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Abstract
Green low carbon flexible job shop problems have been extensively studied in recent 
decades, while most of them ignore the influence of workers. In this paper, we take 
workers into account and consider the effects of their learning abilities on the pro-
cessing time and energy consumption. And then a new low carbon flexible job shop 
scheduling problem considering worker learning (LFJSP-WL) is investigated. To 
reduce carbon emission (CE), a novel CE assessment of machines is presented which 
combines the production scheduling strategies based on worker learning. A memetic 
algorithm (MA) is tailored to solve the LFJSP-WL with objectives of minimizing 
the makespan, total CE and total cost of workers. In LFJSP-WL, a three-layer chro-
mosome encoding method is adopted and several approaches considering the prob-
lem characteristics are designed in population initialization, crossover and mutation. 
Besides, four effective neighborhood structures are developed to enhance the exploi-
tation and exploration capacities, and the elite pool strategy is presented to reserve 
elite solutions along each iteration. The Taguchi method of DOE is used to obtain 
the best combination of the key parameters used in MA. Computational experiments 
conducted show that the MA is able to easily obtain better solutions for most of the 
tested 22 challenging problem instances compared to two other well-known algo-
rithms, demonstrating its superior performance for the proposed LFJSP-WL.

Keywords  Carbon emission · Flexible job shop scheduling problem · Worker 
learning · Memetic algorithm
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m	� Total number of machines
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pi	� Total number of operations of job i
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i, h	� Index of jobs, i, h = 1,2,…, n
j, g	� Index of operations
k, q	� Index of machines, k, q = 1,2,…, m
r	� Index of workers, r = 1,2,…, l
Oij(Ohg)	� The jth(gth) operation of job i(h)
tij(thg)	� The basic processing time of operation Oij(Ohg) (s)
aij(ahg)	� The actual processing time of operation Oij(Ohg) (s)
ekr	� The basic efficiency of worker r when operating machine k
eir	� The basic efficiency of worker r when processing job i
br	� The learning coefficient of worker r
dk(dq)	� The limiting efficiency of machine k(q)
L	� A large enough number
Wijkr	� The cost of Oij on machine k operated by worker r
Sij	� The starting time of operation Oij (s)
Cij(Chg)	� The completion time of operation Oij(Ohg) (s)
Ck	� The completion time of machine k (s)
CEi	� The CE of job i (kg CO2—e)
e ks	� The CE of machine k during one unit time when in the standby 

state (kg CO2—e)
CE ks	� The CE of machine k when in the stand-by state (kg CO2—e)
CE ip	� The CE of job i when in the processing state (kg CO2—e)
CE it	� The CE of job i related to tool wear (kg CO2—e)
CE ia	� The CE of job i related to coolant and lubricant oil (kg CO2—e)
Vij	� The removal volume of materials
T c k	� The mean interval time of the renewal of coolant on machine k (s)
T t k	� The life of tool used on machine k before regrinding (s)
T l k	� The mean interval time of the renewal of lubricant oil on machine 

k (s)
TQ kc(TQ kl)	� The initial coolant(lubricant oil) quantity of machine k before 

updating (L)
TL kt	� The energy consumption for regrinding tool once (kJ)
EF  ijkc(EF  ijkl)	� The emission factor of coolant(lubricant oil) on machine k (kg 

CO2—e/kg)
EFe	� The emission factor of electric energy (kg CO2—e/kg)
μ ijka	� The carbon emission coefficient of auxiliary materials on machine 

k (kg CO2—e/s)
μ  ijkt	� The carbon emission coefficient of tool on machine k (kg 

CO2—e/s)
Cmax	� The max completion time of all machines k(q) (s)
Aijkr	� The cumulative time of worker r operating machine k before Oij 

(s)
Bijr	� The cumulative time of worker r processing job i before Oij (s)
Xijkr	� Xijkr = 1 If Oij is processed on machine k operated by worker l; 

otherwise, Xijkr = 0
Xijk	� Xijk = 1 If Oij is processed on machine k; otherwise Xijk = 0
Xigr	� Xijr = 1 If Oig is operated by worker r; otherwise Xigr = 0
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Xij−hg	� Xij−hg = 1 If the completion time of Oij is greater than the starting 
time of Ohg; otherwise Xij−hg = 0

Xig−ij	� Xij−ig = 1 If Oig is processed before Oij; otherwise Xig−ij = 0
Xhgk−ijk	� Xhgk−ijk = 1 If operation Ohg is prior to Oij adjacently on machine k; 

otherwise Xhgk−ijk = 0

1  Introduction

The manufacturing industry consumes an enormous amount of energy to gener-
ate economic benefits while the increasing demand of energy has imposed tremen-
dous pressure on the environment (Guemri et  al. 2014; Sinoquet et  al. 2011). For 
instance, the endothermic greenhouse gases (e.g., CO2 and N2O) have made a great 
contribution to the global warming (China Energy and CO2 Emission Research 
Group 2009). According to the International Energy Outlook 2016(EIA Interna-
tional Energy Outlook 2016), the industrial sector worldwide would account for 
more than half of the total energy use through 2040. Furthermore, the energy-related 
CO2 emissions around the world rise from 32.2 billion metric tons in 2012 to 35.6 
billion metric tons in 2020 and to 43.2 billion metric tons in 2040. Thus, it is a great 
challenge from the viewpoint of enterprises and countries to decrease the ultimate 
achievement of emissions targets, which will depend on how to balance environ-
mental goals with economic growth.

The CE assessment of machines and the advanced production scheduling play a 
significant role in balancing the economic benefits with the environmental impact 
(Ballestin et  al. 2012; Kelly and Zyngier 2017; May et  al. 2016; Piroozfard et  al. 
2018; Schinko et al. 2014). An empirical model based on power measurements was 
developed by Li and Kara (2011) who optimized the energy efficiency of processes 
under different cutting conditions by an effective method. Laurent et al. (2010) and 
Kara et al. (2010) studied the energy efficiency and the CE respectively in a man-
ufacturing system by using life cycle assessment (LCA). Zheng and Wang (2015) 
investigated the low-carbon production scheduling problem with a Pareto-based esti-
mation of distribution algorithm, concerning the objectives of makespan and CE. 
Liu and Huang (2014) introduced two scheduling problems involving two objectives 
(i.e. reduction of power consumption and carbon footprints) on batch-processing 
machines and a hybrid flow shop respectively. NSGA-II was used to solve their 
problems and an adaptive multi-objective GA is proposed to validate the results.

Flexible job shop problem (FJSP) is an extension of the job shop problem (JSP) 
that considers the flexibility of machines, and has been extensively existed in mod-
ern manufacture. With the development of customized manufacturing, workers with 
specific capacity are needed on various machines. To make the scheduling model 
closer to realistic production, it is essential to take worker resources into considera-
tion. Fryer (2010) presented a dual-constraint JSP problem by considering the con-
straints of machines and workers simultaneously, where each worker was assumed 
with equal flexibility. Felan and Fry (2001) introduced the flexibility of workers for 
the same problem, and concluded that workers with different flexibility perform 
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better than all workers with equal flexibility. A variable neighborhood search was 
proposed by Lei and Guo (2014) in order to minimize the makespan of FJSP with 
worker flexibility. Xu et al. (2011) pointed out that workers supposed to be trained 
in several skills or departments such that they can be assigned to a variety of jobs 
as the need arises. Zheng and Wang (2016) investigated a FJSP that workers have 
different skills to operate different machines, and developed a knowledge-guided 
fruit fly optimization algorithm to solve their problem. A FJSP considering differ-
ent labor wages under dynamic electricity pricing is solved by the non-dominated 
sorting genetic algorithm-III (NSGA-III) (Gong et al. 2019b). Ferjani et al. (2017) 
studied the dynamic multi-skilled workers assignment problem and considered the 
impact of fatigue.

Analyzing the literatures above, most of them studying the constraints imposed 
by workers assume that all workers have constant efficiency throughout the whole 
production process. From a realistic perspective, workers ought to have learning 
abilities that the efficiency of a worker is supposed to be meliorated with the accu-
mulation operation time towards corresponding jobs or machines. This learning 
effect has been proved to exist in many empirical studies. The effects of learning 
in scheduling problems were considered for the first time by Biskup (1999). Oster-
meier (2019) pointed out that workers are prone to learning and forgetting even in 
the short-term when they are working in a highly-manual production environment 
where several complex products are processed alternately, frequent new product 
introductions occur and a high degree of product variation and customisation is pre-
sented. Koulamas and Kyparisis (2007) presented a new learning effect for sched-
uling environments and derived some results on special cases for the two-machine 
flow-shop problem with position-based learning effect. Biskup (2008) gave a review 
on scheduling with learning effects and discussed the existing literature on schedul-
ing with position-based learning effect and sum-of-processing-time based learning 
effect, respectively. More recently, Wu et al. (2018) investigated the FJSP with con-
sideration of worker’s learning ability and put forward a hybrid genetic algorithm 
to solve their problem, whereas they only optimized the maximum completion time 
(economic benefits), and ignored the environmental impact. This paper aims to fur-
ther narrow the gap between the scheduling models and the realistic production 
while balancing the economic benefits and the environmental impact.

In this paper, we proposed a low carbon flexible job shop scheduling problem 
considering worker learning (LFJSP-WL) with reference to the CE reduction, the 
makespan and the total cost of workers. Since the JSP has been proved to be strong 
NP-hard combinatorial optimization problems due to its high computational com-
plexity (Brucker and Schlie 1990; Garey et  al. 1976; Zhou et  al. 2009), the FJSP 
with worker learning must be more complex than JSP. Thus it is quite difficult for 
traditional approaches to obtain an optimal solution within a certain time.

For the multi-objective FJSP problem, the memetic algorithm (MA) hybridizing 
evolutionary algorithms with local search has shown promising performance (Kan-
nan and Ramaraj 2010). In addition, MA takes advantage of both global and local 
search. Thereby, it is able to strike a better balance between exploration and inten-
sification (Hertz and Kobler 2000) and it has been proved to be an effective method 
for FJSP(Frutos et al. 2010; Gong et al. 2019a; Ma et al. 2014a, 2014b; Phu-Ang 
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and Thammano 2017; Yi et al. 2016; Yuan and Xu 2013). In order to solve the new 
mathematical model (LFJSP-WL) efficiently, we put forward a memetic algorithm 
based on NSGA-II with a useful variable neighborhood search (VNS), in which a 
three-layer chromosome representation encoding method and an active schedule 
decoding method are proposed. Besides, we present a mixed initialize method which 
consists of three initialize strategies, and apply several useful mutation operators and 
crossover operators for the three subproblems respectively. The elite pool strategy is 
adopted to reserve elite solutions generated along with all iterations.

The rest of this paper is organized as follows. The mathematical model of the pro-
posed LDFJSP-LE is introduced in Sect. 2. The memetic algorithm (MA) is elabo-
rated in Sect. 3. The case study is presented in Sect. 4. Conclusions and future stud-
ies are described in Sect. 5.

2 � The mathematical model of the proposed LDFJSP‑LE

2.1 � Problem description

The problem of LFJSP-WL is described as follows. It considers processing n inde-
pendent jobs J = (J1, J2,…, Jn) on m machines M = (M1, M2,…, Mm) with l work-
ers W = (W1, W2,…, Wl). A job Ji consists of a predefined sequence of ri operations 
(Oi1, Oi2,…,Oir). Each Oij indicates that the jth operation of Ji can be processed on 
a machine out of from the given machine set M. Each machine can be performed by 
at least one worker out of from the given worker set W. As regards worker, there are 
two different types (ElMaraghy et al. 1999), one supposed that every worker owns 
the same capacity, the other considered different workers have diverse skills and 
operate machines with varying efficiencies. The latter type is adopted in LFJSP-WL, 
furthermore, the skill level and learning ability of workers are taken into account, a 
worker with higher-level should have preferable learning parameters and higher-cost. 
Owing to workers’ learning capacity, the efficiency of workers will be enhanced 
since the accumulation of processing time when performing different machines and 
jobs, i.e. worker’s learning ability for machines and jobs. Nonetheless, efficiency 
will reach the limitation in spite of the study time increasing continuously. Three 
objectives, productivity (i.e. makespan), environmental impact (i.e. total CE) and 
economic influence (i.e. total cost of workers), are optimized simultaneously, which 
can provide guidance to production managers when they make scheduling decisions 
considering profit and environment protection. The model consists of three subprob-
lems: (1) operation sequence; (2) machine assignment; (3) worker assignment.

To make it easier to understand, an instance of the proposed LFJSP-WL is shown 
in Table 1. There are two jobs, four machines and five workers. Job 1, 2 have two 
and three operations respectively. Machine 1, 2, 3, 4 can be operated by two, two, 
three and three corresponding workers chosen from the worker set with three differ-
ent skill levels, the level classification and some learning parameters are organized 
in Table 2. For each column in Table 1. Column 1 indicates jobs. Column 2 shows 
the operations belonging to a certain job. Column 3 states the machines which can 
process the corresponding operations. Column 4 represents the workers which can 
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operate the corresponding machines. Column 5 lists the homologous cost of work-
ers. Column 6 expounds the basic processing time before considering the improve-
ment of worker’s efficiency. Especially, the actual time will be changed compared 
to the basic time with the accumulation processing time of the worker. Column 

Table 1   An instance of LFJSP-WL

Job Operation Machine Worker Cost of worker Basic time SEC μt μa Ps Me

Job1 O11 M1 W1 110 15 5.49 0.082 0.092 3.77 0.56
W2 95 12

M2 W2 100 5 4.26 0.016 0.063 2.26 0.60
W4 80 6

O12 M3 W2 98 20 3.94 0.075 0.070 4.23 0.58
W3 90 16
W4 85 18

M4 W1 115 15 4.80 0.031 0.059 4.76 0.63
W3 95 14
W5 79 9

Job2 O21 M2 W2 93 10 5.45 0.078 0.063 2.26 0.60
W4 86 8

M3 W2 89 5 3.46 0.056 0.060 4.23 0.58
W3 97 10
W4 75 14

M4 W1 105 10 2.96 0.046 0.089 4.76 0.63
W3 90 14
W5 86 18

O22 M1 W1 116 15 4.26 0.070 0.092 3.77 0.56
W2 96 12

M4 W1 109 20 5.07 0.039 0.059 4.76 0.63
W3 90 15
W5 78 18

O23 M1 W1 105 10 3.25 0.048 0.092 3.77 0.56
W2 95 9

M2 W2 98 15 5.24 0.056 0.063 2.26 0.60
W4 85 14

M3 W2 90 5 4.35 0.047 0.060 4.23 0.58
W3 89 6
W4 80 8

Table 2   Parameters of the 
workers with different levels

Worker W1 W2 W3 W4 W5

Level 1 2 2 3 3
Basic efficiency (Be) 0.85 0.95 0.90 1.05 1.10
Learning coefficient (Lc) − 0.25 − 0.18 − 0.20 − 0.12 − 0.10
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7–11 addresses the special energy consumption, the CE coefficient of cutting tools, 
the CE coefficient of auxiliary materials, the CE of machine tool at the stand-by 
state and the limiting efficiency, those mentioned parameters are related to corre-
sponding machines respectively. For each row in Table 2. The level classification, 
basic efficiency and learning coefficient of diverse workers are listed where Level 
1, 2, 3 represents the best-skilled worker set, the average-skilled worker set and the 
worst-skilled worker set. Take the first operation of job1 for example. There are two 
machines (M1, M2) for this operation, M1 can be operated by W1, W2 while M2 can 
be operated by W2, W4. The cost of the worker on M1 is 110 and 95 respectively. 
Similarly, the cost of the worker on M2 considering the skill level is 100 and 80 
respectively, and corresponding basic time is 15, 12, 5 and 6 time units, the other 
variable values can be obtained in the same way.

Some assumptions are made to simplify our model. based on the assumptions 
which have been widely proposed in many other papers on FJSP (Demir and İşleyen 
2014; Lei and Guo 2014; Li et al. 2012; Zhang et al. 2016), we further consider the 
worker resources and their learning ability, which indicates that our model is more 
close to reality, especially in a highly-manual production environment. The assump-
tions made for LDFJSP-LE are listed as follows:

All machines and workers are ready at time 0;

(1)	 All raw materials are ready at time 0;
(2)	 Jobs are mutually independent and have the same priority;
(3)	 The efficiency of various workers only concerned with the accumulation of 

processing time;
(4)	 Each machine can be operated by one and only one worker at a time;
(5)	 Each operation can be processed by one and only one machine at a time;
(6)	 An operation cannot be performed until its preceding operation completed;
(7)	 Interruption is not allowed once the operation has started;
(8)	 Workers with higher skill level rank supposed to be owned better parameters 

related to learning effect and cause the higher cost;
(9)	 Setting up time of machines, transportation time among different positions and 

released time of jobs are negligible.

2.2 � Problem formulation

Refer to Wu et al. (2018) and Zhang et al. (2015), the mathematical model can be 
established as follows.

(1)Aijkr =

n∑

h=1

ph∑

g=1

ahg ⋅ Xhg−ij ⋅ Xhgkr

(2)Bijr =

pi∑

g=1

aig ⋅ Xig−ij ⋅ Xigr
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Through Eqs.  (1)–(3), the actual processing time of Oij processed by worker r on 
machine k can be obtained. Owing to the differences between the accumulation time 
of worker r operating machine k (Aijkr) and the accumulation working time of worker 
r processing job i (Bijr) before performing Oij, the degree of familiarity with the job 
and the machine may be different for worker r, indicating that a worker’s efficiency is 
decided by the maximum of the two parts. According to the learning effect model (Kuo 
and Yang 2006), we build the efficiency model of each worker. The ekr·(1 + Aijkr)br indi-
cates the efficiency of worker r towards machine k when considering learning effect, 
while the eir·(1 + Bijr)br indicates the efficiency of worker r for processing job i when 
considering the learning effect. It is worth to note that the bigger the value of a worker’s 
efficiency is, the longer time needs for the worker to perform a processing activity. Fur-
thermore, each machine has its ultimate efficiency dk, thus we calculate the final effi-
ciency by max(ekr·(1 + Aijkr)br, eir·(1 + Bijr)br, dk). Then the final actual processing time 
can be obtained via multiplying final efficiency by basic processing time tij.

Equation (4) shows the total carbon emission of job i which involves machining 
processes, tool wear and auxiliary materials.

Equation  (5) is the calculation of the special energy consumption (SEC) for 
removing 1 cm3 material during processing (Kara and Li 2011), where MRR 
denotes the material removal rate, and C0 and C1 are special coefficients. Based on 
Eq. (5), the material removal energy can be calculated via multiplying SEC by the 
material removal volume (Vij) (Zhang et al. (2016)). Then the total CE of job i in the 
processing state can be calculated by Eq. (6) (Zhang et al. 2015), where Xijk ensures 
that operation Oij is performed on machine k, and EFe represents the emission factor 
of electric energy (kg CO2 – e/kg).

(3)aij = tij ⋅max(ekr ⋅ (1 + Aijkr)
br , eir ⋅ (1 + Bijr)

br , dk)

(4)CEi = CE
p

i
+ CEt

i
+ CEa

i

(5)SEC = C0 +
C1

MRR

(6)CE
p

i
=

(
pi∑

j=1

m∑

k=1

Vij ⋅ SECijk ⋅ Xijk

)
⋅ EFe

(7)

CEt
i
=

pi∑

j=1

m∑

k=1

aij

Tt
k

⋅ TLt
k
⋅ EFe

⋅ Xijk

=

pi∑

j=1

m∑

k=1

aij

(
TLt

k
⋅ EFe

⋅ Xijk

Tt
k

)

=

pi∑

j=1

m∑

k=1

aij ⋅ μ
t
ijk
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Tool wear is a crucial factor which usually appears during the processing in work-
shops. By regrinding, a cutting tool can get recovery after reaching the life limita-
tion, but the CE (carbon emission) of regrinding cutting tool should be considered. 
According to Zhang et al. (2015), the CE of job i related to the cutting tool can be 
calculated by Eq. (7).

In addition to the resources mentioned above, the machine tool consumes a cer-
tain amount of auxiliary materials, particularly the coolant and lubricant oil. There-
fore, coolant and lubricant oil are considered in this model. Since they will decrease 
bit by bit with the machine tool processing, the supplement actions should be taken 
after a fixed interval time. According to Zhang et al. (2015), the mathematical deri-
vation of Eq. (8) is similar to Eq. (7). Besides, two types of CE are included: CE of 
coolant and CE of lubricant oil.

Equation (9) obtains the CE of machine tool at standby state, which is calculated 
by multiplying total standby time with CE per unit time during the standby state.

In this model, we optimize three multiple conflicting objectives simultaneously. 
After the analysis of Eqs. (1)-(9), the objectives are presented as below:

Subject to:

(8)

CEa
i
=

pi∑

j=1

m∑

k=1

(
aij

Tc
k

⋅ TQc
k
⋅ EFc

ijk
⋅ Xijk +

aij

Tl
k

⋅ TQl
k
⋅ EFl

ijk
⋅ Xijk

)

=

pi∑

j=1

m∑

k=1

aij ⋅ Xijk

(
TQc

k
⋅ EFc

ijk

Tc
k

+
TQl

k
⋅ EFl

ijk

Tl
k

)

=

pi∑

j=1

m∑

k=1

aij ⋅ μ
a
ijk

(9)CEs
k
=

(
Ck −

n∑

i=1

pi∑

j=1

aij ⋅ Xijk

)
⋅ es

k

(10)Minimize Cmax= max
1≤k≤m

{Ck}

(11)Minimize W =

n∑

i=1

pi∑

j=1

m∑

k=1

l∑

r=1

WijkrXijkr

(12)Minimize CEtotal =

n∑

i=1

CEi +

m∑

k=1

CEs
k

(13)Cij = Sij + aij
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Equation  (10) represents the makespan objective. Equation  (11) represents the 
total cost of workers objective. Equation (12) represents the total carbon emission 
objective. Constraint (13) explains the relation between completion time, starting 
time, and actual processing time of operation Oij. Constraint (14) ensures the prec-
edence constraint between operations of a job. Constraint (15) ensures that each 
operation cannot start until the immediate precedence operation completed on the 
same machine. Constraint (16) ensures that each machine can process at most one 
operation at a time. Constraint (17) ensures that each worker can process exactly one 
operation at a time. Constraint (18) ensures that each operation can be processed on 
exactly one machine. Constraint (19) ensures that each operation on a machine can 
be performed by one and only one worker.

3 � Proposed MA for LDFJSP‑LE

3.1 � The framework

In this section, we propose a memetic algorithm with variable neighborhood struc-
tures (MA) to solve LFJSP-WL. The genetic operators in MA conclude crossover 
operator, mutation operator and the local search which can improve the quality of 
solutions effectively. Furthermore, to retain the good solutions produced in each 
iteration, the elite pool strategy is adopted during evolution. The pseudo-code of 
MA is presented as below.

(14)Ci(j+1) − Cij ≥ ai(j+1)

(15)Sij + (1 − Xhgk−ijk) ⋅ L ≥ Chg

(16)(Chg − Cij − ahg) ⋅ (Cij − Chg − aij) ⋅ Xijk ⋅ Xhgk ≤ 0

(17)(Chg − Cij − ahg) ⋅ (Cij − Chg − aij) ⋅ Xijkr ⋅ Xhgqr ≤ 0

(18)
m∑

k=1

Xijk = 1

(19)
l∑

r=1

Xijkr = 1
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The pseudo-code of MA is as follows.

Set parameters in MA, record the current iteration as i
initialize population R(i) with α individuals, update the elite pool(ep)

while i < L do 
if pc>rand

crossover, R(i)=[R(i), R’(i)], if R’(i) consist of β(β<α) individuals, (α-β) new individuals are generated 
end if 
if pm>rand

mutation, R(i)=[R(i), R’’(i)], if R’’(i) consist of β(β<α) individuals, (α-β) new individuals are generated
end if
select p% individuals randomly to do neighborhood search 
execute the non-dominated sorting, get the rank 1 Pareto solutions (p1)
calculate the crowding distance 
get a mixture of ep and p1, execute non-dominated sorting then update the elite pool(ep)

obtain the offspring population R(i)
end while 

pc : the probability of crossover;   pm : the probability of mutation;   L : the total iterations;  

3.2 � Encoding and decoding

A three-layer chromosome representation that contains operation sequence (OS) 
vector, machine assignment (MA) vector and worker assignment (WA) vector 
is adopted for this research (Gong et  al. (2018a)). The length of the chromosome 
equals to 3* p where p stands for the total number of operations of all jobs. The OS 
vector consists of p integer values in the range of 1 to n, where n represents the total 
number of jobs, and different integer values which appear pi times indicate the cor-
responding job-number. By scanning the OS vector from left to right, the jth occur-
rence of an integer value indicates the jth operation of the corresponding jobs. An 
example is presented in Fig. 1a, the first position shows the first operation of job 2, 
namely, O21, and the fifth position shows O22. An example of the MA vector is pre-
sented in Fig. 1b, the MA vector is as long as the OS vector which consists of three 

2 3 1 3 2 1 3 1
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1
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1
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3
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W
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W
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Fig. 1   Individual encoding example
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parts owing to three jobs. The number in each part represents the machine-number 
selected for the corresponding operation. Number 1 in the first position of the first 
part represents machine 1 is selected for operation O11. Number 2 in the next posi-
tion of the first part represents machine 2 is selected for operation O22. Number 2 
in the last position of the first part represents machine 2 is selected for operation 
O13. An example of the WA vector is shown in Fig.  1c, the length of WA vector 
also equals to OS vector and consists of three parts. The number in each part repre-
sents the worker-number selected for the corresponding operation. Number 3 in the 
first position of the second part represents worker 3 is selected for operation O21. 
Number 2 in the next position of the second part represents worker 2 is selected for 
operation O22. The example shown in Fig. 1 can be interpreted as follows: (O21, M3, 
W3), (O31, M3, W3), (O11, M1, W1), (O32, M1, W1), (O22, M2, W2), (O12, M2, W2), (O33, 
M1, W1), (O13, M2, W1).

For the above chromosome representation, an active decoding method referring 
to Gong et  al. (2019b) which considers the constraints of machines and workers 
simultaneously is applied for this research. The details of the decoding method are 
as follows:

Step 1 Extract operation (Oij) from OS vector in sequence from left to right, then 
get the corresponding machine (Mk) and worker (Wr);

Step 2 Get the worker’s (Wr) accumulation processing time of Mk and job i before 
processing Oij respectively. Next, calculate the actual processing time of Oij by com-
bining worker’s learning parameters;

Step 3 Find the blank spaces, namely, the idle time between adjacent operations 
which processed prior to Oij, from left to right. Then obtain the blank space [Tks, Tke] 
existing on Mk and [Trs, Tre] existing on Wr. Additionally, getting the completion time 
of Oi(j−1), namely, C i(j−1);

Step 4 Get all the overlapping parts [Tis, Tie] between [Tks, Tke] and [Trs, Tre]. If 
Tie—max (Tis, C i(j−1)) ≥ aij, and the earliest processing time Oij can be obtained by 
ts = max(Tis, C i(j−1)). The completion time of Oij can be calculated by te = ts + aij. 
Otherwise, go to step 5;

Step 5 If Oij cannot insert into the idle period, the earliest processing time Oij can 
be calculated by ts = max(Mkc, Wrc), where Mkc represents the completion time of 
the last operation processed on machine k, Wrc represents the completion time of the 
last operation performed by worker r. The completion time of Oij can be obtained by 
te = ts + aij;

Step 6 If all operations in OS vector are scheduled, go to the end. Otherwise, go 
to step 1.

3.3 � Initialization of population

The population initialization plays a vital role in improving the quality and 
diversity of the population. Since the problem consists of three subproblems, we 
employ three initial strategies for the three corresponding subproblems respec-
tively. The OS vectors are generated by using three strategies: (1) Sequence the 
operations randomly; (2) A job with the longest remaining processing time has 
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the priority to be selected; (3) Choose a job with the maximum rest operations. 
The MA vectors also produced by three methods: (1) Select a machine out of 
alternative machines randomly; (2) Choose a machine with the lowest global pro-
cessing time; (3) Give preference to the machine with the smallest SEC. Simi-
larly, we initial the WA vectors with three strategies: (1) Select a worker out of 
alternative workers randomly; (2) Choose a worker with the lowest global pro-
cessing time; (3) A worker with the lowest cost has the prior to be chosen.

3.4 � Crossover operator

Crossover operator is an indispensable element during the reproduction phase 
which generates new individuals (offspring) by exchanging good genes between 
two different parental chromosomes. Two different crossover operators are 
employed respectively for this problem. The job-based crossover (JBX) opera-
tor is proposed for OS. First, we divide the Jobset J into two subsets Jobset1 and 
Jobset2 randomly; Next copy any genes in parent 1 belongs to Jobset1 into off-
spring 1 in the same position and copy any genes in parent 2 belongs to Jobset2 
into offspring 2 in the same position; Finally, add any genes in parent 2 belongs to 
Jobset2 into offspring 1 in the remain position one by one, and add any genes in 
parent 1 belongs to Jobset1 into offspring 2 in the remain position one by one. An 
example is shown in Fig. 2. For MA and WA, the random probability crossover 
(RPX) operator is proposed for this problem. The theory is similar to JBX and the 
main difference is that a binary vector unit is used instead of subsets, where the 
0–1 expresses the two different subsets. An example of MA is shown in Fig. 3.

parent1

parent2

2 1 4 3 2 1 3 4

offspring1

parent1

parent2

offspring2

1 3

4 3 1 3 2 4 3 1 2 1

4 1 2 3 4 1 3 2 1 3

4 3 1 3 2 4 3 1 2 1

2 1 4 3 2 1 3 4 1 3

4 1 3 1 2 4 3 1 2 3

Fig. 2   OS job-based crossover operator
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3.5 � Mutation operator

Mutation operator can provide extra variation into the population so that enhances 
the diversity of the population. Three mutation operators are constructed for this 
problem respectively. The procedures for the mutation are depicted as follows and 
an example of OS is shown in Fig. 4.

Step 1 Generate a random number Rm. If Rm < Mr where Mr states the mutation 
rate, go to Step 2, else go to the end;

Step 2 Get two different positions point1, point2 in the OS vector randomly, 
and generate two random position numbers mr, wr in the corresponding MA vec-
tor, WA vector respectively, then go to Step 3;

Step 3 For OS vector, insert the gene in point1 into the position before point2, 
as shown in Fig. 4, then go to step 4;

Step 4 For MA vector, replace the machine in position mr with another machine 
randomly amongst the alternative machines and choose an available worker ran-
domly, then go to step 5;

Step 5 For WA vector, replace the worker in position wr with another worker 
randomly amongst the alternative workers.

0 1 0 1 1 0 0 1 0 0

2 1 4 3 2 1 2 2 4 3

3 2 1 3 1 3 2 2 2 1

2 2 4 3 1 1 2 2 4 3

parent1

parent2

offspring1

binary vector

3 1 1 3 2 3 2 2 2 1offspring2

2 1 4 3 2 1 2 2 4 3parent1

Fig. 3   MA random probability crossover operator

2 1 4 3 2 1 3 4 1 3

2 1 4 3 2 1 3 41 3

parent

offspring

point1=4, point2=9

Fig. 4   OS mutation operator
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3.6 � Local search with four neighborhood structures

The neighborhood structure is a mechanism that can produce neighbor solutions 
by utilizing a small change in the original solutions. Inspired by Lei and Guo 
(2014), we construct four neighborhood structures as follows:

•	 Neighborhood structure 1(N1): N1 is designed for the OS vector. It first gets a 
critical block with more than two operations, then obtains the first operation 
in this critical block, finally moves an internal operation which differs from 
the first operation to the beginning of the block.

•	 Neighborhood structure 2(N2): N2 is also designed for the OS vector. It first 
obtains a critical block with more than two operations, next get the last oper-
ation in this critical block. Then moves an internal operation which differs 
from the last operation to the rear of the block.

•	 Neighborhood structure 3(N3): N3 is designed for the MA vector. It first 
selects a gene in MA vector randomly, then selects a new machine with the 
smallest SEC from the alternative machines, and lastly changes the worker 
randomly for the corresponding new machine.

•	 Neighborhood structure 4(N4): N4 is designed for the WA vector. Similarly, it 
obtains a worker gene wk in WA vector randomly, then replaces wk with the 
lowest cost out of from alternative workers.

The pseudo-code of the variable neighborhood search is as follows.

Set parameters in neighborhood search, get an individual x randomly 
get the corresponding chromosome x, initialize a=0, b=0, c=0, d=0, e=0;

if a=0 or (a=1 and b=1 and c=1 and d=1) 

produce a new chromosome y by applying N1 and evaluate the new chromosome; if y is better than x, let 

x=y, a=0, e=0; else, a=1-a, e=e+1; 

if b=0 

use N2 to update the chromosome y and evaluate it; if y is better than x, let x=y, b=0, e=0; else, b=1- b, 

e= e+1;

if c=0

generate new chromosome y by using N3 and evaluate the new chromosome; if y is better than x, let x=y, 

c=0, e=0; else, c=1- c, e=e+1;

if d=0

produce a new chromosome y based on the given chromosome by applying N4 and evaluate it; if y is 

better than x, let x=y, d=0, e=0; else, d=1- d, e=e+1;

if e> t, terminated;

End For
Return the new chromosome

a, b, c, d, e, t: the parameters of neighborhood search 
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3.7 � Elite pool

To reserve elite solutions along with each iteration, the notion of elite pool is used in 
the proposed MA. The elite pool (ep) initially filled with a number of solutions gen-
erated by initialization. Then at each iteration obtains the non-dominated solutions 
(ns) produced by non-dominated sorting, and updates the elite pool finally through 
doing non-dominated sorting amongst the mixture of ns and ep.

The pseudo-code of updating the elite pool is as follows.

Get the ns and previous ep

let the mixture of ns and ep do the non-dominated sorting, get the number of solutions (Sli) in rank i 

For i = rn

if Sli ≥ se and Sli-1 < se

put all solutions in rank 1 into the elite pool 

fill the elite pool using solutions in rank i according to the crowding distances

end if  

End For
Return the elite pool

rn : the number of rank       Sli : the number of solutions in rank i se : the size of the elite pool 

4 � Case study

4.1 � Performance evaluate metrics

In order to evaluate the effectiveness of MA, three commonly used metrics are 
adopted. They are the Set Coverage (SC), the inverted generational distance (IGD) 
and the ratio of non-dominated solutions (Rnd) (Yuan and Hua 2014; Wu and Che 
2019), which can be calculated as follows.

1.	 C (A, B) measures the fractions of members of B which are dominated by mem-
bers of A, it can be obtained by Eq. (20).

where A and B denote the approximation to Pareto front (PF) respectively, |B| 
represents the number of solutions in B. C (A, B) = 1 indicates that all solutions 
in B are dominated by at least one solution in A, and C (A, B) = 0 shows that all 
solutions in B are not dominated by any solution in A. If C (A, B) is larger than C 
(B, A), that means the solutions in A is better than solutions in B in a sense.

2.	 Let P* denotes the set of non-dominated solutions amongst all solutions obtained 
by all runs of all algorithms, the IGD of set A can be calculated by Eq. (21).

(20)C(A,B) =
|{b ∈ B|∃a ∈ A ∶ a dominates b}|

|B|



1707

1 3

Low carbon flexible job shop scheduling problem considering…

where d (x, y) shows the Euclidean distance between point x and y, |P*| repre-
sents the size of P*. The smaller value of IGD(A, P*) states that set A is closer 
to P*. In addition, the objectives of every non-dominated solutions should be 
normalized by Eq. (22) before calculating IGD.

where fmin

i
 is the minimal value of the ith objective amongst all obtained solu-

tions, besides, fmax

i
 states the maximum.

3.	 Let N denotes the non-dominated solutions obtained by one algorithm, and the 
Nnd of the algorithm shows the number of solutions in N that remains in P*.

where the definition of P* is identical with Eq. (21). Rnd = 0 expresses that solu-
tions obtained by the algorithm all dominated by those solutions obtained by 
other algorithms. Rnd = 1 represents that any solution obtained by the algorithm 
cannot be dominated by any other solutions obtained by other algorithms.

4.2 � Design of experiments

4.2.1 � Experiment setting

All the algorithms are coded in MATLAB R2016 and implemented on a desktop 
computer with an IntelCorei3 CPU with 3.60 GHz frequency and 4 GB RAM.

4.2.2 � Data source

The flexible job-shop scheduling problem (FJSP) is commonly seen in the real 
manufacturing industry. A reasonable FJSP solution can effectively help manufac-
turers to improve production efficiency and reduce production costs. Some bench-
marks have been proposed by researchers based on realistic production conditions, 
where consist of many actual production problems that plague the enterprises (e.g. 
maximal completion time of machines, workload of the most loaded machine, total 
workload of all machines etc.). Although the benchmarks contain many practical 
problems, the benchmarks can also be expanded easily to use if some new factors or 
actual production targets that have not been considered before appear, (e.g. Demir 
and İşleyen 2014; Kacem et  al. 2014; Zheng and Wang 2016; Gong et  al. 2018b; 
Gong et al. 2019a).

In our problem, we consider the objectives of minimizing the makespan, total 
CE and total cost of workers, which are related to the interests of the companies, 
especially when they make scheduling decisions considering profit and environ-
ment protection. We construct our benchmarks for testing LFJSP-WL extended from 

(21)IGD(A,P ∗) =
1

|P ∗ |
∑

x∈P∗

min
y∈A

d(x, y)

(22)f̃i(x) = (fi(x) − fmin

i
)∕(fmax

i
− fmin

i
), i = 1, 2, 3

(23)Rnd = Nnd∕|P ∗ |
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Dauzèrepérès and Paulli (1997) and Brandimarte (1993), both of them are widely 
used for FJSP. For the sake of simplicity, the original names of these benchmarks 
are used in this paper. Some supplementary data for extension are shown in Table 3. 
The intervals in rows 1–4 may be different in different levels (worker set), and the 
value of variables in rows 5–8 are related to diverse machines. Besides, the removal 
volume of materials and CE coefficient of the tool are given in the last two rows 
respectively, and the values are related to various operations. All the parameters in 
column 1 mentioned in Table 3 are distributed according to the given intervals and 
distribution mode (normal distribution and uniform distribution). The total number 
of workers is generated by [m × 0.6] while the partial worker flexible is considered in 
this paper, namely, some machines cannot be operated by an apart of workers.

The emission factors used in this paper can be obtained according to 2050 China 
energy and CO2 emission report (China Energy and CO2 Emission Research Group 
2009) and China energy conservation and emission reduction development report 
(China Energy Saving and Investment Company 2009). For example, the emission 
factors of coolant (EFc), lubricant oil (EFl) and electric energy (EFe) are 3.782, 
0.469 and 2.41.

4.2.3 � Parameters setting

In MA, there are four critical parameters, i.e., population size (PS), crossover rate 
(CR), mutation rate (MR) and neighborhood search rate (NR). To obtain the best 
combination of these parameters in our algorithm, The Taguchi method of DOE 
(Montgomery 2008) is used with instance mk04. Different levels for each parameter 
are listed in Table 4 and the combinations are shown in Table 5. For each parameter 
combination, the iteration index is 100 and the proposed MA runs 10 times indepen-
dently. One of the proposed metrics, i.e., Rnd, is adopted to measure each combina-
tion. We first obtain the exact Pareto front and individuals in the elite pool of all 
experiments (DT), and the Pareto front (DE) amongst DT can be calculated with DT 
as the reference front. Finally, the average percentage of Pareto front ( R ) in DE for 
each experiment is used to measure the effectiveness of various combinations.

Table 3   Parameters for extension

Parameter Level 1 Level 2 Level 3

Basic efficiency (ekr) U[0.8,1.2] U[0.9,1.2] U[1.0,1.2]
Basic efficiency (eir) U[0.8,1.2] U[0.9,1.2] U[1.0,1.2]
Learning coefficient (br) U[− 0.2,− 0.3] U[− 0.15,− 0.25] U[− 0.1,− 0.2]
Cost of worker (W) N(120,10^2) N(100,10^2) N(80,10^2)
Limiting efficiency (dk) U[0.5,0.6] U[0.5,0.6] U[0.5,0.6]
CE coefficient of auxiliary materials (μa) U[0.06,0.1] U[0.06,0.1] U[0.06,0.1]
CE in the idle state (es k) U[1,4] U[1,4] U[1,4]
Special energy consumption (SEC) N(5,1^2) N(5,1^2) N(5,1^2)
Removal volume of materials (V) N(320,80^2) N(320,80^2) N(320,80^2)
CE coefficient of tool (μt) U[0.01,0.2] U[0.01,0.2] U[0.01,0.2]
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Based on the results in Table 5, the trend of four critical parameters is illustrated 
in Fig. 5. It can be seen that different combinations of the four parameters have vari-
ous influences on the final results. The level with the maximum Rnd is the best one 
for every factor. According to Fig. 5, we choose PS = 180, CR = 0.7, MR = 0.1, and 
NR = 0.3 for the following experiment parameters of the LFJSP-WL benchmarks.

4.3 � Effectiveness of the elite pool

A comparison experiment is executed to test the effectiveness of the elite pool pro-
posed in our paper. To ensure fairness, all parameters and operators of MA are 
consistent, the only difference is that one algorithm with the elite pool, i.e. MA, 
while another modified memetic algorithm without the elite pool, i.e. MMA. The 
parameter settings are following the results of Taguchi method and set the iteration 
index as 100. After 10 independent runs, MA gets the corresponding non-dominated 

Table 4   Parameter level Parameters Factor levels

1 2 3 4

PS 60 120 180 240
CR 0.2 0.5 0.7 0.9
MR 0.05 0.1 0.15 0.2
NR 0.1 0.15 0.25 0.3

Table 5   Results of parameter 
combination

Index Four parameters Rnd (%)

PS CR MR NR

1 1 1 1 1 0.00000
2 1 2 2 2 2.73038
3 1 3 3 3 11.2628
4 1 4 4 4 5.29010
5 2 1 2 3 3.92491
6 2 2 1 4 7.33788
7 2 3 4 1 2.04778
8 2 4 3 2 0.68259
9 3 1 3 4 8.53242
10 3 2 4 3 5.29010
11 3 3 1 2 4.26621
12 3 4 2 1 2.38908
13 4 1 4 2 13.1399
14 4 2 3 1 2.21843
15 4 3 2 4 17.5768
16 4 4 1 3 13.3106
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solutions and the solutions in the elite pool respectively, while MMA obtains the 
corresponding non-dominated solutions. Then both algorithms integrated the 
obtained solutions as a comparison population, one metric (i.e. SC) is adopted to 
measure the results.

According to the results shown in Table 6. The C(B,A) are all equal to 0 in all 
problems which states that all solutions obtained by MA cannot be dominated by 
any solution obtained by MMA. In addition, the value of C(A,B) in each problem 
is greater than 0 expressing that some solutions obtained by MMA are dominated 
by at least one solution obtained by MA. What is more, the C(A,B) in the problem 
la14 is approximately equals to 0.5 which indicates that nearly half of the solutions 
obtained by MMA are dominated. Based on the above discussion, the effectiveness 
of the elite pool can be verified.

Fig. 5   The factor level trend of PS, CR, MR, NR 

Table 6   Effectiveness test of elite pool

Problem Size A: MA B: MMA Problem Size A: MA B: MMA
n × m × w C(A,B) C(B,A) n × m × w C(A,B) C(B,A)

mk01 10 × 6 × 4 0.084211 0.000000 la02 10 × 5 × 3 0.028571 0.000000
mk02 10 × 6 × 4 0.024590 0.000000 la14 20 × 5 × 3 0.483333 0.000000
mk03 15 × 8 × 5 0.228261 0.000000 la15 20 × 5 × 3 0.147239 0.000000
mk04 15 × 8 × 5 0.102273 0.000000 la21 15 × 10 × 6 0.100000 0.000000
mk05 15 × 4 × 3 0.483333 0.000000 la22 15 × 10 × 6 0.144330 0.000000
mk06 10 × 15 × 9 0.094737 0.000000 la29 20 × 10 × 6 0.000000 0.000000
mk07 20 × 5 × 3 0.475862 0.000000 la30 20 × 10 × 6 0.095892 0.000000
mk08 20 × 10 × 6 0.090047 0.000000 la31 30 × 10 × 6 0.157360 0.000000
mk09 20 × 10 × 6 0.097561 0.000000 la32 30 × 10 × 6 0.057971 0.000000
mk10 20 × 15 × 9 0.062016 0.000000 la39 15 × 15 × 9 0.081395 0.000000
la01 10 × 5 × 3 0.317071 0.000000 la40 15 × 15 × 9 0.158730 0.000000
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4.4 � Comparison of two initialization methods

Two initialization methods are constructed in this paper. One introduced in Sect. 3 
(method1), another method modified from Zhang et al. (2011) which includes global 
selection, local selection and random selection (method2). To obtain the best effec-
tiveness of MA, a comparison experiment between method1 and method2 is carried 
out, the algorithm settings except the initialization method are identical.

From the comparison results listed in Table 7, method1 outperforms method2 in 
15 problems out of 22 problems. Especially, C(B,A) = 0 in la21, la22, la29 and la31 
problems, which shows that all solutions obtained by method1 cannot be dominated 
by solutions obtained by method2 in these problems. Overall, method 1 behaves bet-
ter than method 2.

4.5 � Comparison of NSGA‑II, NNIA, NNIALS and MA

To make a more detailed performance analysis with respect to MA towards LFJSP-
WL, we compare MA with three other commonly used multi-objective algorithms, 
namely, NSGA-II (Deb et al. 2002), NNIA (Gong et al. 2008) and NNIALS (NNIA 
combines our proposed local search). IGD, SC and Rnd are used to evaluate the per-
formance of different algorithms. All algorithms have the same parameters and set 
the iteration index as 100. After each algorithm runs 10 times independently, the 
comparison results are listed in Tables 8 and 9.

In Table 8, the value of C(A,B) listed in the third column outperforms the value 
of C(B,A) listed in the fourth column significantly for all test problems, which 
means that MA derives better solutions than NSGA-II. With regard to the compari-
son of MA and NNIA, MA also shows great superiority to NNIA in the light of the 
values listed in the fifth column and sixth column for all test problems. For the last 
two columns expresses the comparison of MA and NNIALS, we can observe that 
MA obtains better solutions in 21 test problems out of 22 test problems.

Table 7   Comparison of initialization methods

Problem Size A: method1 B: method2 Problem Size A: method1 B: method2
n × m × w C(A,B) C(B,A) n × m × w C(A,B) C(B,A)

mk01 10 × 6 × 4 0.671875 0.151515 la02 10 × 5 × 3 0.867347 0.045455
mk02 10 × 6 × 4 0.704918 0.113208 la14 20 × 5 × 3 0.821429 0.044444
mk03 15 × 8 × 5 0.142857 0.761905 la15 20 × 5 × 3 0.288889 0.400000
mk04 15 × 8 × 5 0.120690 0.850746 la21 15 × 10 × 6 0.936170 0.000000
mk05 15 × 4 × 3 0.136842 0.520000 la22 15 × 10 × 6 1.000000 0.000000
mk06 10 × 15 × 9 0.523810 0.044444 la29 20 × 10 × 6 0.990909 0.000000
mk07 20 × 5 × 3 0.448598 0.373333 la30 20 × 10 × 6 0.671875 0.120690
mk08 20 × 10 × 6 0.386364 0.287671 la31 30 × 10 × 6 0.888889 0.000000
mk09 20 × 10 × 6 0.118644 0.630137 la32 30 × 10 × 6 0.990000 0.016129
mk10 20 × 15 × 9 0.190476 0.276923 la39 15 × 15 × 9 0.250000 0.323529
la01 10 × 5 × 3 0.876712 0.098361 la40 15 × 15 × 9 0.773333 0.051724
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In Table 9, the Rnd and IGD comparison of the four algorithms are presented. In 
terms of Rnd, MA outperforms the other three algorithms by a large margin for all 22 
test problems. Besides, MA obtains all better values of IGD compared to NSGA-II 
and NNIA. It can be found that 21 test problems out of 22 test problems MA is supe-
rior to NNIALS. In summary, MA shows its effectiveness for the proposed LFJSP-
WL, while the values of NNIALS also indicates the validity of our proposed local 
search in a sense.

5 � Conclusions and future studies

This paper put forward a novel LFJSP-WL model that addresses productivity (i.e. 
makespan), environmental impact (i.e. total CE) and economic influence (i.e. total 
cost of workers). The CE of the model consists of four categories, namely, the 
energy consumption of processing, the consumption of auxiliary materials, the 
tool wear and the energy consumption in the stand-by stage of the machine tool. 
An effective memetic algorithm is tailored to solve this problem, some useful 

Table 8   Set Coverage comparison of MA, NSGA-II, NNIA and NNIALS

Problem Size A: MA B:NSGA-II A: MA B: NNIA A: MA B: NNIALS
n × m × w C(A,B) C(B,A) C(A,B) C(B,A) C(A,B) C(B,A)

mk01 10 × 6 × 4 1.000000 0.000000 0.941177 0.000000 0.757009 0.000000
mk02 10 × 6 × 4 1.000000 0.000000 0.935484 0.000000 0.831325 0.014599
mk03 15 × 8 × 5 1.000000 0.000000 1.000000 0.000000 0.871795 0.000000
mk04 15 × 8 × 5 1.000000 0.000000 0.902985 0.000000 0.6111111 0.000000
mk05 15 × 4 × 3 1.000000 0.000000 0.988304 0.000000 0.828221 0.010870
mk06 10 × 15 × 9 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000
mk07 20 × 5 × 3 0.966667 0.006579 1.000000 0.000000 0.803922 0.052632
mk08 20 × 10 × 6 1.000000 0.000000 1.000000 0.000000 0.912500 0.000000
mk09 20 × 10 × 6 1.000000 0.000000 1.000000 0.000000 0.904762 0.000000
mk10 20 × 15 × 9 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000
la01 10 × 5 × 3 1.000000 0.000000 0.765101 0.038462 0.366972 0.384615
la02 10 × 5 × 3 1.000000 0.000000 0.990991 0.000000 0.551724 0.054795
la14 20 × 5 × 3 1.000000 0.000000 1.000000 0.000000 0.566929 0.095238
la15 20 × 5 × 3 1.000000 0.000000 0.894309 0.000000 0.625000 0.052941
la21 15 × 10 × 6 1.000000 0.000000 1.000000 0.000000 0.772727 0.000000
la22 15 × 10 × 6 1.000000 0.000000 1.000000 0.000000 0.605634 0.000000
la29 20 × 10 × 6 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000
la30 20 × 10 × 6 1.000000 0.000000 1.000000 0.000000 0.618421 0.011834
la31 30 × 10 × 6 1.000000 0.000000 0.906250 0.000000 0.934066 0.004975
la32 30 × 10 × 6 1.000000 0.000000 1.000000 0.000000 0.905882 0.012903
la39 15 × 15 × 9 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000
la40 15 × 15 × 9 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000
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initialization methods, crossover operators and mutation operators are presented, 
and the variable neighborhood search with four neighborhood structures is pro-
posed to strengthen the local search capacity. Besides, the elite pool is adopted 
to reserve elite solutions along with evolution. To evaluate the effectiveness of 
MA, we constructed 22 benchmarks based on the classic FJSP benchmarks from 
Dauzèrepérès and Paulli (1997) and (Brandimarte (1993)). The experimental 
results show that the proposed LFJSP-WL model can be solved effectively by 
MA.

In the future, some limitations in this paper can be further studied. First, con-
sider the CE of inventory, the time of transportation and the workpiece clamping 
time. Second, address the uncertain events, for example, the machine breakdown, 
the arrival of new jobs and the cancellation of the order. Finally, the combination 
of learning and forgetting effects would be an interesting topic.
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Table 9   Rnd and IGD comparison of MA, NSGA-II, NNIA and NNIALS

Problem Size MA NSGA-II NNIA NNIALS

n × m × w Rnd IGD Rnd IGD Rnd IGD Rnd IGD

mk01 10 × 6 × 4 0.9000 0.0360 0.0000 0.2558 0.0000 0.2066 0.1000 0.1326
mk02 10 × 6 × 4 0.9581 0.0064 0.0000 0.2992 0. 0000 0.2637 0.0419 0.1390
mk03 15 × 8 × 5 0.9802 0.0098 0. 0000 0.4290 0. 0000 0.5036 0.0198 0.2344
mk04 15 × 8 × 5 0.9325 0.0425 0. 0000 0.4313 0. 0000 0.3198 0.0675 0.2129
mk05 15 × 4 × 3 0.9358 0.0074 0. 0000 0.2014 0. 0000 0.1781 0.0642 0.0950
mk06 10 × 15 × 9 1.0000 0.0000 0. 0000 0.5626 0. 0000 0.6018 0.0000 0.2817
mk07 20 × 5 × 3 0.9375 0.0136 0.0057 0.2177 0. 0000 0.2156 0.0568 0.1223
mk08 20 × 10 × 6 0.9849 0.0044 0. 0000 0.4536 0. 0000 0.3832 0.0151 0.3383
mk09 20 × 10 × 6 0.9771 0.0046 0. 0000 0.2931 0. 0000 0.2759 0.0229 0.2127
mk10 20 × 15 × 9 1.0000 0.0000 0. 0000 0.5174 0. 0000 0.5070 0.0000 0.3159
la01 10 × 5 × 3 0.6975 0.0664 0. 0000 0.2258 0.0126 0.1629 0.2899 0.0636
la02 10 × 5 × 3 0.8259 0.0538 0. 0000 0.3828 0. 0000 0.3371 0.1741 0.0737
la14 20 × 5 × 3 0.8401 0.0236 0. 0000 0.3749 0. 0000 0.1965 0.1599 0.0794
la15 20 × 5 × 3 0.9177 0.0223 0. 0000 0.4384 0. 0000 0.1927 0.0823 0.1440
la21 15 × 10 × 6 0.9660 0.0200 0. 0000 0.5975 0. 0000 0.3956 0.0340 0.2552
la22 15 × 10 × 6 0.9097 0.0524 0. 0000 0.5159 0. 0000 0.4172 0.0903 0.1634
la29 20 × 10 × 6 1.0000 0.0000 0. 0000 0.5138 0. 0000 0.4526 0.0000 0.2992
la30 20 × 10 × 6 0.9305 0.0224 0. 0000 0.4165 0. 0000 0.3333 0.0695 0.1803
la31 30 × 10 × 6 0.9596 0.0096 0. 0000 0.2828 0.0270 0.1504 0.0135 0.1630
la32 30 × 10 × 6 0.9780 0.1630 0. 0000 0.4636 0. 0000 0.3987 0.0220 0.2471
la39 15 × 15 × 9 1.0000 0.0000 0. 0000 0.9602 0. 0000 0.7799 0.0000 0.5055
la40 15 × 15 × 9 1.0000 0.0000 0. 0000 0.7417 0. 0000 0.6644 0.0000 0.3951
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