
Vol.:(0123456789)

Optimization and Engineering (2020) 21:939–971
https://doi.org/10.1007/s11081-020-09496-w

1 3

RESEARCH ARTICLE

A simulation–optimization framework for short‑term 
underground mine production scheduling

Fabián Manríquez1  · Javier Pérez1 · Nelson Morales1

Received: 12 September 2018 / Revised: 9 March 2020 / Accepted: 10 March 2020 / 
Published online: 18 March 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Mine operations are supported by a short-term production schedule, which defines 
where and when mining activities are performed. However, deviations can be 
observed in this short-term production schedule because of several sources of uncer-
tainty and their inherent complexity. Therefore, schedules that are more likely to 
be reproduced in reality should be generated so that they will have a high adher-
ence when executed. Unfortunately, prior estimation of the schedule adherence is 
difficult. To overcome this problem, we propose a generic simulation–optimization 
framework to generate short-term production schedules for improving the schedule 
adherence using an iterative approach. In each iteration of this framework, a short-
term schedule is generated using a mixed-integer linear programming model that is 
simulated later using a discrete-event simulation model. As a case study, we apply 
this approach to a real Bench and Fill mine, wherein we measure the discrepancies 
among the level of movement of material with respect to the schedule obtained from 
the optimization model and the average of the simulated schedule using the mine 
schedule material’s adherence index. The values of this index decreased with the 
iterations, from 13.1% in the first iteration to 4.8% in the last iteration. This improve-
ment is explained because the effects of the operational uncertainty within the opti-
mization model can be considered by integrating the simulation. As a conclusion, 
the proposed framework increases the adherence of the short-term schedules gener-
ated over iterations. Moreover, these increases in the adherence of schedules are not 
obtained at the expense of the Net Present Value.
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1 Introduction

Mine planning is the discipline of mining engineering that transforms the mineral 
resource into the most profitable business for the owner. The scheduling sequence 
of mining operations is usually divided into strategic (long-term), tactical (medium-
term), and operational (short-term) levels (L’Heureux et al. 2013). Strategic schedul-
ing defines the portions of the ore body that can be extracted, the life of the mine, the 
production rate, and the amount of investment. A long-term mine production sched-
ule defines the portions of waste and ore that can be mined from the ore body every 
year. This schedule seeks to maximize the net present value (NPV) over the life of 
the mine. Tactical scheduling determines the mining sequence for up to a period of 
5 years based on the constraints with respect to the production rate. Finally, opera-
tional scheduling seeks to ensure the operational feasibility of the long-term mine 
production schedule (Smith 1998). In this study, we focus on short-term scheduling. 
The scope of interest in case of a short-term schedule spans from several weeks to 
months, typically not more than 1–2 years (Blom et al. 2018). Therefore, this study 
focuses on scheduling with respect to schedule spans of no more than one and a half 
years.

One of the challenges encountered by mine planners is the consideration of dif-
ferent types of uncertainty (geological, market, and operational) during the genera-
tion of long- and short-term mine production schedules. The short-term mine pro-
duction schedules aim to achieve the movement of a material that was previously 
defined using the long-term mine production schedule. One particular problem is 
the consideration of operational uncertainty during the process of generating short-
term mine production schedules. These schedules should consider in detail how to 
execute all the mining activities in a mine operation to achieve the required produc-
tion rates. All the mining activities are performed using specific mining equipment. 
These activities should be conducted in accordance with the precedence of mining 
activities, which is the sequential order in which the activities must be completed.

The efficiency of the mining equipment is related to the achievement of the objec-
tives of a short-term schedule, measured based on the key performance indicators 
(KPIs). For each piece of equipment, mine operations use the following KPIs to 
measure the level of efficiency: availability and utilization. Availability is the frac-
tion of the total time during which the equipment is ready to be used, i.e., it is not 
under maintenance or being repaired. However, utilization is the fraction of the 
total time during which the equipment performs the task for which it was designed. 
For example, during a period of 24 h, a shovel could undergo maintenance for 4 h; 
hence, its availability can be deduced as 20/24 = 0.83 (83%). Further, during the 
remaining 20 h, the shovel may have spent only 12 h loading trucks (the remaining 
time is spent on various activities, e.g., waiting for trucks, during shift changes, or 
during lunch). In this case, the utilization of the shovel can be deduced as 12/24 = 
0.5 (50%). Other KPIs can be utilized with respect to equipment for various activi-
ties such as to differentiate between the utilization losses in case of scheduled and 
random events; however, only availability and utilization will be considered in this 
study.
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A deviation from a mine production schedule corresponds to any difference 
between this schedule and its execution, including differences with respect to 
the movement of material, the ore sent to the ore processing plant, or the grade 
of the ore sent to the ore processing plant. Unfortunately, the complexity and 
uncertainty of mine operation result in deviations from the short-term schedules 
(Upadhyay and Askari-Nasab 2017). The uncertainties include (1) market uncer-
tainty, which is related with the unknown future commodity prices, (2) geological 
uncertainty, which is associated with the unknown characteristics of the deposit 
in terms of the grades, rock types, and mineralization, and (3) operational uncer-
tainty, which is related with the unknown characteristics of the behavior of the 
mining operation associated with the mining equipment. The operational uncer-
tainty is the main focus of this study. The relevance of deviations with respect to 
the short-term production schedules is crucial in the mining industry. Accord-
ing to Upadhyay and Askari-Nasab (2018), the deviations in short-term mining 
schedules increase the difficulty associated with achieving the objectives defined 
by long-term schedules. Adherence is a concept that quantifies the deviations in a 
short-term production schedule and its execution. More precisely, the adherence 
of a mine production schedule corresponds to its capability to be reproduced in 
reality. Unfortunately, the adherence of a mine schedule is not usually assessed 
before its execution. This could result in the implementation of schedules whose 
objectives are difficult or even impossible to accomplish. The application of dis-
crete-event simulation (DES) is an approach to evaluate the adherence of a short-
term schedule before its execution. This approach simulates a given short-term 
schedule by considering all the operational uncertainties associated with mine 
operation.

Further, we incorporate the operational uncertainty associated with the opera-
tional parameters of the equipment (velocities, capacities, maneuver times, fail-
ures times, and maintenance times), which are modeled using the probability den-
sity functions based on the historical data. DES has been extensively applied to the 
model mine operations in which the deterministic models failed to accurately predict 
the uncertain behavior (Upadhyay and Askari-Nasab 2017). This approach is exten-
sively used to assess the performance of mine operations because it helps to incor-
porate the inherent variability and complexity of operational uncertainty (Torkamani 
and Askari-Nassab 2015).

Based on the evaluation of the adherence to short-term production schedules 
using DES, it is desirable to generate short-term production schedules exhibiting 
high adherence. Mathematical optimization is a useful tool to generate production 
schedules in both open-pit mining and underground mining. In the case of short-
term underground mine scheduling, mixed-integer linear programming (MILP) is 
generally considered in which the binary variables address long-term block-extrac-
tion decisions and continuous variables address the related short-term decisions of 
how much ore should be extracted from a block (Newman et al. 2010). A review of 
the optimization techniques applied to underground mines can be found in Musing-
wini (2016).

In the case of mathematical optimization in open-pit mines, an excellent review 
of short-term production scheduling can be observed in Blom et al. (2018).
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One common approach for optimization under uncertainty is the utilization of 
stochastic programming, which allows optimization problems with respect to the 
random variable parameters in the goal function or constraints to be solved (see 
Birge and Louveaux 2011 for details about stochastic programming). However, the 
problem that we address in this study, such an approach would be very difficult to 
implement and most likely impractical to use because the KPIs are not only ran-
dom but depend upon the schedule; conversely, the feasibility of a schedule is highly 
dependent on KPIs.

Therefore, we propose a framework that combines a deterministic optimization 
model with DES. In this framework, the optimization part of the framework gener-
ates short-term mine production schedules, whereas the simulation part evaluates 
these schedules and provides useful feedback to generate a new and better sched-
ule in future iterations. Therefore, the contributions of the paper are (1) the devel-
opment of a simulation–optimization framework to generate short-term mine pro-
duction schedules, (2) providing a set of indicators to measure the adherence to a 
schedule, and (3) the application of the proposed framework to a specific case in 
which a mathematical model, a DES model, and the mechanisms to integrate them 
are implemented to denote that the proposed methodology provides schedules with 
high adherence using an iterative approach.

Section 2 provides a review of the related work associated with this study. Sec-
tion  3 provides a complete description of the proposed framework, Sect.  4 intro-
duces several adherence indices used to quantify the adherence of a schedule and 
its corresponding simulation, and Sect. 5 describes the application of the proposed 
framework to a Bench and Fill (B&F) mine operation by introducing the optimiza-
tion model used to generate short-term mine production schedules and the simula-
tion model developed to simulate them. In Sect. 6, we apply the proposed framework 
to a real-world data of a B&F mine. Section 7 reports and discusses the results of the 
case study. Finally, Sect. 8 concludes the present study and outlines future work.

2  Related work

In this section, we provide a brief review of the literature with respect to simulation 
and optimization using some combination of both techniques. We initially review 
the simulation–optimization framework, which deals with the optimization of the 
simulation process. Further, we review the studies that combine simulation in case 
of discrete events with optimization in the mining industry.

2.1  Simulation–optimization

Simulation-optimization attempts to optimize a simulation model. The primary 
objective is to estimate the values of controllable parameters that can result in 
the optimization of a performance function from a simulation model. Chen et  al. 
(2008a) reviewed three approaches to address the simulation–optimization problem 
in a general engineering setting: 
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1. The efficient simulation budget approach (Chen et al. 1997, 2000; Chick and 
Inoue 2001a, b; Lee et al. 2004; Chen and Yücesan 2005; Kim and Nelson 2006; 
Fu et al. 2007; Chen et al. 2008b) intends to select the optimum simulation design 
from a set of scenarios provided in advance, which differs from the approach used 
in this study because we enumerate schedules as a result of an iterative process, 
i.e., they are not predefined by the user.

2. The nested partitions method is an approach that can be used to solve global 
optimization problems, which requires partitioning of the region into subregions. 
Each subregion is evaluated using sampling, and the most promising subregion 
is used for the subsequent iteration or the method backtracks to a larger region if 
each subregion is worse than the incumbent region (Chen et al. 2008a). There-
fore, this approach is different from that proposed in this study because we do not 
consider such a hierarchical structure defined with respect to the schedules.

3. The stochastic gradient estimation method (Ho and Cao 1991; Glasserman 1991; 
Fu and Hu 1997; Glynn 1987; Rubenstein and Shapiro 1993; Pflug 1989, 1996) 
is an enumeration method based on a local search that adjusts parameters, which 
should be continuous, to generate alternate scenarios. The proposed method also 
enumerates scenarios (in our case, short-term schedules); however, our scenarios 
are not based on the derivatives of certain parameters but on novel estimates of 
the KPIs provided by the simulation process. In particular, the search is not local.

 Based on this section, we concluded that none of these procedures is the same or 
similar to the one proposed in this study. Therefore, we are contributing to a new 
simulation–optimization methodological development.

2.2  Combination of simulation and optimization in mining

Previous studies, which combine optimization with DES, have been mainly applied 
to the truck-shovel transportation system in open-pit mines. A conventional 
approach is to integrate both the tools as a combined run. In other words, the simu-
lation model invokes the optimization model when the state of the mine operation 
changes to assist the simulation model to allocate the available pieces of equipment 
for the mine operation according to the new state. The mine operation state changes 
when a piece of equipment undergoes failure or is subjected to maintenance or when 
a shovel completes extracting all the materials at its mining face.

The aforementioned approach has been applied in the following reports in the 
context of open-pit mine operations. Mena et al. (2013) proposed an MILP model to 
allocate trucks to transportation routes. The simulation model considers the density 
probability distribution to model (1) the uncertainty of the operational parameters 
and (2) the time between failures and the time required to repair the load and haul-
ing equipment. Fioroni et al. (2008) presented an MILP model to allocate shovels to 
mine faces and the number of trips that can be carried by each type of truck to these 
faces, subject to production and blending constraints. Upadhyay and Askari-Nasab 
(2016, 2017, 2018) described an MILP model to allocate shovels to mine faces to 
maximize production, achieve the desired head grade and tonnage at crushers, and 
minimize shovel movements.
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Other researchers have combined the techniques of optimization and simulation 
differently. Bodon et al. (2011) and Sandeman et al. (2010) proposed a linear pro-
gramming model that determines the quantity of ore extracted from each mining 
face that was transported to the mine stockpiles, the ore transported from each mine 
stockpile to the port stockpile, and the ore transported from each port stockpile to 
ships, maximizing the throughput of material from a pit to ship. An initial schedule 
is generated for the first 2 weeks of a 1-year horizon; subsequently, this schedule is 
simulated. Subsequently, the authors generate a schedule of the next 2 weeks using 
as an input the result of the simulation of the first 2 weeks. Then, they simulate this 
second schedule, and so on.

Only limited literature is available regarding underground mining that combines 
optimization with DES due to the complex nature of the generation of mine produc-
tion schedules in underground mines when compared with open-pit mines (Musing-
wini 2016). Chanda (1990) presented an MILP model to perform short-term pro-
duction scheduling of a sector of a continuous block caving mine by considering 
constraints, including the availability of drawpoints and limits on the production 
and ore quality, to minimize the difference between the average grades in successive 
periods. This model was combined with a simulation to generate short-term produc-
tion schedules for six consecutive work shifts. Winkler (1998) described an opti-
mization model for a sub-level caving mine, which defines the amount of ore that 
can be extracted from each block and each period, minimizing the deviation from 
production goals, by considering various constraints, including the ore quality, the 
minimum amount of extraction of each block, and the capacity of available ore. The 
model is solved to generate a schedule for a single period, which is subsequently 
simulated. This same procedure is repeated for successive periods. Salama et  al. 
(2014) compared different mineral haulage systems using a simulation to estimate 
the mining costs in a sub-level stoping mine. This cost serves as an input to a mixed-
integer optimization model, which generates a long-term schedule that maximizes 
the NPV.

Thus, the reviewed reports, which combine the optimization and simulation 
applied in mining, use optimization and simulation in a sequential manner or use 
optimization as a simulation subroutine. None of these studies present any feedback 
between the optimization and the simulation model, as proposed in this study.

3  Framework description

In this section, we describe the proposed framework, which combines simulation 
and optimization via an iterative approach, to improve adherence to short-term 
production schedules. In each iteration, we generate a short-term mine production 
schedule by solving an optimization problem; subsequently, we simulate this sched-
ule using a DES model of mine operation. The steps can be given as follows (also 
presented in Fig. 1): 

1. Obtain initial KPIs through benchmarking or deterministic estimation.
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2. Generate an initial short-term production schedule by solving a mathematical 
optimization problem for the current KPI values. This short-term schedule con-
siders a material that has been extracted according to the long-term schedule.

3. Simulate the short-term production schedule generated in Step 2.
4. Update the KPIs per period for each equipment obtained from the simulation of 

the short-term production schedule.
5. Calculate the actual adherence of the corresponding simulation to the schedule.
6. Whenever any termination criteria is satisfied, e.g., when the schedule adherence 

index is less than or equal to a specific critical value or a maximum computation 
time is reached, the procedure is terminated; otherwise, go to Step 2.

The fundamental concept of the proposed framework is that in each iteration, bet-
ter estimations are obtained for the equipment’s KPIs based on the simulation results 
of the short-term mine production schedule.

Considering the operational uncertainty in the mining operation, the role of the 
replications is to represent all the potential results obtained when performing the 
simulation of a given mine schedule as accurately as possible.

In the subsequent iteration, we use new estimations of the equipment KPIs as 
inputs for the optimization model to generate an updated short-term mine produc-
tion schedule. This procedure is repeated until a specific stop criterion is reached. 
The simulation of the short-term mine production schedule allows us to consider 
majority of the complexities and operational uncertainties associated with the 
mine operation, which are difficult and cumbersome to incorporate into a math-
ematical optimization model. Thus, the estimation of all the equipment KPIs can 
be improved. In other words, the simulation of a particular short-term mine pro-
duction schedule allows us to obtain an explicit quantification of the maintenance 
equipment times, equipment failures, travel time between the locations at which 
the equipment is used to perform mining activities, and equipment times. The 
backup time refers to the equipment that is available for operation but is not oper-
ating because of a specific condition of mine operation. Furthermore, the simula-
tion considers the exact dispatching routines that assign equipment to mine faces 
and the on-site specific operational rules for a particular mine. It is noteworthy 
that the described framework is general because it can be used to address the 
operational uncertainty in many other situations in which a deterministic model 

Fig. 1  Simulation–optimization iterative framework diagram
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is used; this kind of uncertainty has to be handled. However, its specifics are cer-
tainly dependent on the application. The optimization and simulation models con-
sider all the relevant equipment and tasks to reliably emulate the mine operation. 
The selection of the type of KPIs to be estimated in each iteration is critical for 
the application of the framework. Usually, the utilization of the pieces of equip-
ment, which is the ratio of the effective time and the nominal time, is the selected 
KPI.

The optimization feedback to the simulation is presented in Fig.  1. At the 
beginning of each iteration, we generate a short-term production schedule by 
solving an optimization problem. Based on this schedule, a list of priority tasks 
is created. This list is the input into the simulation model. Thus, the simulation 
model follows a short-term production schedule. The process by which the tasks 
are sorted to create a list of priority tasks is based on the start and completion 
periods of each activity obtained based on the short-term production schedule. If 
there is a tie in the order of two or more tasks, it can be broken using ad hoc crite-
ria that depend on the application.

The simulation feedback to the optimization process is described here. At the 
beginning of each iteration, we generate a short-term production schedule by 
solving an optimization problem, which is further simulated. Subsequently, we 
compute the mean KPIs of all the replications of the corresponding simulation 
based on the simulation data for each piece of equipment.

4  Adherence of a schedule

We propose several indices to evaluate the adherence to a short-term production 
schedule. Some of these indices are related to the start and completion periods 
with respect to the schedule and its corresponding activities. Other indices are 
related to the material movement in case of the schedule and its corresponding 
simulation. We summarize the notation related to the optimization model and the 
simulation model in Tables 1 and 2.

It is important to note that all the adherence indices defined in this section are 
associated with a given mine schedule. During the application of the proposed 
framework, one mine schedule is generated per iteration. Thus, the values of the 
adherence indices will vary during each iteration.

Table 1  Optimization problem notation

Symbol Description

Si
a

Start period of the activity a, according to the mine schedule, in iteration i
Ci
a

Completion period of the activity a, as in the mine schedule, in iteration i
M Total material movement, according to the mine schedule
MPi

t
Total material moved in the mine schedule in period t, in iteration i
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4.1  Mean lateness, earliness and tardiness

The initially proposed indices are related to the concepts of lateness, tardiness, 
and earliness, as obtained from the literature (Baker and Trietsch 2009). Given an 
activity a, its lateness corresponds to the difference between its completion time 
and deadline, which can be either positive or negative. The tardiness of the activ-
ity corresponds to the positive difference between its completion time and deadline, 
whereas its earliness corresponds to the negative deviation between its completion 
time and deadline. For details, refer to the second column of Table 3.

We extend these concepts to a setting in which multiple activities and replications 
are present. First, we compute the corresponding activity index for each activity a 
and replica r. Second, we add all the activity indices and subsequently average them 
based on the number of replications to generate representative indices for the sched-
ule, including the mean lateness ( ̄Li ), mean tardiness ( D̄i ), and mean earliness ( ̄Ei ) 
of the given schedule. For details, refer to the third column of Table 3.

The interpretation of the indices in Table 3 is explained below. A mean lateness 
value of greater than zero indicates that the schedule is late when compared with its 
simulation on an average. A mean lateness value of zero indicates that the schedule 
is on time relative to its simulation on an average. A mean lateness value of less than 
zero indicates that the schedule is ahead of its simulated schedule on an average. 
Based on the mathematical definition in Table 3, the mean tardiness and mean earli-
ness are observed to be greater than or equal to zero. A mean tardiness value higher 
than zero indicates that the schedule is late relative to its simulation on an average. 
A mean tardiness value of zero indicates that the schedule is on time relative to its 

Table 2  Simulation problem notation

Symbol Description

Si
a,r

Start period of the activity a, in replication r, in iteration i
Ci
a,r

Completion period of the activity a, in replication r, in iteration i
Mi

t,r
Total material moved in the mine in period t, in replication r, in iteration i

MSi
t

Mean material simulated over all the replications in period t, in iteration i
yi
a,r

Equal to 1 if Si
a,r

≤ Si
a
 ; otherwise, 0

zi
a,r

Equal to 1 if Ci
a,r

≤ Ci
a
 ; otherwise, 0

Table 3  Comparison of the 
activity and schedule lateness, 
tardiness, and earliness

Index name Activity expression Schedule expression

Lateness Li
a,r

= Ci
a,r

− Ci
a L̄i =

1

|A||R|
∑

a∈A

∑

r∈R

Li
a,r

Tardiness Di
a,r

= max{0;Li
a,r
}

D̄i =
1

|A||R|
∑

a∈A

∑

r∈R

Di
a,r

Earliness Ei
a,r

= max{0; − Li
a,r
}

Ēi =
1

|A||R|
∑

a∈A

∑

r∈R

Ei
a,r
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simulation on an average. Similarly, a mean earliness value of higher than zero indi-
cates that the schedule is ahead of its simulation on an average. A mean earliness 
value of zero indicates that the schedule is on time relative to its simulation on an 
average.

4.2  Start and completion period adherence indices

We also define the start period and completion period adherence indices. The start 
period adherence index is the fraction of activities over all the replications that 
began in a period equal to or before the short-term mine schedule period. Similarly, 
the completion period adherence index is the fraction of activities over all the repli-
cations that were completed in a period equal to or before its mine schedule comple-
tion period. Refer to Table 4.

4.3  Production and material movement adherence

We introduce adherence indices related to material movement. Therefore, we intro-
duce the material adherence index, which measures the deviation of the material 
movement with respect to the mine plan and simulation. The material adherence 
curve is the ratio of the accumulated material of the simulations up to period t and 
the accumulated material of the mine plan up to period t. For example, if this index 
is greater than one at a certain period, the simulation produced more material when 
compared with that produced by the mine schedule on an average, as presented in 
Table 5.

The adherence indices presented in Table  5 can be adapted depending on the 
application. For instance, the adherence can be evaluated by only considering a sub-
set of the total scheduled activities (for example, development and production activi-
ties) instead of considering all the scheduled activities. With respect to the material 

Table 4  Start and completion 
period adherence index

Index adherence name Index adherence expression

Start period adherence index
SAIi =

1

|A| ⋅ |R|
∑

a∈A

∑

r∈R

yi
a,r

Completion period adherence index
CAIi =

1

|A| ⋅ |R|
∑

a∈A

∑

r∈R

zi
a,r

Table 5  Material adherence 
indices

Index adherence name Index adherence expression

Material adherence index
MAIi =

1

M

∑

t∈T

|MPi
t
−MSi

t
|

Material adherence curve
ATi(t) =

∑t

t�=1
MSi

t�∑t

t�=1
MPi

t�
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adherence indices, it is possible to consider the type of material instead of the total 
material transported when evaluating the adherence index (for example, to distin-
guish the production material from different mine operation sectors).

5  Application to the operation of a Bench and Fill mine

We apply the proposed framework to B&F mine planning. Therefore, we develop 
an optimization model that can be used to generate the mine production schedule 
of a B&F mine. We also develop a simulation model that supports the simulation 
of the B&F mine production schedule generated by the optimization model. This 
section explains the B&F mining method and describes the optimization and simu-
lation model, including the manner in which these models interacted to obtain the 
proposed framework.

5.1  Description of the Bench and Fill mining method

The B&F method is an underground mining method, which is applied to ore bod-
ies exhibiting vertical or sub-vertical geometry. Drift and stope are the two types of 
mining workings that have been used in this study. A stope is the basic mine produc-
tion unit, which exhibits a tabular or semi-tabular form and contains the ore that is 
to be extracted. To access each stope, it is necessary to develop two drifts, i.e., the 
production drift (lower drift) and the drilling drift (the upper drift), in the upper and 
lower parts of the stope in advance. After the extraction of ore from the stope, it is 
necessary to backfill the empty portion of the stope from the drilling drift to main-
tain the stability of the walls and roof of the stope. Figure 2 depicts the side view of 
a stope in a B&F mine.

To completely develop the drifts and stopes associated with this mining method, 
a set of sequential mining activities should be performed using specific mining 
equipment. In order to complete each portion of drift, the following activities should 
be sequentially performed: drilling, charging, blasting, mucking, scaling, shotcret-
ing, and bolting. The first activity is drilling, which consists of drilling boreholes in 
a certain drill pattern in the rock face of the drift using a face drill rig. Subsequently, 
the drills in the drift face are charged with explosives using an explosive charger, 
and that portion of the drift is then blasted. Next, a load-haul-dump vehicle (LHD), 
which is a machine similar to a conventional front-end loader used in underground 
mining, mucked the blasted material, and a scaler was used to eliminate loose rock 
from the roof or walls of the drift. Shotcreting projects a mixture of concrete, water, 

Fig. 2  Side view of a stope in a 
B&F mine
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sand, and gravel onto the drift walls using a compressed air device mounted on a 
piece of shotcrete equipment to ensure drift stability. Finally, a piece of bolter equip-
ment is used to install bolts in the drift walls to achieve drift stability.

The extraction of a portion of stope requires benching, explosive charging, blast-
ing, extraction, and backfilling. Benching comprises drilling boreholes in the drill-
ing drift using a production drill rig. Further, the benching boreholes in the stope are 
charged with explosives using an explosive charger. Subsequently, the portion of the 
stope charged using explosives is blasted, and the blasted ore is extracted using the 
LHD equipment. Finally, the empty portion of the stope is backfilled using a backfill 
truck and non-cemented rock fill.

Globally, the extraction of each stope is ascendant. The progress of ore extrac-
tion and the backfilling of the portions of the stope are conducted in the opposite 
direction when compared with that of the extraction and drilling drifts. Figure  3 
illustrates the sequencing of three stopes (S1, S2, and S3). The arrows indicate 
the advance direction of each mine working. The extraction order of the stopes is 
ascendant and follows the order of S1, S2, and S3. The extraction sequencing of 
stope S1 is the extraction of drift D1 and the benching of drift D2 as well as the 
extraction and backfilling of the stope portions S1.1, S1.2, S1.3, and S1.4

5.2  Optimization model

We propose an optimization model based on MILP to generate short-term produc-
tion schedules in B&F mines. This model schedules activities that result in profit 
(income minus costs) and that demand resources (e.g., effective time, which is the 
time interval in which the equipment is performing an productive task) for their 
completion. The activities that result in a profit lower than zero are also included 
because they must be completed to access activities resulting in a profit of greater 
than zero. The optimization model maximizes the NPV over the planning horizon, 
subject to an activity’s precedence and resource constraints.

Fig. 3  Mine sequencing in a 
B&F mining method
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The solution of the optimization model can be observed as a Gantt chart, 
where the fraction of progress of each activity is specified in each period of 
the planning horizon. This optimization model is embedded in a software called 
UDESS, which provides utilities for generating, resolving, and analyzing the 
general scheduling MILP optimization problems. The software is implemented 
via Python. UDESS can be used through scripts or a graphical user interface.

We present the sets, parameters, and variables of the optimization model in 
Tables 6, 7, and 8, respectively.

Table 6  Sets of the optimization problem

Symbol Description

A Set of activities
Q Set of stope-type activities
Pa Set of activities precedence of activity a
T Set of periods, T = {1,… ,T}

E Set of equipment fleet types
S Set of mine sectors

H1

a
Set containing the stope activity a and its corresponding production drift activity

H2

a
Set containing the stope activity a and its corresponding drilling drift activity

H3

a
Set containing the stope activity a and its corresponding upper stope activity, if it exists

Table 7  Parameters of the 
optimization problem

Symbol Description

� Discount rate per period
Ca Value of activity a
Ne Quantity of equipment type e
T Number of periods
NTt Nominal time in period t
Ta Time to perform the activity a
Ta,e Time to perform the activity a with 

mining equipment of type e. If 
activity a does not require equip-
ment e, Ta,e is equal to zero

UTe,t Utilization of equipment e at period t
UTe,t,s Utilization of equipment e at period 

t in mine sector s. If activity a does 
not require equipment e or activity 
a does not belong to sector s, Ta,e,s 
is equal to zero
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5.2.1  Activity modeling

Here, we describe activity modeling in UDESS to generate a short-term production 
schedule for a B&F mine. First, we describe the types of workings in a B&F mine 
and subsequently explain the slice discretization process of these workings.

The B&F mining method has two types of mine workings, i.e., drifts and stopes. 
Each stope has two drifts, i.e., the production drift (below the stope) and the drilling 
drift (above the stope). Before beginning a stope activity, the production and drill-
ing drifts should be completely developed. To completely develop a mine working, 
different activities should be conducted. Thus, to completely develop a drift, the fol-
lowing activities must be sequentially performed: drilling, explosive charging, blast-
ing, hauling, and backfilling. Similarly, to completely develop a stope, the following 
tasks must be sequentially performed: benching, explosive charging, blasting, haul-
ing, and backfilling.

The slice discretization process is performed to reflect the actual progress of the 
exploitation of a B&F mine. This process involves the discretization of both types 
of workings (drift and stope) in equal length slices so that each slice represents one 
activity in the UDESS model. Figure  4 represents the slice discretization process 
of two stopes (in gray) and three stopes (in white), including the precedence of the 
activities. In this figure, instead of considering drift and stope activities of length Δ , 
we work with several activities of length �.

Table 8  Variables of the optimization problem

Symbol Description

sa,t ∈ {0, 1} If activity a has started in period t or before; otherwise, 0
ea,t ∈ {0, 1} If the activity a is not finished at the beginning of the 

period t; otherwise, 0
xa,t ∈ [0, 1] The fraction of progress made by the activity a in period t

Fig. 4  The slice discretization process of B&F three drifts (in white) and two stopes (in grey) in UDESS
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5.2.2  Constraints

In this section, we explain the constraints of the optimization problem.

Constraints (1) and (2) define the progress of the variables sa,t and ea,t over time. 
Constraint (3) prevents that an activity a from progressing if it has not started. Con-
straint (4) imposes that the maximum fraction of progress over the scheduling hori-
zon of an activity a is less than or equal to 1. Constraint (5) sets activity a as finished 
when has completed its progress. The activity has been fully completed in period t 
when the sum of the progress of that activity from period 1 to t is equal to 1.

(1)sa,t+1 ≥ sa,t ∀a ∈ A,∀t ∈ T ⧵ {T}

(2)ea,t ≥ ea,t+1 ∀a ∈ A,∀t ∈ T

(3)xa,t ≤ sa,t ∀a ∈ A,∀t ∈ T

(4)
∑

t∈T

xa,t ≤ 1 ∀a ∈ A,∀t ∈ T

(5)1 − ea,t+1 ≤

t∑

t�=1

xa,t� ∀a ∈ A,∀t ∈ T

(6)sa,t ≤ 1 − ea�,t+1 ∀a ∈ A,∀a� ∈ Pa,∀t ∈ T

(7)0 ≤ xa,t ≤ 1 ∀a ∈ A,∀t ∈ T

(8)ea,1 ≥ 1 ∀a ∈ A

(9)ea,t ∈ {0, 1} ∀a ∈ A,∀t ∈ T ∪ {T + 1}

(10)sa,t ∈ {0, 1} ∀a ∈ A,∀t ∈ T

(11)
∑

a�∈Hi
a

Ta� ⋅ xa�,t ≤ NTt ∀t ∈ T,∀a ∈ Q,∀i ∈ {1, 2, 3}

(12)
∑

a∈A

Ta,e ⋅ xa,t ≤ NTt ⋅ UTe,t ⋅ Ne ∀t ∈ T,∀e ∈ E

(13)
∑

a∈A

Ta,e,s ⋅ xa,t ≤ NTt ⋅ UTe,t,s ⋅ Ne,s ∀t ∈ T,∀e ∈ E,∀s ∈ S
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Constraint (6) imposes that an activity a can only start when all its precedence 
activities j ∈ Pa are completed. This constraint models the logical order in which 
the drift and stopes activities are developed. There are five types of activity prec-
edence constraints (Fig.  5) Type 1 precedence restricts the sequential advance 
between the portions of drifts, whereas Type 2 precedence restricts the sequential 
advance between the portions of stopes. Type 3 precedence ensures that the produc-
tion drift of the stope must be entirely developed before the operation of the stope 
itself is initiated. Type 4 precedence ensures that the drilling drift of the stope must 
be entirely developed before the operation of the stope itself is initiated. Finally, 
Type 5 precedence ensures that the operation of an upper stope cannot be initiated 
before the lower stope (if any) is finished.

Constraint (7) sets the range of variables xa,t ; constraint (8) sets the activity a 
in period t = 1 as unfinished. Constraints (9) and (10) set the range of variables ea,t 
and sa,t , respectively. Constraint (11) ensures that the nominal time between differ-
ent neighboring activities is not exceeded in each period. Constraint (12) requires 
that the sum of the effective time of the type of the mining equipment fleet e on 
all the activities performed in period t must be less than or equal to the maximum 
effective time during that period. Finally, constraint (13) ensures that each type of 
mining equipment fleet can operate only in specific mine sectors. This constraint 
requires that in each mine sector s, the sum of the effective time of each type of min-
ing equipment fleet e on all the activities performed in period t must be less than or 
equal to the maximum effective time during that period.

5.2.3  Objective function

The objective function of the optimization problem is presented in (14).

Fig. 5  Mine precedence 
between drift activities (in 
white) and stope activities (in 
gray) in a B&F mine
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5.3  Simulation model

The integration of a simulation model with an optimization model can be a con-
siderably challenging task. Although some DES simulation commercial software 
( ARENAⓇ and ProModel

Ⓡ ) have been applied to study mine operations (Torkam-
ani and Askari-Nassab 2015; Hashemi and Sattarvand 2015; Ataeepour and Baafi 
1999), they exhibit limited capabilities to efficiently and simply interact with an 
optimization model. Therefore, we have developed a simulation software called Del-
phos Simulator (DSIM).

DSIM is a DES software used to simulate mine operations, including material 
handling systems in open-pit mines and production and preparation in underground 
mines. It is coded via Python using a specific simulation library called SimPy. 
DSIM implements (a) a set of functions that allow easy definition of a layout and the 
modeling of equipment movements, (b) several pieces of equipment that can be used 
with or without extension to model considerably complex situations, and (c) reports 
details specially to mine operations (cycle times and production).

Specifically, we use the B&F simulation model based on the model described in 
Pérez et al. (2017). The simulation model implements all the required tasks for the 
development of a B&F mine. The inputs of the simulation model include (1) the 
activities to be performed, (2) the mining equipment, (3) the mine layout, and (4) 
the list of priority tasks. For the simulation, it is assumed that 1 day comprises three 
operating shifts, a shift change lasting one hour, and one hour for meals per shift. In 
the simulation model, the pieces of equipment vary based on their operational states, 
which can be given as follows: program delays (time interval in which the equip-
ment is not in operation because the operators are changing shift or on meal time), 
operational losses (the equipment waiting time because other equipment travel 
through the same drift), backup (time interval in which the equipment is available 
for operation but is not in operation either (1) it has pending tasks however is unable 
to complete them because of other tasks needs to be completed before or (2) there 
are no pending tasks to be completed for this equipment), non-available time (time 
interval in which the equipment is not available owing to failure or maintenance), 
and effective time (time interval in which the equipment is performing productive 
tasks).

Here, we describe the operation details of the simulation model. The mine lay-
out contains two types of elements, i.e., transport routes and fronts. Transport 
routes are the roads that are used by the pieces of equipment to reach different 
fronts. A front is a physical location at which the mining equipment conducts 
its activities. A front can be either a drift or stope. The type of front determines 
the performed activities and the type of equipment assigned to the front. Each 
front has an attribute called “current activity,” which indicates the activity that 
should be performed next. Further, each piece of equipment has a list of priority 

(14)max
∑

t∈T

∑

a∈A

1

(1 + �)t
⋅ Ca ⋅ xa,t
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activities that should be conducted as input. The order of these activities is based 
on the start and end periods obtained from a given short-term mine production 
schedule.

At the beginning of the simulation, the drift- and stope-type fronts begin with 
the states of “drilling” and “benching,” respectively. Throughout the simula-
tion, the pieces of equipment travel to different fronts to execute the activities in 
the order based on the list of priority activities. The activities are performed by 
respecting the activity precedence given using the B&F method, and only one 
item of equipment is allowed to perform an activity at any given time. When a 
piece of mining equipment completes its assigned activity, the activity transitions 
from the current activity of the corresponding front to the next activity based on 
the precedence of activities.

The general flowchart of the B&F simulation model, which involves develop-
ment, production, and backfill of stopes, is presented in Fig. 6. It is important to 
mention that the simulation model does not consider the construction of the main 
ramp to access the ore body because this study focuses on short-term scheduling.

Fig. 6  General flowchart of the B&F simulation model
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5.4  Optimization and simulation feedback

In this section, we explain the interaction of optimization with simulation and 
vice versa in the B&F application.

5.4.1  Optimization feedback to simulation

A short-term production schedule is generated at the beginning of each iteration 
by solving an optimization problem. For each type of activity (drift and stope 
activities), a list of priority tasks is created based on this schedule. Each of these 
lists is provided as input to the simulation model. Thus, the simulation model fol-
lows a short-term production schedule.

To create the list of drift-type activities, each drift activity is sorted in an 
ascending order according to the following criteria: (1) minimum start period of 
the first portion of the drift; (2) minimum completion period of the final portion 
of the drift; (3) minimum start period of the first portion of the stope associ-
ated with the drift; and (4) minimum completion period of the first portion of the 
stope associated with the drift. In the B&F method, a drift can be located between 
two stopes (the upper and lower stopes) or on one stope (the lower stope). The 
stope associated with the drift corresponds to the upper stope, if it exists. Other-
wise, the associated stope corresponds to the lower stope.

If there is a tie with respect to a particular criterion, it is broken by apply-
ing the immediately following criterion and so on. For example, while sorting 
the drift types of activities, if two or more drift activities have equal minimum 
start periods with respect to the first portion of the drift (first criterion), the drift 
activities are sorted using the minimum completion period of the final portion of 
the drift (second criterion). If these activities have equal minimum completion 
periods with respect to the final portion of the drift, the criterion used to sort the 
drifts is the minimum start period of the first portion of the stope associated with 
the drift (third criterion) and so on.

Similarly, to create a list of the stope-type activities, the stope activities are 
sorted according to the following criteria, which are applied sequentially until 
there is no tie: (1) minimum start period of the first portion of the stope; (2) mini-
mum completion period of the first portion of the stope; (3) minimum start period 
of the final portion of the stope; and (4) minimum completion period of the final 
portion of the stope.

5.4.2  Simulation feedback to optimization

A short-term production schedule is generated at the beginning of each iteration 
by solving an optimization problem. Subsequently, this schedule is simulated 
using the DES model to obtain the average utilization for each piece of equipment 
for each period over all the replications UTe,t at the end of the simulation process. 
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The mean effective time over the replications for each period is subsequently cal-
culated in (15).

where SETe,t is the mean of simulated effective time of the equipment e in period t, 
and SETr

e,t
 is the mean of effective time of the equipment e in period t in the replica-

tion r.
Before feeding this data to the next optimization problem during the next itera-

tion, precise adjustment of the mean effective time is necessary for each equipment. 
Thus, the total sum of the simulated effective time SETe must be equal to the sum of 
the planned effective time PETe used in the optimization problem to ensure the fea-
sibility of the optimization problem.

Therefore, for all the periods t, the quantity SETe,t is multiplied with PETe
SETe

 to obtain 
the modified simulated effective time ̂SET

e

t
 . Refer to (16).

Thus, the sum over all periods of the modified simulated effective time ̂SETe,t is 
equal to PETe . Refer to (17).

Finally, the average utilization of each piece of equipment for each period over all 
the replications UTe,t is calculated as the ratio of the modified simulated effective 
time ̂SETe,t and the total time per period in hours. As each time period comprises a 
month (30 days), each time period has 24 ⋅ 30 hours in total. Refer to (18).

In the next iteration, the average utilization of each equipment for each period UTe,t 
is fed into constraint (12) to generate a new short-term mine production schedule. 
For an equipment working in specific mine sector, the procedure to calculate the 
average utilization per equipment for each period per mine sector UTe,t,s is similar 
to the procedure used to calculate UTe,t . This quantity is fed into constraint (13) to 
generate a new short-term mine production schedule.

6  Case study

A case study of a real-world data of a B&F mine is considered for understanding 
the application of the simulation–optimization framework. The mine is comprised 
of two exploitation zones (East and West), and each contain three levels. Figure 7a 

(15)SETe,t =
1

|R|
∑

r∈R

SETr
e,t

∀e ∈ E,∀t ∈ T

(16)̂SETe,t =

(
PETe

SETe

)
⋅ SETe,t ∀e ∈ E,∀t ∈ T

(17)
∑

t∈T

̂SETe,t = PETe ∀e ∈ E

(18)UTe,t =
̂SETe,t

24 ⋅ 30
∀e ∈ E,∀t ∈ T
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shows the isometric view of the mine, whereas Fig. 7b depicts the plan view. Fig-
ure 8a illustrates the North-South side view of the mine whereas the Fig. 8b repre-
sents the East-West side view.

Fig. 7  Isometric (a) and plan view (b) of the B&F mine case study. (Color figure online)

Fig. 8  North-South side view (a) and West-East side view (b) of the B&F mine case study. (Color figure 
online)
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Figures 7 and 8 illustrate the mine workings in the mine: stopes (in brown), cross-
cuts (in green), main drifts (in yellow), access ramps (in red), and the access drifts 
(in blue). Crosscuts connect the different stopes with the main drifts. For their part, 
main drifts connect the different crosscuts with the corresponding access ramp. 
Finally, access drifts connect the West and East sectors with other sectors of the 
mine.

The ore deposit is of the epithermal type of gold and silver, comprising of veins 
with an average width of 2.1 m. Table  9 summarizes the number of activities by 
activity type (drift, stope and backfill). The total number of activities to be sched-
uled differs from the total number of tasks, because the slice discretization process 
explained in Sect. 5.2.1 is conducted using a slice discretization length of 9.0 m for 
each mining task. This length corresponds to the length of the portion of the ore 
extracted from the stope subsequent to which the backfill of the stopes in the real 
mining operation begins. Table 10 shows the mining equipment involved in the B&F 
mine. In each zone, one LHD and production drill rig work exclusively; hence there 
are four pieces of equipment in total. Table 11 describes the relation between the 
tasks and the mining equipment used to perform the mining activities.

The mining equipment distribution parameters used in the simulation are pre-
sented in Table 12. In this table, U(a, b) represents a uniform distribution, W(k) rep-
resents a 1-parameter Weibull distribution, and N(�, �) represents a normal distri-
bution. The types of probability distributions used are obtained based on the best 
fit obtained from the historical data. For further details of the probability density 
distribution, please consult Oliphant (1995).

All the computational experiments presented in this study were performed on a 
2.60 GHz Intel⅄‸ Xeon⅄‸ CPU with 256 GB RAM, operating on the Windows 8⅄‸ 

Table 9  Summary of the B&F mine case study activity type

Activity type Number of mine 
workings

Total activities to be 
scheduled

Total length (m) Material (kt)

Drift 89 568 3430 226.57
Stope 67 428 4568 192.26
Backfill 67 428 4568 362.41

Table 10  Mining equipment 
used in the B&F mine case 
study

Equipment Number Availability (%)

Face drill rig 1 68.2
Explosives charger 1 78.5
LHD 2 65.1
Scaler 1 75.8
Shotcrete 1 79.4
Bolter 1 82.4
Production drill rig 2 69.8
Backfill truck 1 79.0
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operating system. The optimization model is solved using Gurobi (Gurobi Optimi-
zation 2018). The proposed framework considers a stop criterion for the iteration 
procedure when the value of one adherence index is less than or equal to a particular 
critical value. In the B&F mine case study, the iteration procedure stops when the 
value of the material adherence index in a given iteration is less or equal to 5%. We 
select this value because additional iterations to improve it was not considered to be 
worth the computational time; however, a different value could be set if necessary. 
The optimization model considers periods of 1 month, with a scheduling horizon of 
approximately a year and a half. The mine schedule assumes that the mine workings 
required to access the production and drilling drifts have been already developed. 
The initial utilization value for the mine equipment corresponds to the availability 

Table 11  Relation between the 
mining equipment and tasks in 
the B&F mine case study

Mining Equipment Tasks

Drift Stope

Face drill rig Drilling
Explosives charger Charging Charging
Explosives Blasting Blasting
LHD Mucking Hauling
Scaler Wedging
Shotcrete Shotcreting Shotcreting
Bolter Bolting
Production drill rig Drilling
Backfill truck Backfilling

Table 12  Mining equipment’s 
probability density distributions

Parameter Probability density distribution

Time between failures (min) 1

4
⋅ 46 ⋅W(1.7) ⋅ 1440

Time to repair (min) 1

4
⋅ 1.35 ⋅ ln(1.1) ⋅ 1440

LHD maintenance (min) 120 + U(−20;60)

Jumbo maintenance time (min) 180 + U(−20;60)

Simba maintenance time (min) 180 + U(−20;60)

LHD bucket load (t) 5 + U(−1.5 + 1.5)

Drift length (m) 3 + U(0;0.5)

Drift drilling time (min) DriftLength ⋅
0.4

2⋅N(1;0.02)
+ 15

Stop benching time (min) 96

N(1;0.02)
+ N(30;5) ⋅ 12

Load/dump LHD time (s) 15 + U(−2;12)

Explosive charger time (min) 30 + U(0;60)

Backfill time (min) 20 + U(−5;5)

Wedging time (min) 30 + U(0;30)

Shotcreting time (min) 60 + U(0;30)

Bolting time (min) 90 + U(0;30)
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reported in Table 10. The annual discount rate observed with respect to the objective 
function of the optimization model is 10%.

We analyze the cumulative mean of the steady monthly production rates for the 
drift, stope, and backfill over replications to determine the number of simulation 
replications. The number of replications is selected such that the cumulative aver-
age of the production rates becomes stabilized. Based on this criterion, the number 
of simulation replications is concluded to be 100. We did not consider a warm-up 
period at the beginning of the simulation because the conducted simulation consid-
ers a mine from the beginning of its production that attains a steady production rate 
after some months.

To validate the simulation model, we use the confidence interval procedure. The 
drift, stope, and backfill steady monthly production rates are selected as the response 
variables of the simulation model. We run a total of 100 replications to obtain the 
sample mean and standard deviation of the model response variables from the simu-
lation replications. A student’s t-distribution of the response variables is conducted 
(because the standard deviation of the response variables is unknown), and a con-
fidence level of 95% is assumed for calculating the confidence intervals. Based 
on the short-term mine production model generated from the optimization model, 
the steady annual production rates for a drift, stope, and backfill are used to verify 
whether these values are within the corresponding intervals. It is then verified that 
the response variables are within the confidence intervals, verifying the validity of 
the model for the considered response variables.

7  Results and discussion

In this section, the results and discussion are presented based on the application of 
the simulation–optimization framework to the B&F case study. The procedure stops 
when the material adherence index is 4.8%, which is lower than the specified criti-
cal value of 5%. With this criterion, we performed a total of five iterations. In this 
way, using the optimization problem we have generated a total of five schedules. 
Each schedule requires an average of 23 min to be resolved. The simulation of each 
schedules, containing 100 replications, requires approximately 5 h for completion in 
average.

Figures 9 and 10 show the short-term mine production schedule obtained from 
the resolution of the optimization model (a), and the average of the mine produc-
tion schedule obtained from the simulation (b), for the first and fifth iterations, 
respectively.

In the first iteration (Fig. 9), discrepancies can be observed between the sched-
ule obtained from the optimization model and the average of the simulated sched-
ule with respect to the level of movement of material in the early periods. This dis-
crepancy affects the number of periods required to complete the extraction at the 
mine. The schedule needs 14 periods, and the average simulated schedule needs 16 
periods. This result is not desired but it is expected because the optimization model 
alone fails to consider the operational uncertainty of the mine’s operation.
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However, in the fifth iteration (Fig.  10), the discrepancies among the level of 
movement of material in the early periods with respect to the schedule obtained 
from the optimization model and the average of the simulated schedule are observed 
to be minor in comparison with those obtained from the first iteration. In the fifth 
iteration, the number of periods necessary to complete the extraction at the mine 
with respect to the schedule and the average of the simulated schedule is 17. This 
is expected because the effects of operational uncertainty within the optimization 
model can be considered by integrating the simulation. Thus, it is possible to gener-
ate a schedule with smaller discrepancies with respect to the movement of material 
when compared with the schedule obtained in the first iteration.

In the following paragraphs, we report each mine schedule’s adherence indices 
generated over the iterations of the B&F case study to assess the level of adherence 
between the schedule generated by the optimization problem and the corresponding 
simulation.

Fig. 9  Schedule obtained from the optimization model in the 1st iteration (a) and average of the schedule 
obtained from its corresponding simulation (b)



964 F. Manríquez et al.

1 3

In Table 13, we report the material adherence indices of the mine schedules gener-
ated over iterations. In general, the material adherence index do not always decrease 
over iterations for every type of material. However, when considering all types of 
activities, the material adherence index always decreased with each iteration. This 

Fig. 10  Schedule obtained from the optimization model in the 5th iteration (a) and average of the sched-
ule obtained from its corresponding simulation (b)

Table 13  A mine schedule’s 
material adherence index (in 
percentage) over the iterations, 
considering different types of 
materials

Material type Iteration

1 2 3 4 5

Drift 10.18 3.83 3.00 3.20 2.63
Stope 18.13 11.29 9.46 9.60 8.80
Backfill 19.00 9.76 6.52 6.00 7.24
Drift and stope 9.92 6.13 4.98 5.73 4.02
Drift and stope and backfill 13.11 7.11 5.48 5.26 4.86
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result implies that the levels of material movement in case of the schedule and the 
average of the simulated schedule become increasingly similar with iterations.

In Figures  11 and 12, we report the material adherence curve for each mine 
schedule generated over the iterations considering different material types (drift, 
stope, and backfill). In the first two iterations (Fig. 11a, b), the material adherence 
curves of all the materials were lower than those in the first period. This result 
indicates that the material movement in the simulation was late based on the mine 
schedule. In the subsequent periods, the adherence curve was approximately one. 

Fig. 11  Material adherence curve for the 1st (a), 2nd (b) and 3rd mine schedules
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This result indicates that the total material movement in the simulation was syn-
chronized with the mine schedule. In the three subsequent iterations (Figs.  11c, 
12a, b), the material adherence curve of all the materials was greater than that in 
the first period. This result indicates that the material movement in the simulation 
was ahead of the mine schedule. However, in the subsequent periods, the material 
adherence curve of all the materials was near to that. This result indicates that the 
material movement in the simulation was synchronized with the mine schedule.

In Tables 14 and 15, we report the start adherence index and completion adher-
ence index of the mine schedule generated over iterations, respectively. As can 
be observed, the start and completion adherence indices do not always increase 
over iterations for every type of material. However, when considering all types of 

Fig. 12  Material adherence curve for the 4th (a) and 5th (b) mine schedules

Table 14  Summary of the start 
period adherence index (in 
percentage)

Activity type Iteration

1 2 3 4 5

Drift 99.2 96.6 98.2 96.1 97.3
Stope 47.5 58.9 75.2 77.2 79.2
All 77.0 80.4 88.3 88.0 89.5
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activities, the start adherence index and completion adherence index with respect 
to a given schedule are higher than those of the immediately previous iteration. 
This result indicates that the number of simulated activities that start/end in a 
period less or equal to the period given by the schedule increases in each itera-
tion. In other words, the number of simulated activities that start / end in a period 
greater than the period defined by the schedule decreases in each iteration.

In Table 16 we report the mean lateness, mean tardiness and mean earliness of 
the schedules generated over iterations.

The mean lateness of the schedule is negative and decreases over iterations. This 
result implies that the difference between the completion period of simulated activi-
ties and the completion period of scheduled activities is negative and increases over 
the iterations.

Generally, the tardiness of the schedule decreases with each iteration. This result 
implies that when we consider the activities which are completed after the expected 
period given in the schedule, the difference between the completion period of simu-
lated activities and the completion period of scheduled activities over the iterations 
decreases over the iterations.

Generally, the mean earliness of the schedule increases with each iteration. This 
result implies that when we consider the activities which are completed before the 
expected period given the schedule, the difference between the completion period of 
scheduled activities and the completion period of simulated activities over the itera-
tions increases over the iterations.

The results obtained of the adherence indices between of the schedule and its cor-
responding simulation over the iterations can be summarized as follows: (a) material 
adherence index decreased from 13.11% in the first iteration to 4.8% in the final 
iteration, (b) shape of the material adherence curve showed a trend to a horizontal 
line of unit value over iterations, (c) start adherence index increased from 77.0% 
in the first iteration to 89.5% in the final iteration, (d) completion adherence index 
increased from 60.3% in the first iteration to 76.9% in the final iteration, (e) mean 

Table 15  Summary of the 
completion period adherence 
index (in percentage)

Activity type Iteration

1 2 3 4 5

Drift 85.9 73.5 74.5 72.9 82.1
Stope 26.3 45.1 63.7 66.3 69.9
All 60.3 61.3 69.9 70.1 76.9

Table 16  Mean lateness, 
tardiness and earliness (in 
months) for all the activities 
over iterations

Index Iteration

1 2 3 4 5

Mean lateness − 0.002 0.127 −  0.534 −  0.603 −  0.863
Mean tardiness 0.479 0.283 0.176 0.199 0.138
Mean earliness 0.480 0.701 0.710 0.802 1.000
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lateness varied from − 0.002 months in the first iteration to − 1.128 months in the 
final iteration, (f) mean tardiness varied from 0.479 months in the first iteration to 
0.138 months in the final iteration, and (g) mean lateness varied from 0.480 months 
in the first iteration to 1.000 months in the final iteration.

The results presented in the previous paragraphs and presented in Tables 13, 14, 
15 and 16 and Figs. 11 and 12 demonstrate, in general, that the adherence indices 
with respect to a given schedule and its corresponding simulation are higher than 
those of the immediately previous iteration. These results demonstrate that in each 
iteration, the optimization problem uses continuous improvement in the estimation 
of the utilization KPIs of each mining equipment provided by the simulations. These 
estimations imply a better quantification of the maintenance equipment times, equip-
ment failures, travel time between locations where the equipment is used to perform 
mining activities, and equipment backup times (time during which the equipment is 
available for operation even though the equipment is not operative for the specific 
mine operation condition). Furthermore, these utilization KPIs estimations consider 
the real mine operation behavior that is difficult to consider in an optimization prob-
lem, such as the dispatching rules for transporting equipment to mine faces and the 
specific rules of mine operations.

Finally, we compared the NPV and the material adherence index with respect to 
all the short-term schedules generated over iterations in Table 17.

Based on the results in Table 17, we can state that the improvements in the adher-
ence of mine schedules over iterations are not obtained at the expense of NPV. The 
results denote that the NPV remained constant, whereas the material adherence 
index of the mine schedules decreased (Table  17). In other words, the proposed 
framework can effectively generate mine schedules over iterations and simultane-
ously maintain the NPV.

8  Conclusion and future work

The deviation between mine schedules and the mine operation results are crucial 
problems that affect the mining industry. Therefore, the mine engineers should 
generate a mine production schedule that can be reproduced in reality. Hence, they 
should develop mine production schedules that exhibit high adherence.

Table 17  Comparison between the NPV and the material adherence index short-term schedules gener-
ated over iterations

Index Iteration

1 2 3 4 5

NPV (MUSD) 721.7 718.1 716.2 716.2 715.9
% Difference NPV c/r 1st iteration 0.0% − 0.5% − 0.8% − 0.8% − 0.8%
Material adherence index [%] 13.11 7.11 5.48 5.26 4.86
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In this study, we proposed a generic framework to increase adherence to a short-
term mine production schedule by combining optimization and simulation using an 
iterative approach. This framework comprises the following steps. First, an initial 
mine schedule is generated based on the resolution of a mixed-integer linear optimi-
zation problem. Second, this schedule is simulated using a DES model. Third, a new 
short-term mine schedule is created using the optimization model by considering the 
new utilization KPIs of each equipment, obtained from the simulations performed 
in the previous step, as inputs for the mine operation. Finally, iterations of the sec-
ond step are performed. In each iteration, adherence to each mine schedule is evalu-
ated with respect to the corresponding simulations by evaluating several adherence 
indices.

The proposed framework was applied to a real-scale B&F mine. The mine plan-
ning horizon was more than a year and a half, and each period lasted for 1 month. A 
total of five iterations were performed.

We measure the discrepancies among the level of movement of material with 
respect to the schedule obtained from the optimization model and the average of the 
simulated schedule using the mine schedule material’s adherence index. The values 
of this index decreased with the iterations, from 13.1% in the first iteration to 4.8% 
in the last iteration. This improvement is explained because the effects of the opera-
tional uncertainty within the optimization model can be considered by integrating 
the simulation.

The outcomes of the work presented in this study demonstrate that the proposed 
framework improved the mine schedule adherence indices over iterations and simul-
taneously maintained the NPV of the mine schedule. The results demonstrate that 
the simulation provides a better understanding of the impacts of uncertainty in 
short-term mine production schedules.

As future research, the proposed framework will be applied to massive and selec-
tive underground mining methods as well as open-pit mines.
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