. Such work was proposed in Moré and Wild (2011). However, even with an opti-
mal stencil size, the noise can still be significant (see, for example, Fig. 1). Indeed,
even for the optimal h (assuming that both N̄res and � are known), the error corrupt-
ing �⊤�f (�) scales as �

2

3 , which only marginally improves the problem presented by
the noise for large values of �.

In this work, we introduce a different approach to the optimization problem.
Rather than estimating the noise by further function evaluations, we view the prob-
lem as a statistical inverse problem, where the solution has to be evaluated from
noisy data. In the next subsection, we show how to use standard techniques from
inverse problems to estimate the behaviour of the objective function f, and its gradi-
ent ∇f .

3.2 � Function and gradient approximation as statistical parameter estimation

Let us provide a different interpretation of the process of evaluating the gradient of a
noisy function. Let us consider a general linear model of the form

with ‖�‖ = 1 and � being noise. Here, � is an unknown vector that is to be computed
from the values of the objective function in points around � . Note that this linear
approximation is not necessarily the Taylor expansion. It can be any linear model
that approximates the function for a given step size h and direction � . Clearly, for
smooth functions, as h → 0 , the approximation converges to the Taylor expansion
when no noise is present.

Now, assume that we have n directions, �1,… , �n . Using these directions, we
obtain the following set of n equations

which we rewrite as the simple linear system

h =

(
𝜎

2N̄res

) 1

3

(8)f (� + h�) = 𝜙̄(�) + h�⊤� + 𝜔(�)

(9)
⎛⎜⎜⎝

f1
⋮

fn

⎞⎟⎟⎠
=

⎛⎜⎜⎝

1 h�1⊤

1 ⋯

1 h�n⊤

⎞⎟⎟⎠

�
𝜙̄

�

�
+

⎛⎜⎜⎝

𝜔1

⋮

𝜔n

⎞⎟⎟⎠

225

1 3

How to catch a lion in the desert: on the solution of the coverage…

where �� = [𝜙̄, �⊤]⊤ . Estimating �̂ from the noisy data � is a corner stone of statistical
inverse problems (Tenorio 2017). It is therefore straight forward to use inverse prob-
lems techniques for the estimation of the average function value, 𝜙̄ , and gradient �.

As is pointed out in Eq. 7 for the case of finite differences, a smaller h does not nec-
essarily give a better gradient estimate due to the error introduced by the noisy evalua-
tion of the function, and a similar observation also applies in the general linear model
case here. By comparing the general linear model and a Taylor expansion, we get

and noting that if 𝜙̄(�) → 𝜙(�) as h → 0 , then �i⊤� − �i⊤�𝜙(�) ∝
𝜔i

h
 , and a smaller

h does not necessarily cause � → �� . However, it is also important to note that �
is a locally “averaged” approximation to the gradient, and is not intended to be a
pointwise estimator of the gradient in general. In other words, � in the general linear
model is intended to quantify how � changes “on average” in a local region as we
move away from the current point. The key observation is that shrinking h still has
the potential to magnify the corrupting effect of noise when estimating � . This effect
is not present when there is no noise, and it should be somewhat unsurprising that
this can happen, given that finite difference approaches can be written as special
cases of Eq. 10. To see that finite difference approaches can be written as special
cases of Eq. 10, observe that finite difference estimation using forward differences is
the special case of the system in Eq. 10 that can be explicitly written as

where � is the n × n identity matrix here, and f0 is known. Also note that the finite
difference approach requires n = M , whereas our general linear model approach
generalizes to cases where n ≠ M.

Proceeding, we further assume that we have some prior estimate of �̂ , �̂0 . If no
such estimate is available, then we can choose �̂0 = � . Such an estimate can be
obtained if we know something about the function f, or if we computed �̂ at a nearby
point. For example, if �̂ was computed during a previous iteration, we can use this
value from the previous iteration as �̂0 . A new estimate of �̂ can be obtained by solv-
ing the following ridge regression type minimization problem

Given the regularization parameter, � , the problem has the closed form solution

The regularization parameter � is chosen based on the noise level. When the noise
level is unknown, as in our problem, the Generalized Cross Validation (GCV)

(10)� = ��̂ + �

f (� + h�i) = 𝜙̄(�) + h�i⊤� + 𝜔i = 𝜙(�) + h�i⊤�𝜙(�) + O(h2)

⎛⎜⎜⎝

f1
⋮

fn

⎞⎟⎟⎠
=

⎛⎜⎜⎝

1

⋮ h�

1

⎞⎟⎟⎠

�
f0
�

�
+

⎛⎜⎜⎝

�1

⋮

�n

⎞⎟⎟⎠

(11)min
�̂

�
1

2
‖��̂ − �‖2

2
+

�

2
‖�̂ − �̂0‖22

�

(12)��𝛼 = (�⊤� + 𝛼�)−1(�⊤� + 𝛼��0)

226	 R. Gal et al.

1 3

method can be used to choose � , and obtain an unbiased estimate of the noise level
(Golub et al. 1979). This is done by minimizing the GCV function for this problem

where

Minimizing the GCV function in Eq. 13 in 1D can be done using a bisection method
(Burden and Faires 2010).

Regarding the choice of the directions �i , as long as the regularization parameter
𝛼 > 0 , the minimizer of Eq. 11 is unique. As a result, one is able to estimate the
gradient in the underdetermined case using our linear model approach, even in the
extreme situation where n = 1 . It is important to note, however, that without reuse of
the previous gradient estimate �0 , which is equivalent to setting � = 0 , the underde-
termined system may have infinitely many solutions. Hence, it should be relatively
easy to see that choosing a very small number of directions n could potentially be
problematic because as � → 0 , (VTV + �I) approaches a singular matrix, and the
new gradient estimates may behave increasingly erratically. This is not as much of
an issue if � is not close to 0, and in the overdetermined case. In the overdeter-
mined case VTV is likely a full rank, positive definite matrix, and thus (VTV + �I)
is likely invertible even if � = 0 . Thus, a transition in behaviour happens approxi-
mately when V is square, and so once the number of directions n is approximately
the number of variables M or greater, the general linear model should give a gradi-
ent estimate depending noticeably less on previous estimates.

Note that choosing the directions �i randomly with n ≥ M leads to a set of direc-
tions that span the space with high probability, even though the random �i are likely
not orthogonal. A lack of orthogonality is not necessarily bad, as the original choice
of coordinate system can be arbitrary, and is not necessarily a natural coordinate sys-
tem for the problem. Using random directions can help alleviate any issues arising
from the specific choice of coordinate system, as demonstrated by Implicit Filtering
(Kelley 2011), Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall
1987, 1992, 1998) and Random Directions Stochastic Approximation (RDSA)
(Prashanth et al. 2017) type methods. As we will later see in the numerical experi-
ments section, the values obtained using the above approach can provide a signifi-
cant advantage compared to the simple finite difference approximations employed in
classical noisy optimization approaches.

3.3 � Solution algorithms

Below, we present our solution algorithms in pseudocode. Algorithm 1 outlines the
gradient based steepest descent technique and the BFGS approximation. As a com-
parison to this approach, we use implicit filtering as presented in Kelley (2011), out-
lined in Algorithm 2. The implicit filtering algorithm does not require any gradient

(13)GCV(�) =
‖(� − �(�))(� − ��̂0)‖22

[trace(� − �(�))]2

�(𝛼) = �(�⊤� + 𝛼�)−1�⊤.

227

1 3

How to catch a lion in the desert: on the solution of the coverage…

approximations, and only relies on the noisy values of f itself. Our algorithm adapts
standard descent methods for non-noisy problems by using the GCV estimated 𝜙̄
and � in place of the values of f and ∇f at each point, and performs a simple line
search procedure.

A few comments regarding GCV are in order. First, minimizing the GCV func-
tion is not, in general, a computationally cheap process. For the CDG problem, func-
tion evaluation is very expensive, and the number of variables does not exceed the
few thousands. In this case, investing some work to obtain the best direction possible
is justified. However, for problems where function evaluation is cheap, one may not
find our approach attractive. Nonetheless, efficient ways to minimize the GCV func-
tion that use stochastic trace estimators can make the process of solving the problem
relatively fast. Here we have used the technique proposed in Golub and von Matt
(1997) to obtain the solution of the problem using Krylov space decomposition.

228	 R. Gal et al.

1 3

Before presenting the results from numerical experiments using our approach, we
first describe the system used for the main numerical experiments: an abstract model
of part of IBM’s NorthStar processor.

4 � The northstar pipeline

As a lightweight experimental environment, we employ a high-level software model
of the two arithmetic pipes of the NorthStar superscalar in-order processor and
the dispatch unit, also used in Fine and Ziv (2003). The NorthStar processor, also
known as the RS64-II or PowerPC A50, was released by IBM in the late 1990s,
featuring a RISC instruction set architecture (Borkenhagen and Sorino 1999). The
high-level software model consists of two main components. First, a biased random
stimuli generator that generates programs, and second, a software simulator of the
NorthStar processor’s dispatch unit and two arithmetic pipes that executes the ran-
domly generated programs.

The NorthStar has two pipes, one simple and one complex (see Fig. 2). Each
of the pipes comprises three stages: data fetch, execution, and write-back. One of
the pipes, the simple pipe, handles only simple instructions, such as add. The other
pipe, the complex pipe, handles complex instructions, such as mul. The complex
pipe can also handle simple instructions when the simple pipe is busy. The model
supports five types of instructions: simple instructions Sim, three types of complex

229

1 3

How to catch a lion in the desert: on the solution of the coverage…

instructions Cm1,Cm2,Cm3 that differ in the time they spend in the execution stage
(1, 2, and 3 cycles respectively), and Nop, which represents all instructions that are
not executed in the arithmetic pipes. The actual execution time can be longer due
to data dependencies between instructions. To maintain simplicity, we assume the
processor has only eight registers and instructions use one source and one target reg-
ister. In addition, the processor has a condition register CR, which some instructions
read from and write to. In each cycle, up to two instructions are fetched, according
to the instruction’s type and the state of the pipes.

Test templates � for the NorthStar software model are defined by four directive
weight vectors � = [�1, �2, �3, �4] , and control the distribution that the biased ran-
dom stimuli generator component generates random programs from. Each direc-
tive weight vector defines a probability distribution. The first directive weight vec-
tor �1 = IW = [WNop,WSim,WCm1

,WCm2
,WCm3

] contains instruction set selection
weights, and controls the mnemonic of the generated instructions. The second and
third directives affect the behaviour of the source and target registers. The second
directive weight vector �2 = SW = [WS0

,… ,WS7
] contains source register weights,

and the third directive weight vector �3 = TW = [WT0
,… ,WT7

] contains target reg-
ister weights. The fourth directive weight vector �4 = CW = [WC0

,WC1
] controls the

conditional register. Thus, one can express a test template as the M = 23 entry vec-
tor � = [IW, SW, TW,CW].

The coverage space C is a cross-product (Piziali 2004) of the instructions in stage
0 of the complex and simple pipes (5 and 2 possible values respectively), two indi-
cators for whether stage 1 of each pipe is occupied, and an indicator for whether the
instruction in S1 is using the conditional register. An event is defined by assigning
values to each coordinate. For example, the event (C2, Sim, 0, 0, 0) means that C2 and
Sim are hosted at stage 0 of the complex and simple pipes, stage 1 of both pipes is
not occupied, and the conditional register is not used. Clearly, the size of the cover-
age space size is

However, out of this space, only 54 events are legal. For example, the 8 events
spanned by the subspace (Sim,Nop, ∗, ∗, ∗) , where * indicates a wildcard that can
be any value, are illegal because if S0 is free, then the simple instruction should have
been fetched into the simple pipe. During simulation, coverage is tracked for a time
interval of 100 cycles, starting at cycle 10. An event is considered hit by the test
instance if it was hit at least once during this time interval.

5 � Numerical experiments

In this section, we illustrate how our linear model based gradient estimation
approach can outperform finite differences on a simple noisy function, and we com-
pare the performance of the implicit filtering, steepest descent, and BFGS techniques
numerically using the NorthStar pipeline simulator described above in Sect. 4.

K = |C0Inst × S0Inst × C1Used × S1Used × S1CR| = |5 × 2 × 2 × 2 × 2| = 80.

230	 R. Gal et al.

1 3

5.1 � Noisy 2‑D quadratic function

To illustrate the performance of our general linear model based approach com-
pared to finite differences in a noisy environment, we compared the performance
of gradient descent using various gradient estimators on the 2-D quadratic function
f (x, y) = x2 + y2 with standard normally distributed N(0, 1) random noise added.
For simplicity, we used the constant step size � = 0.001 , the initialization point of
(x0, y0) = (10,− 10) , and the stencil size h = 0.001.

Practically speaking, making h too small can cause the optimization procedure
to become very sensitive to noise as well as roughness in the objective surface. As
a result, a very small h can be undesirable. On the other hand, making h too big can
make it difficult for the optimization procedure to locate sharp minima in the objec-
tive surface. Basically, the choice of h controls the level of smoothing, and a very
small h likely does not smooth enough, while a very large h is likely to smooth too
much. The choice of h = 0.001 is somewhat arbitrary, but it is meant to be an inter-
mediate value that is not too large or too small.

Figure 3 compares the progress of our linear model approach with gradient
descent using exact gradients for 1000 iterations. Similarly, Fig. 4 shows the evolu-
tion of the true value of f(x, y) during gradient descent using forward finite differ-
ences and central finite differences to approximate the gradient.

We now make a few important observations. First, as expected, the behaviour of
the finite difference based approximate gradients can be very erratic in the presence
of noise. Figure 4 illustrates this (note the larger range of y-axis values compared
to Fig. 3). Second, the linear model based approach exhibits an ability to handle

Fig. 2   Schematic of the simulated NorthStar pipeline. There are two pipes of 3 stages, one simple pipe
S and one complex pipe C. In addition, L/S represents the processor’s load store unit, and BR the branch
prediction unit

231

1 3

How to catch a lion in the desert: on the solution of the coverage…

the noise in such a way that performance is not as severely degraded as in the finite
difference case. Third, increasing the number of directions n appears to improve the
performance of the linear model approach, which is also expected given the discus-
sion in Sect. 3.2.

5.2 � NorthStar initial exploration

Proceeding to the NorthStar environment, as an initial exploration of �(�) for the
NorthStar, we first ran 5000 random test templates drawn from T according to the
Dirichlet distribution Dir(1). Using these 5000 test templates, we hit all events in the
coverage space C at least once. We also found the hardest event to hit to be event
chard = (C2,Nop, 0, 1, 0) . The single best test template hit event chard with probability
p(chard) = 0.15 . Based on applied domain knowledge, it was deduced that the test
template defined by IW = (0.5, 0.2, 0, 0.3, 0) , SW = TW = (1, 0, 0, 0, 0, 0, 0, 0) , and
CR = (1, 0) would yield the best chance of hitting event chard.1 This test template

will give high weights to Nop, Sim, and Cm2 , will create dependencies between the
source and target registers, and will not use the condition register CR. Experimen-
tally, by averaging over 100,000 runs of the simulator, this template was observed
to yield a hit probability of p(chard) = 0.4 . Below, we continue to use values aver-
aged over 100,000 runs of the simulator to define a high quality estimate, or “true”
value of p(chard) . However, as we show below, both the implicit filtering and steep-
est descent based techniques are able to automatically discover test templates that
achieve p(chard) = 0.4 or close to 0.4 with a modest budget of total runs of the
NorthStar simulator.

5.3 � Event chard objective function

As was the case when analyzing how to maximize the probability of hitting the
rightmost element in the empirical hit coverage vector for the two number multi-
plication simulator in Sect. 2, we can again choose �⊤ to be a single row of the
identity matrix. Specifically, �⊤ is now the row of the identity matrix corresponding
to chard . To avoid explicity enforcing the constraint that the directive weight vec-
tors IW, SW, TW, CW define properly normalized probability distributions, and thus
solving a constrained optimization problem, we instead pass the values obtained
from the optimization algorithms through the standard softmax function to ensure
valid probability distributions before passing them to the program generator compo-
nent of the NorthStar software model.

In Fig. 5, we plot the objective function for maximizing p(chard) sliced over two
random directions �1 and �2 , for N = 10 and N = 1000 simulator runs per point
respectively. The uniform test template �uni , defined by

� = [0.5, 0.2, 0, 0.3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0]

1  There are many other templates with different values of SW and TW that achieve the same probability.

232	 R. Gal et al.

1 3

Fig. 3   Exact function values f(x, y) from running gradient descent on the noisy quadratic function
f (x, y) +N(0, 1) using a constant step size of � = 0.001 and our linear model approach to approximate
the gradient. n directions of length h = 0.001 were sampled uniformly at random each iteration. The blue
curve shows the performance of gradient descent using exact gradients in this situation. The initialization
point for all runs was (x0, y0) = (10,− 10)

Fig. 4   Exact function values f(x, y) from running gradient descent on the noisy quadratic function
f (x, y) +N(0, 1) using a constant step size of � = 0.001 and finite differences with stencil size h = 0.001
to approximate the gradient. The initialization point for all runs was (x0, y0) = (10,− 10)

233

1 3

How to catch a lion in the desert: on the solution of the coverage…

defines the origin in Fig. 5, and is the starting point for all the optimization experi-
ments in the following subsections. Once again, evaluating the objective function
first consists of passing a vector in ℝ23 through standard softmax functions over the
1st–5th, 6th–13th, 14th–21st, and 22nd–23rd components. After using the standard
softmax function to ensure the 4 directive weight vectors define valid probability
distributions, we pass the template defined by these 4 directive weight vectors to the
biased random stimuli generator, and track the coverage of the generated random
programs over 100 cycles. Note the many local minima, the objective function’s
overall non-convexity, and how increasing the number of simulator runs per point
does not substantially alleviate the non-convexity.

5.4 � Implicit filtering technique

We use implicit filtering to maximize p(chard) , which is equivalent to minimizing
−p(chard) . Table 1 shows the results of a typical successful run of the implicit filter-
ing algorithm. N denotes the number of simulator runs we use to estimate �N(�) at
each template, and n is the number of random directions � . The algorithm was set
to terminate after 50 iterations, or the stencil size h decreased below 1e−3. Over-
all, with a modest budget of 15,000 total simulations,2 we are able to automatically
get within 0.01 of the best hit probability of p(chard) = 0.4 . Additionally, we also
present the value of 𝜙̄ estimated by fitting the regularized linear model defined by
Eq. 11 at each iteration. Figure 6 compares the behaviour of f ∗ , 𝜙̄ , and the “true”

IW =(0.2, 0.2, 0.2, 0.2, 0.2)

SW =TW = (0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125)

CW =(0.5, 0.5)

Fig. 5   The landscape of the objective function for maximizing the probability of hitting event chard com-
puted over two random directions �1 and �2 . Note the many local maxima, and the objective function’s
overall non-convexity. Also, note the confusing effects of noise, such as overestimating probabilities
when the number of samples N is small

2  (24 Iterations) ×
(
25

Points

Iteration

)
×
(
25

Simulations

Point

)
= 15,000 Simulations.

234	 R. Gal et al.

1 3

Ta
bl

e 
1  

S
um

m
ar

y
of

 a
 su

cc
es

sf
ul

 ru
n

of
 th

e
im

pl
ic

it
fil

te
rin

g
al

go
rit

hm

I
f∗

𝜙
U

pd
at

e
� o
p
t?

h
p
(c

h
a
rd
)

Im
pl

ic
it

fil
te

rin
g

hi
sto

ry
 ( N

=
2
5
 , n

=
2
5
 , h

in
it
=
5
0
)

 1
0

0
Tr

ue
50

0.
01

6
 2

0
0

Fa
ls

e
50

0
 3

0.
16

0
7.

15
e−

5
Tr

ue
25

0
 4

0.
08

0
8.

62
e−

5
Fa

ls
e

25
0.

09
9

 5
0.

16
0

0.
04

3
Fa

ls
e

12
.5

0.
09

9
 6

0.
32

0
0.

03
2

Tr
ue

6.
25

0.
10

1
 7

0.
40

0
0.

06
3

Tr
ue

6.
25

0.
14

2
 8

0.
28

0
0.

06
6

Fa
ls

e
6.

25
0.

33
9

 9
0.

44
0

0.
24

5
Tr

ue
3.

12
5

0.
34

3
 1

0
0.

52
0

0.
22

7
Tr

ue
3.

12
5

0.
32

5
 1

1
0.

60
0

0.
81

4
Tr

ue
3.

12
5

0.
34

1
 1

2
0.

44
0

0.
26

4
Fa

ls
e

3.
12

5
0.

38
3

 1
3

0.
52

0
0.

29
7

Fa
ls

e
1.

56
25

0.
38

5
 1

4
0.

56
0

0.
27

0
Fa

ls
e

7.
81

25
e−

1
0.

38
2

 1
5

0.
64

0
0.

35
0

Tr
ue

3.
90

62
5e

−
1

0.
38

8
 1

6
0.

52
0

0.
39

0
Fa

ls
e

3.
90

62
5e

−
1

0.
36

3
 1

7
0.

56
0

0.
34

6
Fa

ls
e

1.
95

31
25

e−
1

0.
36

4
 1

8
0.

48
0

0.
34

6
Fa

ls
e

9.
76

56
25

e−
2

0.
36

3
 1

9
0.

52
0

0.
34

6
Fa

ls
e

4.
88

28
12

5e
−

2
0.

36
0

 2
0

0.
56

0
0.

37
0

Fa
ls

e
2.

44
14

06
25

e−
2

0.
36

5
 2

1
0.

52
0

0.
33

5
Fa

ls
e

1.
22

07
03

12
5e

−
2

0.
36

5
 2

2
0.

56
0

0.
35

3
Fa

ls
e

6.
10

35
15

62
5e

−
3

0.
36

3
 2

3
0.

52
0

0.
35

3
Fa

ls
e

3.
05

17
57

81
25

e−
3

0.
36

4
 2

4
0.

48
0

0.
35

3
Fa

ls
e

1.
52

58
78

90
62

5e
−

3
0.

36
2

235

1 3

How to catch a lion in the desert: on the solution of the coverage…

Ta
bl

e 
1  

(c
on

tin
ue

d)

Su
m

m
ar

y
of

 fi
na

l r
es

ul
ts

 T
ot

al
 #

 o
f S

im
ul

at
io

ns
 =

1
5
,0
0
0

 IW
o
p
t
=
[0
.5
7
9
0
,
0
.2
0
1
0
,
0
,
0
.2
1
5
1
,
0
.0
0
4
9
]

 S
W

o
p
t
=
[0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
]

 T
W

o
p
t
=
[1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]

 C
W

o
p
t
=
[1
,
0
]

 f
o
p
t
=
0
.6
4

 , 𝜙
o
p
t
=
0
.3
5
 , p

o
p
t(
c h

a
rd
)
=
0
.3
9

Th
e

al
go

rit
hm

 is
 a

bl
e

to
 a

ut
om

at
ic

al
ly

 g
et

 w
ith

in
 0

.0
1

of
 th

e
be

st
c h

a
rd

 h
it

pr
ob

ab
ili

ty
 o

f 0
.4

 u
si

ng
 a

 m
od

es
t b

ud
ge

t o
f 1

5,
00

0
to

ta
l s

im
ul

at
io

ns
. T

he
 o

pt
im

iz
at

io
n

w
as

 in
i-

tia
liz

ed
 a

t t
he

 u
ni

fo
rm

 te
m

pl
at

e
� u
n
i ,

an
d

w
as

 se
t t

o
te

rm
in

at
e

af
te

r 5
0

ite
ra

tio
ns

 w
er

e
ex

ce
ed

ed
, o

r t
he

 st
en

ci
l s

iz
e

sh
ra

nk
 b

el
ow

 1
e−

3.
 I

is
 th

e
ite

ra
tio

n
nu

m
be

r

236	 R. Gal et al.

1 3

value of p(chard) averaged over 100,000 simulator runs. It is worth noting that the
fitted 𝜙̄ value appears to be a better estimator of p(chard) than the values of f ∗ , which
is not unexpected given it incorporates information from more runs of the simulator,
and nearby points.

Table 1 only shows a typical successful run of implicit filtering. The algorithm
can also unsuccessfully terminate yielding templates achieving popt(chard) = 0 . As a
result, we experiment with the expected performance of the algorithm for different
parameter values in Table 2. We also investigate the tradeoff between the number of
samples N used to estimate �N(�) at each template, and the number of random direc-
tions n, at each iteration. For each set of N and n values, we ensemble results over 25
independent runs, and, as in Table 1, hinit = 50 , and the algorithm was set to termi-
nate after 50 iterations, or the stencil size decreased below 1e−3.

Overall, we see that the implicit filtering technique is not always very reliable.
This is exemplified by the “Failures” column in Table 2, which shows that even for
relatively large per iteration budgets, the algorithm can still fail to ever hit the event
chard . Specifically, a failure is defined as the algorithm terminating at a test tem-
plate that has a popt(chard) = 0 , or in other words, even after averaging over 100,000
simulations at that template, event chard was never hit. As expected, Table 2 shows

Fig. 6   Visualizing the evolution of the hit probability estimators from Table 1 during the successful
implicit filtering run. p(chard) denotes the reference “true” value, which is calculated by averaging over
100,000 runs of the simulator at a given template � . The x-axis I is the iteration number. Note how the
implicit filtering estimate f ∗ consistently overestimates the probability, whereas 𝜙̄ generally understi-
mates the probability, but then converges to the “true” value as the algorithm progresses

237

1 3

How to catch a lion in the desert: on the solution of the coverage…

Table 2   Results of the implicit filtering based optimization technique compared over fixed per iteration
budgets

Statistics are calculated over 25 independent runs for each combination of n and N, where a bar repre-
sents the sample average, and s2[⋅] represents the sample variance. N is equivalent to simulator runs, and
n is the number of directions in which we choose new test templates � . I is the number of iterations to
termination, which occurs when the stencil size parameter reaches less than h = 0.001 . A failure occurs
when the algorithm terminates at a template with a “true” probability popt(chard) = 0

N n I s2[I] fopt s2[fopt] popt(chard) s2[popt(chard)] max {popt(chard)} Failures

Per iteration budget = 100
 5 20 17.2 0.4 0.040 0.027 0.015 0.005 0.367 23

25

 10 10 17.2 0.8 0.048 0.028 0.022 0.006 0.335 23

25

 20 5 17.4 1.8 0.062 0.031 0.033 0.009 0.352 22

25

Per iteration budget = 625
 5 125 18.3 3.8 0.344 0.225 0.104 0.022 0.365 16

25

 25 25 18.5 5.7 0.192 0.083 0.104 0.025 0.377 17

25

 125 5 17.3 2.0 0.017 0.007 0.014 0.005 0.337 24

25

Per iteration budget = 1250
 5 250 18.1 2.7 0.320 0.227 0.105 0.025 0.375 17

25

 10 125 19.4 5.1 0.444 0.164 0.183 0.029 0.396 11

25

 25 50 19.5 10.4 0.259 0.106 0.143 0.032 0.394 15

25

 50 25 17.6 2.8 0.066 0.033 0.041 0.013 0.388 22

25

 125 10 17.7 4.5 0.058 0.026 0.044 0.015 0.394 22

25

 250 5 17.4 3.2 0.014 0.005 0.012 0.004 0.299 24

25

Per iteration budget = 2500
 5 500 18.5 2.0 0.600 0.250 0.207 0.031 0.395 10

25

 10 250 20.0 5.3 0.576 0.166 0.230 0.027 0.390 8

25

 25 100 20.5 11.4 0.379 0.119 0.201 0.034 0.390 11

25

 50 50 18.9 10.0 0.154 0.064 0.101 0.027 0.376 18

25

 100 25 18.5 9.8 0.102 0.043 0.073 0.022 0.386 20

25

 250 10 17.6 3.9 0.036 0.016 0.031 0.011 0.390 23

25

 500 5 17.4 2.3 0.035 0.014 0.029 0.010 0.375 23

25

Per iteration budget = 5000
 5 1000 19.7 1.1 0.912 0.077 0.281 0.010 0.389 2

25

 10 500 20.8 4.0 0.748 0.113 0.285 0.018 0.395 4

25

 25 200 20.8 5.8 0.539 0.080 0.276 0.021 0.393 5

25

 50 100 21.3 12.5 0.404 0.081 0.246 0.030 0.389 8

25

 100 50 20.7 13.7 0.294 0.072 0.204 0.034 0.392 11

25

 200 25 19.0 12.8 0.131 0.046 0.103 0.029 0.394 18

25

 500 10 18.6 11.5 0.084 0.030 0.074 0.023 0.397 20

25

 1000 5 18.1 7.0 0.048 0.017 0.043 0.014 0.392 21

25

238	 R. Gal et al.

1 3

the chances of a failure happening are reduced when the per iteration budget is
increased, and the number of random directions n is increased. As a general trend,
trading off simulation runs N for random directions n, given a fixed per iteration
budget, is beneficial for the performance of implicit filtering. Only for very small
values of N, such as N = 5 , does this trend appear to break down. As it is undesir-
able for how many different parameter choices the algorithm fails more than half the
time. We now investigate if a gradient-based algorithm performs better overall.

5.5 � Steepest descent technique

Now, we use Algorithm 1 to maximize p(chard) , which is again equivalent to mini-
mizing −p(chard) . Table 3 shows the results of a typical successful run of the steepest
descent algorithm. The algorithm was set to terminate after 50 iterations, or the line
search break flag was set after 10 consecutive line search failures. The line search
parameter �ls was initialized to 10. Overall, with a modest budget of 21,875 total
simulations,3 we are able to automatically get within 0.09 of the best hit probabil-
ity of p(chard) = 0.4 . Note that the term “total iterations” refers to all the iterations
requiring computations, including the failed line searches. For example, iteration
12 in Table 3 contributed 4 total iterations, as iteration 12 required 4 line search
iterations.

Figure 7 compares the behaviour of 𝜙̄ , and the “true” value of p(chard) . In general,
𝜙̄ tracks p(chard) closely, but with a tendency to vary more slowly. This is because of
the averaging effect of the algorithm.

Similar to Table 2, Table 4 investigates the expected performance of Algorithm 1
for different parameter values. Like with Table 2, for each set of N and n values, we
ensemble over 25 independent runs, and, as in Table 3, h = 5 and �ls is initialized
to 10, and the algorithm was set to terminate after 50 iterations, or the line search
break flag was set after 10 consecutive line search failures.

Overall, the gradient based steepest descent technique appears much more reli-
able than the implicit filtering technique. Algorithm 1 almost always terminates at a
template that at least hits the event chard a minimum of once in 100,000 simulation
runs. It is also worth noting that in most cases 𝜙̄ underestimates p(chard) , sometimes
by a large margin of up to almost 0.2. The authors conjecture this may be due to a
relatively large choice of h, which is not refined during Algorithm 1. The effects
of a relatively large h should be especially pronounced if the optima are rather
sharp, which given domain knowledge, is not unlikely for this problem. However,
as with the implicit filtering technique, the steepest descent algorithm’s performance
strongly benefits from trading off N for n, given a fixed per iteration budget. For both
algorithms, it appears that in general, coarsely sampling many points is preferable to
sampling a few points with high accuracy at each point.

3  (35 Total Iterations) ×(25 Points

Iteration
) × (25

Simulations

Point
) = 21,875 Simulations.

239

1 3

How to catch a lion in the desert: on the solution of the coverage…

Ta
bl

e 
3  

S
um

m
ar

y
of

 a
 su

cc
es

sf
ul

 ru
n

of
 th

e
ste

ep
es

t d
es

ce
nt

 a
lg

or
ith

m
 (A

lg
or

ith
m

 1
)

Th
e

al
go

rit
hm

 is
 a

bl
e

to
 a

ut
om

at
ic

al
ly

 g
et

 w
ith

in
 0

.0
9

of
 th

e
be

st
c h

a
rd

 h
it

pr
ob

ab
ili

ty
 o

f 0
.4

 u
si

ng
 a

 m
od

es
t b

ud
ge

t o
f 2

1,
87

5
to

ta
l s

im
ul

at
io

ns
. T

he
 o

pt
im

iz
at

io
n

w
as

 in
i-

tia
liz

ed
 a

t t
he

 u
ni

fo
rm

 te
m

pl
at

e
� u
n
i ,

an
d

w
as

 s
et

 to
 te

rm
in

at
e

af
te

r 5
0

m
ai

n
ite

ra
tio

ns
 w

er
e

ex
ce

ed
ed

, o
r a

fte
r 1

0
co

ns
ec

ut
iv

e
lin

e
se

ar
ch

 fa
ilu

re
s.

I i
s

th
e

ite
ra

tio
n

nu
m

be
r,

fo
rm

at
te

d
so

 th
e

nu
m

be
r a

fte
r t

he
 d

ec
im

al
 p

oi
nt

 re
pr

es
en

ts
 th

e
fin

al
 li

ne
 se

ar
ch

 it
er

at
io

n
fo

r t
he

 g
iv

en
 m

ai
n

ite
ra

tio
n

I
𝜙

‖�
‖

‖�
‖

�
ls

U
pd

at
e
� o
p
t?

p
(c

h
a
rd
)

St
ee

pe
st

de
sc

en
t h

ist
or

y
( N

=
2
5
 , n

=
2
5
 , h

=
5
)

 1
.1

0.
01

8
0.

03
58

1.
24

e−
3

10
Tr

ue
0.

01
7

 2
.1

0.
02

9
0.

11
49

1.
75

e−
4

20
Tr

ue
0.

02
2

 3
.4

0.
03

0
0.

04
83

2.
22

e−
4

5
Tr

ue
0.

02
2

 4
.1

0.
02

7
0.

03
36

3.
37

e−
3

5
Fa

ls
e

0.
02

2
 5

.1
0.

02
7

0.
03

36
7.

73
e−

3
10

Fa
ls

e
0.

02
5

 6
.1

0.
02

1
0.

02
31

5.
10

e−
3

20
Fa

ls
e

0.
02

8
 7

.1
0.

02
1

0.
02

18
7.

31
e−

3
40

Fa
ls

e
0.

04
0

 8
.1

0.
02

6
0.

02
49

8.
59

e−
3

80
Fa

ls
e

0.
06

2
 9

.1
0.

03
0

0.
02

21
1.

01
e−

2
16

0
Fa

ls
e

0.
08

8
 1

0.
1

0.
03

4
0.

04
52

3.
49

e−
3

32
0

Tr
ue

0.
02

7
 1

1.
3

0.
14

5
0.

17
47

4.
68

e−
3

16
0

Tr
ue

0.
33

3
 1

2.
4

0.
14

7
0.

13
13

3.
49

e−
2

20
Tr

ue
0.

33
9

 1
3.

1
0.

15
5

0.
11

18
1.

70
e−

2
20

Tr
ue

0.
33

1
 1

4.
3

0.
24

1
0.

23
45

2.
20

e−
4

10
Tr

ue
0.

31
2

 1
5.

10
0.

03
1

0.
22

25
5.

89
e−

4
1.

95
31

25
e−

2
Fa

ls
e

0.
31

4

Su
m

m
ar

y
of

 fi
na

l r
es

ul
ts

 T
ot

al
 #

 o
f S

im
ul

at
io

ns
 =

2
1
,8
7
5

 IW
o
p
t
=
[0
.4
3
7
7
,
0
.1
6
4
2
,
0
.2
5
9
7
,
0
.1
3
6
8
,
0
.0
0
1
5
]

 S
W

o
p
t
=
[0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
]

 T
W

o
p
t
=
[0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
]

 C
W

o
p
t
=
[1
,
0
]

 𝜙
o
p
t
=
0
.2
4

 , p
o
p
t(
c h

a
rd
)
=
0
.3
1

240	 R. Gal et al.

1 3

5.6 � BFGS technique

Finally, following the framework of Algorithm 1, we use BFGS to minimize
−p(chard) . Specifically, we use a limited-memory implementation of the BFGS
method, also referred to as L-BFGS. To compute the BFGS directions, we use the
L-BFGS two-loop recursion detailed on p. 225 of Nocedal and Wright (1999). We
set the initial inverse Hessian approximation to be a scaled version of the identity
matrix, where the scaling factor is given by Eq. 9.6 on p. 226 of Nocedal and Wright
(1999). As a result, a back tracking line search starting with �ls = 1 at each iteration,
and refining by a factor of two for each line search failure, was employed. However,
we set the memory value, m, for our L-BFGS implementation to m = 100 , which
was almost always greater than the number of iterations before termination. As a
result, almost all of the time our L-BFGS implementation was equivalent to a stand-
ard BFGS implementation.

Of the three algorithms we tested, the L-BFGS implementation had the most dif-
ficulty obtaining test templates achieving close to p(chard) = 0.4 , and is not competi-
tive with either implicit filtering or steepest descent. As with Tables 2 and 4 Table 5
investigates the expected performance of BFGS for different parameter values. Like
with Table 4, for each set of N and n values, we ensemble over 25 independent runs,
h = 5 , and the algorithm was set to terminate after 50 iterations, or the line search
break flag was set after 10 consecutive line search failures.

Whereas Tables 2 and 4 show that with a budget of 625 simulations per itera-
tion, n = 25 , and N = 25 , the implicit filtering and steepest descent techniques on

Fig. 7   Visualizing the evolution of the hit probability estimators from Table 3 during the successful run
of the steepest descent algorithm (Algorithm 1). p(chard) denotes the reference “true” value, which is cal-
culated by averaging over 100,000 runs of the simulator at a given template � . The x-axis shows the itera-
tion number, where the value after the decimal point is the final line search iteration number for the given
main iteration. Note how 𝜙̄ understimates the “true” probability, especially towards the end of the run

241

1 3

How to catch a lion in the desert: on the solution of the coverage…

Table 4   Results of the steepest descent based optimization technique compared over fixed per iteration
budgets

Statistics are calculated over 25 independent runs for each combination of n and N, where a bar repre-
sents the sample average, and s2[⋅] represents the sample variance. N is equivalent to simulator runs, and
n is the number of directions in which we choose new test templates � . It is the number of total iterations
to termination, which includes all line searches. Termination occurs after 50 iterations, or 10 consecutive
failed line searches. A failure occurs when the algorithm terminates at a template with a “true” probabil-
ity p(chard) = 0

N n It s2[It] 𝜙̄opt
s2[𝜙̄opt] popt(chard) s2[popt(chard)] max {popt(chard)} Failures

Per Iteration Budget = 100
 5 20 82.5 290.2 0.164 0.013 0.124 0.016 0.375 0

25

 10 10 81.7 1.04e3 0.041 7.13e−4 0.077 0.010 0.372 3

25

 20 5 93.8 168.6 0.020 2.41e−4 0.022 0.002 0.165 12

25

Per Iteration Budget = 625
 5 125 79.6 2.1 0.180 7.27e−5 0.355 0.001 0.397 0

25

 25 25 47.7 645.9 0.337 0.085 0.163 0.017 0.367 0

25

 125 5 94 246.0 0.020 1.47e−4 0.018 0.001 0.159 11

25

Per Iteration Budget = 1250
 5 250 79.7 2.0 0.183 3.48e−5 0.375 3.44e−4 0.399 0

25

 10 125 80.3 2.3 0.182 4.00e−5 0.362 8.63e−4 0.400 0

25

 25 50 80.5 3.0 0.181 2.07e−4 0.340 0.001 0.384 0

25

 50 25 43.5 646.3 0.211 0.024 0.151 0.019 0.394 0

25

 125 10 71.2 951.2 0.061 0.003 0.118 0.011 0.379 0

25

 250 5 98.0 336.5 0.019 8.95e−5 0.036 0.004 0.218 10

25

Per Iteration Budget = 2500
 5 500 80.2 1.8 0.185 1.40e−5 0.381 2.15e−4 0.402 0

25

 10 250 79.6 1.8 0.185 2.18e−5 0.381 2.00e−4 0.400 0

25

 25 100 79.2 2.5 0.184 3.33e−5 0.358 0.001 0.397 0

25

 50 50 79.4 1.8 0.183 1.04e−4 0.338 0.002 0.398 0

25

 100 25 44.2 585.1 0.250 0.043 0.189 0.017 0.382 0

25

 250 10 80.0 1.76e3 0.054 0.002 0.120 0.012 0.344 0

25

 500 5 101.5 99.0 0.019 8.10e−5 0.044 0.006 0.331 7

25

Per Iteration Budget = 5000
 5 1000 80.6 1.6 0.185 1.01e−5 0.385 2.02e−4 0.400 0

25

 10 500 80.1 3.3 0.185 1.16e−5 0.387 8.26e−5 0.402 0

25

 25 200 80.0 2.4 0.186 2.28e−5 0.378 5.03e−4 0.402 0

25

 50 100 80.0 2.1 0.182 4.65e−5 0.364 7.69e−4 0.399 0

25

 100 50 79.9 1.6 0.185 1.43e−4 0.354 0.002 0.395 0

25

 200 25 46.7 442.7 0.207 0.012 0.177 0.018 0.376 0

25

 500 10 89.1 1.65e3 0.057 0.001 0.126 0.015 0.384 2

25

 1000 5 99.9 326.2 0.027 4.83e−4 0.052 0.005 0.213 7

25

242	 R. Gal et al.

1 3

Table 5   Results of the L-BFGS based optimization technique compared over fixed per iteration budgets

Statistics are calculated over 25 independent runs for each combination of n and N, where a bar repre-
sents the sample average, and s2[⋅] represents the sample variance. N is equivalent to simulator runs, and
n is the number of directions in which we choose new test templates � . It is the number of total iterations
to termination, which includes all line searches. Termination occurs after 50 iterations, or 10 consecutive
failed line searches. A failure occurs when the algorithm terminates at a template with a “true” probabil-
ity p(chard) = 0

N n It s2[It] 𝜙̄opt
s2[𝜙̄opt] popt(chard) s2[popt(chard)] max {popt(chard)} Failures

Per iteration budget = 100
 5 20 32.7 423.9 0.032 4.27e−4 0.017 4.37e−7 0.019 0

25

 10 10 45.8 497.4 0.023 1.51e−4 0.017 1.08e−4 0.061 1

25

 20 5 33.2 682.2 0.012 8.69e−5 0.017 2.56e−6 0.024 0

25

Per iteration budget = 625
 5 125 45.0 407.1 0.018 1.39e−4 0.022 4.13e−4 0.119 0

25

 25 25 37.0 255.1 0.072 0.001 0.018 3.02e−5 0.044 0

25

 125 5 57.5 187.3 0.016 5.15e−5 0.016 1.14e−4 0.059 2

25

Per iteration budget = 1250
 5 250 51.5 232.4 0.019 1.46e−4 0.025 3.79e−4 0.112 0

25

 10 125 51.0 244.1 0.030 0.002 0.048 0.005 0.270 0

25

 25 50 49.0 215.7 0.028 9.34e−4 0.032 0.001 0.169 0

25

 50 25 35.0 361.3 0.065 0.003 0.030 0.004 0.337 0

25

 125 10 51.7 315.7 0.018 1.54e−4 0.018 1.36e−4 0.059 1

25

 250 5 53.9 275.1 0.018 1.75e−4 0.016 1.34e−4 0.050 3

25

Per iteration budget = 2500
 5 500 44.9 288.2 0.027 4.52e−4 0.041 0.002 0.203 0

25

 10 250 46.5 282.4 0.026 3.87e−4 0.035 0.001 0.142 0

25

 25 100 52 367.7 0.019 2.37e−4 0.026 7.01e−4 0.150 0

25

 50 50 47.6 353.2 0.025 4.45e−4 0.031 8.01e−4 0.129 0

25

 100 25 34.4 223.3 0.045 0.001 0.026 6.83e−4 0.144 0

25

 250 10 51.2 423.3 0.018 3.91e−5 0.017 5.79e−5 0.045 1

25

 500 5 58.5 135.6 0.014 5.50e−5 0.015 4.59e−5 0.026 2

25

Per iteration budget = 5000
 5 1000 47.6 531.8 0.016 3.44e−6 0.022 1.98e−5 0.032 0

25

 10 500 46.3 313.0 0.028 0.001 0.046 0.007 0.368 0

25

 25 200 47.1 424.9 0.023 4.27e−4 0.033 0.001 0.161 0

25

 50 100 47.4 391.3 0.016 2.28e−5 0.022 9.76e−5 0.065 0

25

 100 50 47.8 452.7 0.017 8.17e−5 0.025 2.77e−4 0.094 0

25

 200 25 31.2 215.4 0.062 0.013 0.018 1.35e−6 0.021 0

25

 500 10 48.0 212.9 0.020 2.84e−4 0.021 1.86e−4 0.071 2

25

 1000 5 58.6 345.5 0.015 2.56e−5 0.017 4.55e−5 0.037 1

25

243

1 3

How to catch a lion in the desert: on the solution of the coverage…

average achieve popt(chard) = 0.104 and popt(chard) = 0.163 respectively, Table 5
shows the L-BFGS method only achieves popt(chard) = 0.018 on average. However,
as with the previous two algorithms, there is still a noticeable benefit from trading
off N for n, given a fixed per iteration budget, and increasing the per iteration budget
can improve performance. The L-BFGS technique also fails much less frequently
than the implicit filtering technique. Overall though, the ensemble results suggest
this method is inferior to the steepest descent based approach, and that the standard
BFGS technique may need further modifications to handle the noise in this problem.

6 � Summary and conclusions

In this paper, we have proposed three algorithms for solving the coverage directed
generation problem, all based on the key observation that the problem can be posed
as derivative free optimization of a noisy objective function. By applying techniques
from statistical parameter estimation and inverse problems, including the general-
ized cross validation technique, we are able to generate quality estimates of the gra-
dient of a noisy objective function. With these gradient estimates, we are able to
build algorithms that adapt the steepest descent and BFGS techniques from non-
noisy continuous optimization.

The algorithm based on gradient descent, on average, empirically outperforms
a simple, but sometimes surprisingly effective, implicit filtering based approach.
Numerical experiments with a high-level software model of part of IBM’s NorthStar
processor show that both the implicit filtering and steepest descent techniques are
economical in terms of the total number of simulations required for them to be effec-
tive, and how to best choose parameters given a fixed per iteration budget of simula-
tions. Furthermore, all our algorithms are relatively easily parallelized in practice, as
the repeated simulations at a single point N can be carried out in parallel, and this
can further be done in parallel for the n points along the random directions, with the
only major bottleneck being the work required during the decision to update to the
next template. We suspect that the use of inverse problems based techniques for gra-
dient estimation can be further extended to the evaluation of Hessians and in other
contexts where the function and gradients are noisy, and this will be investigated in
the future.

Acknowledgements  EH and BI’s work is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC). RG, BS, and AZ’s work is supported by IBM.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of interest.

244	 R. Gal et al.

1 3

References

Berahas AS, Byrd RH, Nocedal J (2019) Derivative-free optimization of noisy functions via quasi-new-
ton methods. SIAM J Optim 29:965–993

Borkenhagen J, Sorino S (1999) 4th generation 64-bit PowerPC-compatible commercial processor
design. IBM Server Group White Paper

Burden RL, Faires JD (2010) Numerical analysis. Cengage learning
Conn A, Scheinberg K, Vicente L (2009) Introduction to derivative-free optimization. SIAM,

Philadelphia
Fine S, Ziv A (2003) Coverage directed test generation for functional verification using Bayesian net-

works. In: Design automation conference
Golub GH, von Matt U (1997) Generalized cross-validation for large-scale problems. J Comput Graph

Stat 1:1–34
Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good

ridge parameter. Technometrics 21:215–223
Huyer W, Neumaier A (1999) Global optimization by multilevel coordinate search. J Glob Optim

14:331–355
Kelley C (2011) Implicit filtering. SIAM, Philadelphia
Mishra P, Dutt N (2002) Automatic functional test program generation for pipelined processors using

model checking. In: 7th annual IEEE international workshop on high-level design validation and
test, pp 99–103

Moré JJ, Wild SM (2011) Estimating computational noise. SIAM J Sci Comput 33:1292–1314
Nativ G, Mittermaier S, Ur S, Ziv A (2001) Cost evaluation of coverage directed test generation for the

IBM mainframe. In: Proceedings of the 2001 international test conference, pp 793–802
Nocedal J, Wright S (1999) Numerical optimization. Springer, New York
Pétard H (1938) A contribution to the mathematical theory of big game hunting. Am Math Monthly

45:446–447
Pintér JD (1996) Global optimization in action. Springer, New York
Piziali A (2004) Functional verification coverage measurement and analysis. Springer, New York
Powell M (2006) The NEWUOA software for unconstrained optimization without derivatives. In: Pillo

GD, Roma M (eds) Large-scale nonlinear optimization. Springer, Boston, pp 255–297
Prashanth LA, Bhatnagar S, Fu M, Marcus S (2017) Adaptive system optimization using random direc-

tions stochastic approximation. IEEE Trans Autom Control 62(5):2223–2238
Rios LM, Sahinidis NV (2013) Derivative-free optimization: a review of algorithms and comparison of

software implementations. J Glob Optim 56:1247–1293
Spall JC (1987) A stochastic approximation technique for generating maximum likelihood parameter esti-

mates. In: 1987 American control conference, pp 1161–1167
Spall JC (1992) Multivariate stochastic approximation using a simultaneous perturbation gradient

approximation. IEEE Trans Autom Control 37(3):332–341. https​://doi.org/10.1109/9.11963​2
Spall JC (1998) An overview of the simultaneous perturbation method for efficient optimization. Johns

Hopkins APL Tech Dig 19(4):482–492
Tenorio L (2017) An introduction to data analysis and uncertainty quantification for inverse problems.

SIAM, New York

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/9.119632

245

1 3

How to catch a lion in the desert: on the solution of the coverage…

Affiliations

Raviv Gal1 · Eldad Haber2 · Brian Irwin2  · Bilal Saleh1 · Avi Ziv1 

	 Raviv Gal
	 RAVIVG@il.ibm.com

	 Eldad Haber
	 haber@eoas.ubc.ca

	 Bilal Saleh
	 BILAL@il.ibm.com

	 Avi Ziv
	 AZIV@il.ibm.com

1	 IBM Research Laboratory in Haifa, Haifa, Israel
2	 Department of Earth and Ocean Science, The University of British Columbia, Vancouver, BC,

Canada

http://orcid.org/0000-0002-6086-4359
http://orcid.org/0000-0002-6309-250X

	How to catch a lion in the desert: on the solution of the coverage directed generation (CDG) problem
	Abstract
	1 Introduction
	2 Mathematical background
	3 Solution techniques
	3.1 Optimization problem setup
	3.2 Function and gradient approximation as statistical parameter estimation
	3.3 Solution algorithms

	4 The northstar pipeline
	5 Numerical experiments
	5.1 Noisy 2-D quadratic function
	5.2 NorthStar initial exploration
	5.3 Event objective function
	5.4 Implicit filtering technique
	5.5 Steepest descent technique
	5.6 BFGS technique

	6 Summary and conclusions
	Acknowledgements
	References

