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Abstract
We investigate C1 finite element methods for one dimensional elliptic distrib-
uted optimal control problems with pointwise constraints on the derivative of the 
state formulated as fourth order variational inequalities for the state variable. For 
the problem with Dirichlet boundary conditions, we use an existing H

5

2
−� regular-

ity result for the optimal state to derive O(h
1

2
−�
) convergence for the approxima-

tion of the optimal state in the H2 norm. For the problem with mixed Dirichlet and 
Neumann boundary conditions, we show that the optimal state belongs to H3 under 
appropriate assumptions on the data and obtain O(h) convergence for the approxi-
mation of the optimal state in the H2 norm.

Keywords Elliptic distributed optimal control problems · Pointwise derivative 
constraints · Cubic Hermite element

1 Introduction

Let I be the interval (−1, 1) and the function J ∶ L2(I) × L2(I) ⟶ ℝ be defined by
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where yd ∈ L2(I) and � is a positive constant.
The optimal control problem is to

where (y, u) ∈ H2(I) × L2(I) belongs to � if and only if

together with the following boundary conditions for y: 

or

Remark 1.1 Throughout this paper we will follow standard notation for function 
spaces and norms that can be found, for example, in Ciarlet (1978), Brenner and 
Scott (2008) and Adams and Fournier (2003).

For the problem with the Dirichlet boundary conditions (1.5a), we assume that

For the problem with the mixed boundary conditions (1.5b), we assume that

Remark 1.2 In the case of Dirichlet boundary conditions, clearly we need ∫
I
� dx ≥ 0 

since ∫
I
y�dx = 0 and y′ ≤ � . However ∫

I
� dx = 0 implies ∫

I
(y� − �)dx = 0 , which 

together with y′ ≤ � leads to y� = � . Hence in this case � is a singleton and the 
optimal control problem becomes trivial.

The optimal control problem with the Dirichlet boundary conditions (1.5a) is a 
one dimensional analog of the optimal control problems considered in Casas and 
Bonnans (1988), Casas and Fernández (1993), Deckelnick et al. (2009), Ortner and 
Wollner (2011) and Wollner (2012) on smooth or convex domains. In Casas and 
Bonnans (1988) and Casas and Fernández (1993), first order optimality conditions 
were derived for a semilinear elliptic optimization problem with pointwise gradient 
constraints on smooth domains, where the solution of the state equation is in W1,∞ 

(1.1)J(y, u) =
1

2

�
‖y − yd‖2L2(I) + �‖u‖2

L2(I)

�
,

(1.2)find (ȳ, ū) = argmin
(y,u)∈�

J(y, u),

(1.3)−y�� =u + f on I,

(1.4)y′ ≤� on I,

(1.5a)y(−1) = y(1) = 0,

(1.5b)y(−1) = y�(1) = 0.

(1.6)f ∈ H
1

2
−𝜖
(I), 𝜓 ∈ H

3

2
−𝜖
(I) ∀ 𝜖 > 0 and ∫I

𝜓 dx > 0.

(1.7)f ∈ H1(I), � ∈ H2(I) and �(1) ≥ 0.
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for any feasible control. These results were extended to non-smooth domains in Wol-
lner (2012). On the other hand higher dimensional analogs of the optimal control 
problem with the mixed boundary conditions (1.5b) are absent from the literature.

Finite element error analysis for the problem with the Dirichlet boundary con-
ditions was first carried out in Deckelnick et al. (2009) by a mixed formulation of 
the elliptic equation and a variational discretization of the control, and in Ortner 
and Wollner (2011) by a standard H1-conforming discretization with a possible non-
variational control discretization.

The goal of this paper is to show that it is also possible to solve the one dimen-
sional optimal control problem with either boundary conditions as a fourth order 
variational inequality for the state variable by a C1 finite element method. We note 
that such an approach has been carried out for elliptic distributed optimal control 
problems with pointwise state constraints in, for example, the papers (Liu et  al. 
2009; Brenner et al. 2013, 2014, 2016, 2018, 2018, 2019). The analysis in this paper 
extends the general framework in Brenner and Sung (2017) to the one dimensional 
problem defined by (1.1)–(1.5).

The rest of the paper is organized as follows. We collect information on the opti-
mal control problem in Sect. 2. The construction and analysis of the discrete prob-
lem are treated in Sect.  3, followed by numerical results in Sect.  4. We end with 
some concluding remarks in Sect.  5. The appendices contain derivations of the 
Karush–Kuhn–Tucker conditions that appear in Sect. 2.

Throughout the paper we will use C (with or without subscript) to denote a 
generic positive constant independent of the mesh sizes.

2  The continuous problem

Let the space V be defined by 

and

The minimization problem defined by (1.1)–(1.5) can be reformulated as the fol-
lowing problem that only involves y:

where

Note that the closed convex subset K of the Hilbert space V is nonempty for 
either boundary conditions. In the case of the Dirichlet boundary conditions, the 

(2.1a)
V = {v ∈ H2(I) ∶ v(−1) = v(1) = 0} for the boundary conditions (1.5a),

(2.1b)
V = {v ∈ H2(I) ∶ v(−1) = v�(1) = 0} for the boundary conditions (1.5b).

(2.2)Find ȳ = argmin
y∈K

1

2

�
‖y − yd‖2L2(I) + 𝛽‖y�� + f‖2

L2(I)

�
,

(2.3)K = {y ∈ V ∶ y� ≤ � on I}.
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function y(x) = ∫ x

−1
(�(t) − �)dt belongs to K if we take � to be 1

2
∫
I
𝜓 dx (> 0) . 

Similarly, in the case of the mixed boundary conditions, the function 
y(x) = ∫ x

−1
[�(t) − � sin[(�∕4)(1 + t)]dt belongs to K if we take � to be �(1) (≥ 0).

According to the standard theory in Ekeland and Témam (1999), there is a unique 
solution ȳ of (2.2)–(2.3) characterized by the fourth order variational inequality

We can express (2.4) in the form of

where

2.1  The Karush–Kuhn–Tucker conditions

The solution of (2.4) is characterized by the following conditions:

where

Note that (2.8) is equivalent to the statement that � is supported on the active set

for the derivative constraint (1.4).
We can also express (2.7) as

The Karush–Kuhn–Tucker (KKT) conditions (2.7)–(2.9) can be derived from the 
general theory on Lagrange multipliers that can be found, for example, in Luen-
berger (1969) and Ito and Kunisch (2008). For the simple one dimensional problem 
here, they can also be derived directly (cf. “Appendix A” for the Dirichlet boundary 
conditions and “Appendix B” for the mixed boundary conditions).

(2.4)�I

(ȳ − yd)(y − ȳ)dx + 𝛽 �I

(ȳ�� + f )(y�� − ȳ��)dx ≥ 0 ∀ y ∈ K.

(2.5)a(ȳ, y − ȳ) ≥ �I

yd(y − ȳ)dx − 𝛽 �I

f (y�� − ȳ��)dx ∀ y ∈ K,

(2.6)a(y, z) = � ∫I

y��z��dx + ∫I

yz dx.

(2.7)∫I

(ȳ − yd)z dx + 𝛽 ∫I

(ȳ�� + f )z�� dx + ∫
[−1,1]

z�d𝜇 =0 ∀ z ∈ V ,

(2.8)∫
[−1,1]

(ȳ� − 𝜓)d𝜇 =0,

(2.9)� is a nonnegative finite Borel measure on [−1, 1].

(2.10)A = {x ∈ [−1, 1] ∶ ȳ�(x) = 𝜓(x)}

(2.11)a(ȳ, z) − ∫I

ydz dx + 𝛽 ∫I

fz��dx = −∫
[−1,1]

z�d𝜇 ∀ z ∈ V .



1993

1 3

Finite element methods for one dimensional elliptic distributed…

Remark 2.1 In the case of the mixed boundary conditions, additional information on 
the structure of � [cf. (2.27)] is obtained in “Appendix B”.

2.2  Dirichlet boundary conditions

We will use (2.7) to obtain additional regularity for ȳ that matches the regular-
ity result in Ortner and Wollner (2011). The following lemmas are useful for this 
purpose.

Lemma 2.2 We have

Proof Observe that

if g ∈ L2(I) , and

if g ∈ H1
0
(I).

Recall that f ∈ H
1

2
−�
(I) by the assumption in (1.6). The estimate (2.12) follows 

from (2.13), (2.14) and bilinear interpolation (cf. Bergh and Löfström 1976, Theo-
rem 4.4.1), together with the following interpolations of Sobolev spaces (cf. Lions 
and Magenes 1972, Sections 1.9 and 1.11):

  ◻

Note that the map z → z′′ is an isomorphism between V [given by (2.1a)] and 
L2(I) . Therefore, by the Riesz representation theorem, for any � ∈ V � we can 
define p ∈ L2(I) by

Lemma 2.3 Given any s ∈ [0, 1] , the function p defined by (2.15) belongs to H1−s(I) 
provided that

(2.12)�I

fv� dx ≤ C
�
|f |

H
1
2
−�
(I)
|v|

H
1
2
+�
(I)

∀ v ∈ H1(I) and � ∈ (0, 1∕2).

(2.13)�I

gv�dx ≤‖g‖L2(I)�v�H1(I) ∀ v ∈ H1(I)

(2.14)�I

gv�dx ≤�g�H1(I)‖v‖L2(I) ∀ v ∈ H1(I)

[L2(I),H
1
0
(I)] 1

2
−�

= H
1

2
−�

0
(I) = H

1

2
−�
(I) and

[H1(I), L2(I)] 1

2
−�

= H
1

2
+�
(I).

(2.15)∫I

pz�� dx = �(z) ∀ z ∈ V .
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Proof On one hand, if � ∈ (H2(I))� , we have

On the other hand, if � ∈ (H1(I))� , then the solution p of (2.15) can also be defined 
by the conditions that p ∈ H1

0
(I) and

Hence in this case we have

The estimate (2.16) follows from (2.17), (2.18) and the following interpolations of 
Sobolev spaces (cf. Lions and Magenes 1972, Sections 1.6 and 1.9):

and

  ◻

Theorem 2.4 The solution ȳ of (2.4) belongs to H
5

2
−�
(I) for all � ∈ (0, 1∕2).

Proof Note that, by the Sobolev inequality (Adams and Fournier 2003),

Let p ∈ L2(I) be defined by

where V is given by (2.1a). It follows from (2.12), (2.19), (2.20) and Lemma  2.3 
(with s = 1

2
+ � ) that

Comparing (2.7) and (2.20), we see that

and hence ȳ�� = p , which together with (2.21) concludes the proof.   ◻

(2.16)�(z) ≤ C|z|H1+s(I) ∀ z ∈ H1+s(I).

(2.17)‖p‖L2(I) ≤ ‖�‖(H2(I))� .

∫I

p�q�dx = −�(q) ∀ q ∈ H1
0
(I).

(2.18)�p�H1(I) ≤ ‖�‖(H1(I))� .

[L2(I),H
1(I)]1−s = H1−s(I)

[(H2(I))�, (H1(I))�]1−s = ([H1(I),H2(I)]s)
� = (H1+s(I))�.

(2.19)�I

v d� ≤ C
�
|v|

H
1
2
+�
(I)

∀ v ∈ H1(I) and � ∈ (0, 1∕2).

(2.20)𝛽 ∫I

pz�� dx = ∫I

(yd − ȳ)z dx − 𝛽 ∫I

fz�� dx − ∫
[−1,1]

z�d𝜇 ∀ z ∈ V ,

(2.21)p belongs to H
1

2
−�
(I) for all � ∈ (0, 1∕2).

∫I

ȳ��z��dx = ∫I

pz�� dx ∀ z ∈ V
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Corollary 2.5 We have ū = −ȳ�� − f ∈ H
1

2
−𝜖
(I) for all � ∈ (0, 1∕2).

Example 2.6 We take � = � = 1 and the exact solution

It follows from a direct calculation that

and

It is straightforward to check that ȳ belongs to K, A = {0} , and for z ∈ V ,

where

Now we take

so that f ∈ H
1

2
−�
(I) for all 𝜖 > 0 and

Putting (2.23) and (2.24) together we have

(2.22)
ȳ(x) =

{
−

1

2
(x + 1) +

1

2
(x + 1)3 +

1

12
(1 − x2)3 − 1 < x ≤ 0

−
1

2
(x − 1) +

1

2
(x − 1)3 +

1

12
(1 − x2)3 0 ≤ x < 1

.

ȳ�(x) =

{
−

1

2
+

3

2
(x + 1)2 −

1

2
x(1 − x2)2 − 1 < x ≤ 0

−
1

2
+

3

2
(x − 1)2 −

1

2
x(1 − x2)2 0 ≤ x < 1

,

ȳ��(x) =

{
3(x + 1) −

1

2
(1 − 6x2 + 5x4) − 1 < x < 0

3(x − 1) −
1

2
(1 − 6x2 + 5x4) 0 < x < 1

.

(2.23)

∫I

ȳ��z��dx = ∫
0

−1

3(x + 1)z��dx + ∫
1

0

3(x − 1)z��dx −
1

2 ∫I

(1 − 6x2 + 5x4)z��dx

= 6z�(0) + ∫I

gz dx,

g(x) = 6(1 − 5x2).

f (x) =

{
7(x2 − 1) − 1 < x < 0

0 0 < x < 1

(2.24)∫I

fz��dx = 7∫
0

−1

(x2 − 1)z��dx = −7z�(0) + 14∫
0

−1

z dx ∀ z ∈ V .

(2.25)−∫I

(14𝜒(−1,0) + g)z dx + ∫I

(ȳ�� + f )z��dx + z�(0) = 0 ∀ z ∈ V ,
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where

is the characteristic function of the set S, and the KKT conditions (2.7)–(2.9) are sat-
isfied (with � being the Dirac point measure at the origin) if we choose

Remark 2.7 It follows from Example  2.6 that the regularities of ȳ and ū stated in 
Theorem 2.4 and Corollary 2.5 are sharp under the assumptions on the data in (1.6).

2.3  Mixed boundary conditions

In this case the nonnegative Borel measure � on [−1, 1] satisfies [cf. (B.8)–(B.10)]

where � ∈ L2(I) is nonnegative, � is a nonnegative number and �−1 is the Dirac point 
measure at −1.

Theorem 2.8 The solution ȳ of (2.4) belongs to H3(I).

Proof Recall that f ∈ H1(I) by the assumption in (1.7). After substituting (2.27) into 
(2.7) and carrying out integration by parts, we have

where V is given by (2.1b).
Let H1(I;1) = {v ∈ H1(I) ∶ v(1) = 0} and p ∈ H1(I;1) be defined by

where Φ ∈ H1(I;1) is defined by

Note that (2.29) is the weak form of the two-point boundary value problem

and hence we can conclude from elliptic regularity that

�S(x) =

{
1 if x ∈ S

0 if x ∉ S

(2.26)yd = ȳ + 14𝜒(−1,0) + g,

(2.27)d� = �[� dx + �d�−1],

(2.28)
𝛽 ∫I

ȳ��z�� dx =∫I

(yd − ȳ)z dx + 𝛽 ∫I

(f � − 𝜌)z�dx

+ 𝛽[f (−1) − 𝛾]z�(−1) ∀ z ∈ V ,

(2.29)∫I

p�q�dx = − ∫I

Φq dx + ∫I

(f � − �)qdx

+ [f (−1) − �]q(−1) ∀ q ∈ H1(I;1),

(2.30)𝛽Φ� = yd − ȳ.

−p�� = −Φ + f � − � in I and p�(−1) = � − f (−1), p(1) = 0,
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Finally (2.28)–(2.30) imply

and hence ȳ�� = p� because the map z → z′′ is also an isomorphism between V 
(defined by (1.5b)) and L2(I) . The theorem then follows from (2.31).   ◻

Corollary 2.9 We have ū = −ȳ�� − f ∈ H1(I).

Example 2.10 We take � = � = 1 , f = 0 and the exact solution is given by

where

We have A = [−1, 1∕3] , p ∈ H2(I),

If we choose the function Φ by

then Φ ∈ H1(I;1) by (2.34) and (2.35), and

Therefore (2.29) is valid if we take

Finally we define yd according to (2.30) so that

Putting (2.32) and (2.36)–(2.38) together, we see that the KKT conditions (2.7)–
(2.9) are valid provided we define the Borel measure � by

(2.31)p ∈ H2(I).

∫I

ȳ��z��dx = ∫I

p�z�� dx ∀ z ∈ V

(2.32)ȳ(x) = ∫
x

−1

p(t)dt,

(2.33)p(x) =

{
1 − 1 < x ≤ 1

3

sin
[
𝜋

4
(9x − 1)

]
1

3
≤ x < 1

.

(2.34)p��
+
(1∕3) = −(9�∕4)2 and p(1) = p��(1) = 0.

(2.35)Φ(x) =

{
−(9�∕4)2 − 1 ≤ x ≤ 1

3

p��(x)
1

3
≤ x ≤ 1

,

(2.36)∫I

p�q�dx = −∫I

Φq dx − ∫
1

3

−1

(9�∕4)2q dx ∀ q ∈ H1(I;1).

(2.37)� = (9�∕4)2�[−1,1∕3] and � = 0.

(2.38)yd(x) =

{
ȳ(x) − 1 < x <

1

3

ȳ(x) + p���(x)
1

3
< x < 1

.
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3  The discrete problem

Let Th be a quasi-uniform partition of I and Vh ⊂ V  be the cubic Hermite finite 
element space (Ciarlet 1978) associated with Th . The discrete problem is to

where

and Ph is the nodal interpolation operator for the P1 finite element space (Ciarlet 
1978; Brenner and Scott 2008) associated with Th . In other words the derivative con-
straint (1.4) is only imposed at the grid points.

The nodal interpolation operator from C1(Ī) onto Vh will be denoted by Πh . 
Note that

In particular, the closed convex set Kh is nonempty.
The minimization problem (3.1)–(3.2) has a unique solution characterized by 

the discrete variational inequality

which can also be written as

We begin the error analysis by recalling some properties of Ph and Πh.
For 0 ≤ s ≤ 1 ≤ t ≤ 2 , we have an error estimate

that follows from standard error estimates for Ph (cf. Ciarlet 1978; Brenner and Scott 
2008) and interpolation between Sobolev spaces (Adams and Fournier 2003).

For 0 ≤ s ≤ 1 and 2 ≤ t ≤ 4 , we also have the estimates

d� = (9�∕4)2�[−1,1∕3]dx.

(3.1)find ȳh = argmin
yh∈Kh

1

2

�
‖yh − yd‖2L2(I) + 𝛽‖y��

h
+ f‖2

L2(I)

�
,

(3.2)Kh = {y ∈ Vh ∶ Phy
� ≤ Ph� on [−1, 1]},

(3.3)Πhy ∈ Kh ∀ y ∈ K.

�I

(ȳh − yd)(yh − ȳh)dx + 𝛽 �I

(ȳ��
h
+ f )(y��

h
− ȳ��

h
)dx ≥ 0 ∀ yh ∈ Kh,

(3.4)a(ȳh, yh − ȳh) ≥ �I

yd(yh − ȳh)dx − 𝛽 �I

f (y��
h
− ȳ��

h
)dx ∀ yh ∈ Kh.

(3.5)‖� − Ph�‖Hs(I) ≤ Cht−s�� �Ht(I) ∀ � ∈ Ht(I)

(3.6)‖� − Πh�‖L2(I) + h2�� − Πh� �H2(I) ≤Cht�� �Ht(I) ∀ � ∈ Hs(I),

(3.7)|� − Πh� |H1+s(I) ≤Cht−s−1|� |Ht(I) ∀ � ∈ Hs(I),
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that follow from standard error estimates for Πh (cf. Ciarlet 1978; Brenner and Scott 
2008) and interpolation between Sobolev spaces.

3.1  An intermediate error estimate

Let the energy norm ‖ ⋅ ‖a be defined by

We have, by a Poincaré−Friedrichs inequality (Nečas 2012),

Observe that (3.4), (3.8) and the Cauchy–Schwarz inequality imply

and we have, by (2.8)–(2.11) and (3.2),

for all yh ∈ Kh.
It follows from (3.10) and (3.11) that

(3.8)‖v‖2
a
= a(v, v) = ‖v‖2

L2(I)
+ ��v�2

H2(I)
.

(3.9)C1‖v‖a ≤ ‖v‖H2(I) ≤ C2‖v‖a ∀ v ∈ V .

(3.10)

‖ȳ − ȳh‖2a = a(ȳ − ȳh, ȳ − yh) + a(ȳ − ȳh, yh − ȳh)

≤ 1

2
‖ȳ − ȳh‖2a +

1

2
‖ȳ − yh‖2a + a(ȳ, yh − ȳh)

− �I

yd(yh − ȳh)dx + 𝛽 �I

f (y��
h
− ȳ��

h
)dx ∀ yh ∈ Kh,

(3.11)

a(ȳ, yh − ȳh) − �I

yd(yh − ȳh)dx + 𝛽 �I

f (y��
h
− ȳ��

h
)dx

= �
[−1,1]

(ȳ�
h
− y�

h
)d𝜇

= �
[−1,1]

(ȳ�
h
− Phȳ

�

h
)d𝜇 + �

[−1,1]

(Phȳ
�

h
− Ph𝜓)d𝜇 + �

[−1,1]

(Ph𝜓 − 𝜓)d𝜇

+ �
[−1,1]

(𝜓 − ȳ�)d𝜇 + �
[−1,1]

(ȳ� − y�
h
)d𝜇,

≤ �
[−1,1]

(ȳ�
h
− Phȳ

�

h
)d𝜇 + �

[−1,1]

(Ph𝜓 − 𝜓)d𝜇 + �
[−1,1]

(ȳ� − y�
h
)d𝜇

(3.12)
‖ȳ − ȳh‖2a ≤ 2

�

�
[−1,1]

(ȳ�
h
− Phȳ

�

h
)d𝜇 + �

[−1,1]

(Ph𝜓 − 𝜓)d𝜇

�

+ inf
yh∈Kh

�
‖ȳ − yh‖2a + 2�

[−1,1]

(ȳ� − y�
h
)d𝜇

�
.
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3.2  Dirichlet boundary conditions

The following estimates will allow us to produce concrete error estimates from 
(3.12). First of all, we have

by (2.19), Theorem 2.4, (3.5) and (3.9); secondly

by the assumption on � in (1.6) and (3.5). Finally, in view of Theorem 2.4, (2.19), 
(3.6)–(3.7) and (3.9), we also have

Putting (3.3), (3.12)–(3.15) and Young’s inequality together, we arrive at the 
estimate

that is valid for any 𝜖 > 0 , which in turn implies the following result, where 
ūh = −ȳ��

h
− f  is the approximation for ū = −ȳ�� − f .

Theorem 3.1 Under the assumptions on the data in (1.6), we have

Remark 3.2 Numerical results in Sect. 4 indicate that |ȳ − ȳh|H1(I) is of higher order.

3.3  Mixed boundary conditions

In this case we have

by (2.27), Theorem 2.8, (3.5) and (3.9);

(3.13)

�
[−1,1]

(ȳ�
h
− Phȳ

�

h
)d𝜇 = �

[−1,1]

�
(ȳ�

h
− ȳ�) − Ph(ȳ

�

h
− ȳ�)

�
d𝜇 + �

[−1,1]

(ȳ� − Phȳ
�)d𝜇

≤ C
𝜖

�
h

1

2
−𝜖‖ȳ − ȳh‖a + h1−𝜖�y�

H
5
2
−𝜖
(I)

�
∀ 𝜖 > 0

(3.14)�
[−1,1]

(Ph𝜓 − 𝜓)d𝜇 ≤ C
𝜖
h1−𝜖|𝜓|

H
3
2
−𝜖
(I)

∀𝜖 > 0

(3.15)‖ȳ − Πhȳ‖2a + 2�
[−1,1]

�
ȳ� − (Πhȳ)

�
�
d𝜇 ≤ C

𝜖
h1−𝜖 ∀ 𝜖 > 0.

(3.16)‖ȳ − ȳh‖a ≤ C
𝜖
h

1

2
−𝜖

�ȳ − ȳh�H1(I) + ‖ū − ūh‖L2(I) ≤ C
𝜖
h

1

2
−𝜖

∀ 𝜖 > 0.

(3.17)

�
[−1,1]

(ȳ�
h
− Phȳ

�

h
)d𝜇 = 𝛽

�

�I

(ȳ�
h
− Phȳ

�

h
)𝜌 dx + 𝛾(ȳ�

h
− Phȳ

�

h
)(−1)

�

= 𝛽

�

�I

�
(ȳ�

h
− ȳ�) − Ph(ȳ

�

h
− ȳ�)

�
𝜌 dx + �I

(ȳ� − Phȳ
�)𝜌 dx

�

≤ C
�
h‖ȳ − ȳh‖a + h2�ȳ�H3(I)

�
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by the assumption on � in (1.7), (2.27) and (3.5); and

by (2.27), Theorem 2.8, (3.6), (3.7) and (3.9).
Combining (3.12) and (3.17)–(3.19) with Young’s inequality, we find

which immediately implies the following result, where ūh = −ȳ��
h
− f  is the approxi-

mation for ū = −ȳ�� − f .

Theorem 3.3 Under the assumptions on the data in (1.7), we have

Remark 3.4 Numerical results in Sect. 4 again indicate that |ȳ − ȳh|H1(I) is of higher 
order.

4  Numerical results

In the first experiment, we solved the problem in Example  2.6 on a uniform mesh 
with dyadic grid points. The errors of ȳh in various norms are reported in Table  1. 
We observed O(h2) convergence in | ⋅ |H2(I) and higher convergence in the lower order 
norms. This phenomenon can be justified as follows.

Note that for this example the first term on the right-hand side of (3.12) vanishes 
because � is supported at the origin which is one of the grid points where ȳh (resp. � ) 
and Phȳh (resp., Ph� ) assume identical values. The remaining term on the right-hand 
side of (3.12) is bounded by

(3.18)�
[−1,1]

(Ph� − �)d� = � �I

(Ph� − �)�dx ≤ Ch2

(3.19)‖ȳ − Πhȳ‖2a + 2�
[−1,1]

�
ȳ� − (Πhȳ)

�
�
d𝜇 ≤ Ch2

(3.20)‖ȳ − ȳh‖a ≤ Ch,

�ȳ − ȳh�H1(I) + ‖ū − ūh‖L2(I) ≤ Ch.

Table 1  Numerical results for Example 2.6 on meshes with dyadic grid points

DOFs ‖ȳ − ȳh‖L2(I) ‖ȳ − ȳh‖L∞(I) |ȳ − ȳh|H1(I) |ȳ − ȳh|H2(I)

21 1.082369  e−01 1.545433  e−01 3.788872  e−01 2.178934  e+00

22 5.972336  e−03 7.142850  e−03 2.452678  e−02 7.191076  e−01

23 1.223603  e−03 1.806781  e−03 8.520509  e−03 1.114423  e−01

24 8.653379  e−05 1.732075  e−04 1.200903  e−03 3.118910  e−02

25 5.561252  e−06 1.295847  e−05 1.542654  e−04 8.001098  e−03

26 3.508709  e−07 8.804766  e−07 1.929895  e−05 2.012955  e−03

27 2.199861  e−08 5.729676  e−08 2.303966  e−06 5.040206  e−04
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where we have used the estimate (3.6), with I replaced by the intervals (−1, 0) and 
(0, 1), the norm equivalence (3.9), and the fact that ȳ defined by (2.22) is a sextic 
polynomial on each of these intervals.

In the second experiment we solved the problem in Example 2.6 on slightly per-
turbed meshes where the origin is no longer a grid point. The errors are reported in 
Table 2. We observed O(h0.5) convergence in the | ⋅ |H2(I) (which agrees with Theo-
rem 3.1) and O(h) convergence in the lower order norms.

In the third experiment, we solved the problem in Example  2.10 on a uniform 
mesh with dyadic grid points. We observed O(h) convergence in | ⋅ |H2(I) from the 
results in Table 3 (which agrees with Theorem 3.3) and O(h2) convergence in the 
lower order norms.

In the final experiment, we solved the problem in Example  2.10 by a uniform 
mesh that includes 1/3 as a grid point. The errors are reported in Table  4. We 
observed similar convergence behavior as the dyadic case, but the magnitude of the 
errors is smaller. This can be justified by the observation that the term [cf. (3.17)]

‖ȳ − (Πhȳ)‖2a + 2�I

�
ȳ� − (Πhȳ)

�
�
d𝜇 = ‖ȳ − (Πhȳ)‖2a ≤ Ch4,

Table 2  Numerical results for Example 2.6 on meshes where 0 is not a grid point

DOFs ‖ȳ − ȳh‖L2(I) ‖ȳ − ȳh‖L∞(I) |ȳ − ȳh|H1(I) |ȳ − ȳh|H2(I)

2+21 5.972336  e−03 7.142850  e−03 2.452678  e−02 1.910760  e−01
2+22 3.045281  e−02 3.279329  e−02 1.188082  e−01 1.285638  e+00
2+23 3.187355  e−02 3.182310  e−02 1.071850  e−01 1.022401  e+00
2+24 3.216705  e−02 3.175715  e−02 1.048464  e−01 8.070390  e−01

2+25 3.220153  e−02 3.175558  e−02 1.044763  e−01 6.496040  e−01

2+26 1.814346  e−02 2.074403  e−02 5.740999  e−02 4.408863  e−01

2+27 9.754613  e−03 1.167762  e−02 2.983716  e−02 3.016101  e−01

Table 3  Numerical results for Example 2.10 on meshes with dyadic grid points

DOFs ‖ȳ − ȳh‖L
2
(I) ‖ȳ − ȳh‖L∞(I) |ȳ − ȳh|H1(I) |ȳ − ȳh|H2(I)

1 + 22 1.406813  e+01 1.658318  e+01 1.269278  e+01 2.070271  e+01

1 + 23 4.654073  e+00 4.618639  e+00 4.221134  e+00 1.379991  e+01

1 + 24 1.574605  e+00 1.683229  e+00 1.376788  e+00 8.047102  e+00

1 + 25 3.745106  e−01 3.781562  e−01 3.252880  e−01 4.073631  e+00

1 + 26 9.856747  e−02 1.022258  e−01 8.574934  e−02 2.081469  e+00

1 + 27 2.378457  e−02 2.368760  e−02 2.075267  e−02 1.037836  e+00

1 + 28 5.802109  e−03 5.661900  e−03 5.218542  e−03 5.212004  e−01
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because ȳ(x) = 1 + x on the active set A = [−1, 1∕3] and 1/3 is a grid point. On the 
other hand the corresponding integral is nonzero for dyadic meshes.

5  Concluding remarks

We have demonstrated in this paper that the convergence analysis developed in Brenner 
and Sung (2017) can be adopted to elliptic distributed optimal control problems with 
pointwise constraints on the derivatives of the state, at least in a simple one dimen-
sional setting.

The results in this paper can be extended to two-sided constraints of the form 
�1 ≤ y′ ≤ �2, where �i and �2 are sufficiently regular and 𝜓1 < 0 < 𝜓2 on I. In par-
ticular, they are valid for the constraints defined by |y′| ≤ 1.

It would be interesting to find out if the results in this paper can be extended to 
higher dimensions. We note that the higher dimensional analogs of the variational ine-
quality for the derivative [cf. (B.5)] lead to obstacle problems for the vector Laplacian. 
Such obstacle problems are of independent interest and appear to be open.

Appendix A. KKT conditions for the Dirichlet boundary conditions

First we note that

since ∫
I
y�dx = 0 and ∫

I
𝜓 dx > 0 , and also

Let K = {v ∈ H1(I)∕ℝ ∶ v ≤ � in I} . We can rewrite (2.4) in the form of

∫I

(ȳ − Phȳ
�)𝜌 dx = ∫

1

3

0

(ȳ − Phȳ
�)𝜌 dx = 0

(A.1)A ≠ [−1, 1]

(A.2){y� ∶ y ∈ V} =

{
v ∈ H1(I) ∶ ∫I

v dx = 0

}
= H1(I)∕ℝ.

Table 4  Numerical results for Example 2.10 on uniform meshes where 1/3 is a grid point

DOFs ‖ȳ − ȳh‖L2(I) ‖ȳ − ȳh‖L∞(I) |ȳ − ȳh|H1(I) |ȳ − ȳh|H2(I)

1 + 3 ⋅ 21 2.448013  e+00 2.343224  e+00 2.236575  e+00 1.082726  e+01

1 + 3 ⋅ 22 6.406496  e−01 6.095607  e−01 5.795513  e−01 5.541353  e+00

1 + 3 ⋅ 23 1.616111  e−01 1.539557  e−01 1.461718  e−01 2.778978  e+00

1 + 3 ⋅ 24 4.025578  e−02 3.858795  e−02 3.665436  e−02 1.390198  e+00

1 + 3 ⋅ 25 9.822613  e−03 9.653193  e−03 9.268709  e−03 6.951994  e−01

1 + 3 ⋅ 26 2.233582  e−03 2.413687  e−03 2.657435  e−03 3.476583  e−01
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where

and the function Φ ∈ H1(I)∕ℝ is defined by

Let the bounded linear functional L ∶ H1(I)∕ℝ ⟶ ℝ be defined by

Observe that (A.3) implies

since in this case ±�v + p ∈ K  for 0 < 𝜖 ≪ 1.
Since the active set A  is a closed subset of [0, 1], according to (A.1) there exist 

two numbers a, b ∈ I such that a < b and [a, b] ∩A = � . Let G = (−1, a) ∪ (b, 1) . 
Then we have (i) A ∩ I ⊂ G and (ii) there exists a bounded linear extension oper-
ator E

G
∶ H1(G) ⟶ H1(I)∕ℝ.

Remark A.1 Observe that a bounded linear extension operator E∗
G
∶ H1(G) ⟶ H1(I) 

can be constructed by reflections (cf. Adams and Fournier 2003). The operator EG 
can then be defined by

where � is a smooth function with compact support in (a, b) such that ∫
I
� dx = 1.

We define a bounded linear map T
G
∶ H1(G) ⟶ ℝ by

where ṽ is any function in H1(I)∕ℝ such that ṽ = v on G. T
G
 is well-defined because 

the existence of ṽ is guaranteed by the extension operator E
G
 and the independence 

of the choice of ṽ follows from (A.7).
Let v ∈ H1(G) be nonnegative. Then −𝜖ṽ + p ∈ K  for 0 < 𝜖 ≪ 1 because 

p ≤ � on G and p < 𝜓 on the compact set [a, b] = I�G . Hence we have

by (A.3) and (A.6).
It follows from (A.9) and the Riesz-Schwartz Theorem (cf.  Rudin 1966; 

Schwartz 1966) for nonnegative functionals that

(A.3)�I

Φ(q − p)dx + �I

(p� + f )(q� − p�)dx ≥ 0 ∀ q ∈ K,

(A.4)p = ȳ�

(A.5)𝛽Φ� = yd − ȳ.

(A.6)Lv = ∫I

Φv dx + ∫I

(p� + f )v�dx.

(A.7)Lv = 0 if v ∈ H1(I)∕ℝ and A ∩ supp v = �,

EG(v) = E∗

G
(v) −

(

∫I

E∗

G
(v)dx

)
�,

(A.8)T
G
v = Lṽ

(A.9)−T
G
v = 𝜖

−1T
G
(−𝜖v) = 𝜖

−1L(−𝜖ṽ) ≥ 0
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where 𝜇
Ḡ
 is a nonnegative Borel measure on [−1, a] ∪ [b, 1].

Because of (A.8) and (A.10), we have

and the observation (A.7) implies that 𝜇
Ḡ
 is supported on A .

We conclude from (A.6) and (A.11) that

where �̃� is the trivial extension of 𝜇
Ḡ
 to [−1, 1] . It follows that

where 𝜇 = 𝛽�̃� , and in view of (A.2), (A.4), (A.5) and (A.12),

Appendix B. KKT conditions for the mixed boundary conditions

In this case we have, by (2.1b),

Let K = {v ∈ H1(I;1) ∶ v ≤ � in I} . We can rewrite (2.4) in the form of

where

and the function Φ ∈ H1(I;1) is defined by

Note that f ∈ H1(I) by the assumption in (1.7). After integration by parts, the ine-
quality (B.2) becomes

(A.10)T
G
v = −∫

[−1,a]∪[b,1]

v d𝜇
Ḡ

∀ v ∈ H1(G).

(A.11)−Lv = −T(v||G) = ∫
[−1,a]∪[b,1]

v d𝜇
Ḡ

∀ v ∈ H1(I)∕ℝ,

(A.12)∫I

Φv dx + ∫I

(p� + f )v�dx + ∫
[−1,1]

v d�̃� = 0 ∀ v ∈ H1(I)∕ℝ,

∫
[−1,1]

(ȳ� − 𝜓)d𝜇 = 0,

∫I

(ȳ − yd)z dx + 𝛽 ∫I

(ȳ�� + f )z��dx + ∫
[−1,1]

z�d𝜇 = 0 ∀ z ∈ V .

(B.1){y� ∶ y ∈ V} = {v ∈ H1(I) ∶ v(1) = 0} = H1(I;1).

(B.2)�I

Φ(q − p)dx + �I

(p� + f )(q� − p�)dx ≥ 0 ∀ q ∈ K,

(B.3)p = ȳ� ∈ K,

(B.4)𝛽Φ� = yd − ȳ.
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The variational inequality defined by (B.3) and (B.5) is equivalent to a second order 
obstacle problem with mixed boundary conditions whose coincidence set is identi-
cal to the active set A  in (2.10).

Since � ∈ H2(I) by the assumption in (1.7), we can apply the penalty method in 
Murthy and Stampacchia (1973) to show that

and, after integration by parts, we have

where

and �−1 is the Dirac point measure at −1.
The variational inequality (B.5) is then equivalent to 

Consequently the KKT conditions (2.7)–(2.9) hold for the Borel measure

Remark B.1 In the special case where f = 0 and � is a positive constant, the con-
dition (B.9d) implies p�(−1) = 0 if −1 ∉ A  , and the conditions (B.9a) and (B.9c) 

(B.5)
− f (−1)[q(−1) − p(−1)] + �I

(Φ − f �)(q − p) dx

+ �I

p�(q� − p�)dx ≥ 0 ∀ q ∈ K.

(B.6)the solution p of (B.5) belongs to H2(I),

(B.7)
− f (−1)q(−1) + ∫I

(Φ − f �)q dx

+ ∫I

p�q�dx + ∫
[−1,1]

q d� = 0 ∀ q ∈ H1(I;1),

(B.8)d� = (p�� + f � − Φ)dx + (f (−1) + p�(−1))d�−1,

(B.9a)p ≤� in I,

(B.9b)p�� + f � − Φ ≥0 in I,

(B.9c)f (−1) + p�(−1) ≥0,

(B.9d)∫
[−1,1]

(p − �)d� =0.

(B.10)� = ��.
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imply p�(−1) = 0 if −1 ∈ A  . Therefore we have p�(−1) = 0 if f = 0 and � is a pos-
itive constant, in which case � is absolutely continuous with respect to the Lebesgue 
measure. Hence it is necessary to choose � = p�(−1) = 0 in Example 2.10.
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