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Abstract
Although computational power is increasingly available, high-fidelity simulation 
based aerodynamic shape optimization is still challenging for industrial applications. 
To make the simulation based optimization acceptable in the practice of engineering 
design, a technique combining mesh morphing and reduced order modeling is pro-
posed for efficient aerodynamic optimization based on CFD simulations. The former 
technique avoids the time-consuming procedure of geometry discretization. And the 
latter speeds up the procedure of field solution by exploiting pre-computed solu-
tion snapshots. To test the efficiency of the proposed method, the windshield of a 
motorbike is analyzed and optimized. It is shown that even the total number of cells 
of the mesh is around 0.4 million, the CFD computation and the post-processing of 
the results can be completed in less than 10 s if the reduced order model is adopted. 
Running on a personal computer, the generic algorithm is applied to optimize the 
profile of the windshield. A 8% reduction of the drag coefficient is achieved after 
800 queries of the reduced order CFD model and the total CPU time is only around 
2 h.

Keywords Shape optimization · Mesh morphing · Reduced order model

1 Introduction

High-fidelity modeling and simulation has been widely used in nowadays engineer-
ing design. In vehicle engineering, for example, detailed computational fluid dynam-
ics (CFD) simulation is routinely applied to evaluate the aerodynamic performance 
of the vehicles. However, simulation based shape optimization is still a challenging 
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task even the computational power is increasingly available because more complex 
and accurate models quickly use up the computational resources.

High-fidelity modeling techniques such as the finite element method (FEM) and 
the finite volume method (FVM) adopt finely resolved meshes which inevitably 
form big-sized algebra equations. Preparation of the detailed meshes as well as for-
mation and solution of the algebra equations are the most time consuming steps in a 
simulation. For a non-trial industrial case, preparation of the mesh may take several 
or tens of hours even automatic mesh generation techniques are applied. Then for-
mation and solution of the algebra equations may take O(10–102) CPU-hours. As a 
consequence, the total computational cost of the simulation-based optimization is 
prohibitively high considering O(102–103) simulations have to be run in the optimi-
zation procedure.

To make the simulation based optimization acceptable in the practice of engineer-
ing design, new methodologies should be developed to overcome the bottleneck of 
mesh generation and field solution. It is interesting to note that in typical shape opti-
mization problems, the geometric configurations often change smoothly and series 
of geometries can be quickly generated by morphing the original geometry. To avoid 
the time-consuming and error-prone process of geometry discretization, the mesh of 
the morphed geometry can be generated by deforming the original mesh through the 
same morphing procedure (Fig. 1). Efficient methodologies can also be developed 
to speed up the procedure of field solution (more specifically, formation and solu-
tion of the algebra equations) by exploiting a small set of pre-computed solution 
snapshots defined on well-chosen geometric configurations. This is the basic idea of 
reduced order modeling (ROM) (Lassila et al. 2014). Although construction of the 
pre-computed solutions (i.e., the offline stage) is time-consuming, this step needs to 
be performed only once. Then solution of a new configuration (i.e., the online stage) 
can be sought very quickly by using a reduced order model built upon the pre-com-
puted solution snapshots. The small-sized reduced order model is fast-running and 
therefore repeated calls to the ROM within an optimization procedure is acceptable.

In the present paper, we combine the two techniques, i.e., the mesh morphing and 
the reduced order modeling, to formulate an automatic non-intrusive procedure for 
efficient aerodynamic shape optimization based on CFD simulations. The idea has 
been well demonstrated in the pioneering work of Filomeno Coelho et  al. (2008, 

Fig. 1  Schematic of mesh morphing of a two-dimension airfoil. The left is the original mesh and the 
right is the morphed mesh. The white hollow circles denote the control lattice
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2009), Xiao et al. (2010). The non-intrusive feature of the present method allows it 
to be integrated with different high fidelity solvers, either commercial, open-sourced 
or in-house developed, with great ease. The paper is organized as follows. The mesh 
morphing algorithm and a non-intrusive method for constructing reduced order 
CFD models are explained in Sects. 2 and 3 respectively. In Sect. 4, implementation 
of the two technical ingredients is presented. Then the optimization of a motorbike 
by using the present method is illustrated in Sect. 5.

2  Mesh morphing by free form deformation

Free form deformation (FFD) is a morphing technique widely used both in academia 
and in industry. The basic idea of FFD is to embed the part of the mesh (or the 
geometry) to be morphed in a control lattice and to deform it by following the defor-
mation of the lattice (Sederberg and Parry 1986). By controlling the lattice points, a 
continuous and smooth deformation can be achieved (Fig. 1). A typical FFD proce-
dure usually consists of three steps (Fig. 2). First, a physical domain � enclosing the 
object O is mapped to the reference domain �̂� (a unit square for the two-dimensional 
case and a unit cube for the three-dimensional case) through an affine map ψ . Then, 
some control points defined on the reference domain are adjusted to get the desired 
deformation using the map T̂ . At last the inverse mapping from the deformed refer-
ence domain, i.e. ψ−1 , is sought and applied to deform the physical domain �.

The FFD-based morphing actually changes only the coordinates of the vertices 
enclosed in the control box. It is independent of the topology of the object and thus 
suitable to parametrize many types of geometric entities, including volume meshes, 
surface triangulations and complex CAD representations. In the present study, it 
is applied directly to deform the volumetric mesh by changing the positions of the 
influenced nodes. The topology of the mesh remains the same. To avoid the affected 
elements overlap the unaffected ones, it is suggested to fix the border points and 
move only the internal points of the control lattice (Fig.  2). In the case of shape 
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Fig. 2  Schematic of the free-form deformation (only the internal control points are moved)
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optimization, mesh morphing by FFD allows to skip the time-consuming procedure 
of geometry discretization for every new geometric configuration, contributing to a 
significant time saving. Considering the geometry morphing and the mesh morphing 
can be fully described by the displacements of the control points, the problem of 
shape optimization can thus be represented by an equivalent problem of parameter 
optimization of which the variables are the displacements of the control points.

3  Reduced order CFD modeling

The present study focuses on the aerodynamic performance of vehicles and the full 
order model is described  by the Navier–Stokes (NS) equations. In vehicle engi-
neering, the velocity of vehicles is high and turbulent flow often occurs which is 
characterized by significant fluctuations in space and time. To model the complex 
turbulent flow, the Reynolds-averaged Navier–Stokes (RANS) equations are for-
mulated to describe the time-averaged properties of the flow for most engineering 
applications. To provide closure to the RANS equations, turbulence models (e.g., 
Spalart–Allmaras, k–ε, k–ω (Versteeg and Malalasekera 2007)) are needed to com-
pute the unknown term which accounts for the fluctuations contribution, i.e., the 
Reynolds stress.

The full order model can be solved by the several well developed techniques 
such as the finite element method, the finite volume method and the finite differ-
ence method. Among the various numerical techniques, the FV method is the most 
widely used for its versatility in convective terms and the most majority CFD codes, 
either commercial or open-sourced (Iaccarino 2001; Weller et al. 1998), are based 
on FV discretization. Non-trivial industrial applications may contain millions of 
even billions of computational cells, making high-fidelity CFD simulation unafford-
able to many-query or real time control applications. Reduced order CFD models 
are then proposed to overcome the computational burden of large-scale systems.

3.1  Model order reduction by proper orthogonal decomposition

The main assumption of reduced order modeling is that the behavior of the sys-
tem with respect to the physical or the geometric parameters can be represented 
by a small number of dominant modes, i.e., the most energetic modes. Within the 
CFD domain, the Proper Orthogonal Decomposition (POD) is probably the most 
widely used technique to construct the reduced order model (Filomeno Coelho et al. 
2008, 2009; Xiao et al. 2010; Holmes et al. 1996; Sirovich 1987; Aubry et al. 1988; 
Berkooz et  al. 1993; Lumley 1967; Cazemier et  al. 1998; Kunisch and Volkwein 
2003; Weller et al. 2010; Wang et al. 2012; Dolci and Arina 2016).

POD in the context of CFD modeling usually is based on the state solutions com-
puted at different instants in time and/or different parameter values, i.e., the so-called 
snapshots. Consider a set of ns snapshots, u1, u2, …, uns. Here uj = u

(
tj;�j

)
∈ R

n 
represents the jth snapshot. tj and µj are respectively the time and the parameter 
values for the jth snapshot. Define the snapshot matrix � ∈ R

n×ns of which the jth 
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column contains the snapshot uj. The left singular value decomposition of U can be 
written as,

where the left and right singular vectors of U are respectively stored by the columns 
of the matrices � ∈ R

n×ns and � ∈ R
ns×ns . The singular values of U, also referred 

as the POD singular values, are stored by � ∈ R
ns×ns = diag

(
�1, �2,… , �ns

)
 where 

�1 ≥ �2 ≥ ⋯ ≥ �ns . The POD basis, i.e. � =
[
�1,�2,… ,�N

]
 , can thus be con-

structed by choosing the N left singular vectors of U which correspond to the N larg-
est POD singular values.

Once the POD modes are obtained, the full order solution can be expressed as a 
linear combination of the POD basis,

The sum of the squares of the discarded singular values gives an upper limit to 
the square of the reconstruction error by the POD basis. For each new parameter, the 
solution is sought by determining the coefficients before the modes. A rigorous way 
is to project the RANS equations to the subspace spanned by the POD basis and turn 
the coupled partial differential equations into coupled ordinary differential equa-
tions (for unsteady case) or linear equations (for steady case) with the coefficients as 
unknowns (Lassila et al. 2014). Another popular way is to estimate the coefficients 
through some surrogate models usually built by interpolation techniques. In the pre-
sent study, we choose the second approach for its versatility and applicability in non-
orthogonal projection.

3.2  Solution of reduced order model by using surrogate models

The task of solution of the reduced model is to find the coefficients before the POD 
modes. A simple way is to construct a surrogate model which takes the new param-
eters as input and returns the new coefficients as output. Essentially, the surrogate 
models, usually represented by polynomial response surfaces or Kriging response 
surfaces (Filomeno Coelho et al. 2008, 2009; Xiao et al. 2010), compute the new 
coefficients through interpolating the already computed coefficients for the parame-
ter samples �k ∈ � . So, the method sometimes is called Proper Orthogonal Decom-
position with Interpolation (PODI) (Bui-Thanh 2003). For the parameter samples, 
the full order solutions have been obtained and the POD coefficients for each of the 
sample can be obtained by projecting the full order solutions onto the low order 
POD space,

(1)U = X��
T

(2)un ≈

N∑

i=0

�i�i

(3)∀�k ∈ � ∶ u
(
�k

)
= u

N
(
�k

)
=

N∑

i=0

�i
(
�k

)
�i
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For each new value of the parameter �new , the new coefficients �i
(
�new

)
 can be 

obtained by the surrogate models. Once the new coefficients are known, the reduced 
order solution can be readily reconstructed by using the POD basis,

In the present study, the surrogate model is constructed through a simple N-th 
dimensional interpolation based on the radial basis function (RBF) (Broomhead and 
Lowe 1988). The RBF interpolation is well suitable for the data points irregularly 
distributed (Fig. 3). In its basic form, the RBF interpolation can be written as,

where the approximating function y
(
x⃗
)
 is represented as a sum of N radial basis 

functions φ, each defined on a different center x⃗i , and weighted by a coefficient wi. || 
denotes the distance between any point x⃗ and the center x⃗i . Considering the values at 
the centers, i.e., y(x⃗i ) are known, the weights wi can be determined by solving simple 
linear equations. There are many forms of radial basis functions, for example, the 
multiquadratic function, the inverse multiquadratic function and the Gaussian func-
tion (Broomhead and Lowe 1988). In the present study, the most widely used multi-
quadratic form is chosen,

where r0 is a scale factor which can mediate the size of the influence domain.

3.3  Truncated POD with evolutionary enrichment

The classical POD needs a large set of samples, i.e., the full order solution snap-
shots, to extract the most energetic modes. However, for non-trivial industrial cases, 
generation of even a single sample is computationally expensive. Constrained by the 
budget of computation, it is often difficult to collect enough samples to perform the 
regular POD in order to obtain the optimal modes. The truncated POD defined on 

(4)u
N
new

=

N∑

i=0

�i
(
�new

)
�i

(5)y
(
x⃗
)
=
∑

wi𝜑
(|
|x⃗ − x⃗i

|
|
)

(6)�(r) =
(
r2 + r2

0

)1∕2

Fig. 3  Schematic of the RBF interpolation
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a set of samples, say, generated by a design of experiments, definitely leads to non-
negligible truncation error. To limit the error induced by the low-order projection, 
the truncated POD basis should be further enriched until a well-defined error esti-
mator is below the specified tolerance.

In the present study, the error is estimated by an leave-one-out way. For each of 
the sample snapshot, an truncated auxiliary POD space can be defined by using the 
left snapshots. Then an approximate solution can be reconstructed for the left-out 
sample and the error of the reconstructed solution with respect to the original solu-
tion can be chosen as the error estimator. If the error estimator exceeds the speci-
fied tolerance, a new parameter should be proposed and the corresponding full order 
solution should be supplemented to the sample snapshots in order to enrich the 
POD basis. In the present work, the new parameter is estimated by interpolating 
the existing parameter samples with the weights defined by the normalized recon-
struction errors (Salmoiraghi et  al. 2018). A more rigorous way is to construct a 
surrogate model which relates the parameters with the corresponding reconstruction 
errors and the new parameter is sought by an optimization procedure to maximize 
the reconstruction error (Chapman et al. 2017). In other words, the new parameter 
is sought by a greedy-like approach. Besides the enrichment during the offline stage, 
the POD basis can also be enriched during the optimization process by adding the 
sub-optimal solution snapshots (Weller et al. 2010). The idea of enriching the POD 
basis in an evolutionary way is not new and has been discussed and applied in other 
researches (Filomeno Coelho et al. 2008, 2009; Xiao et al. 2010). Very recently, an 
on-the-fly strategy has been proposed to adaptively enrich and update the POD basis 
according to an error residual (Xiao et al. 2019).

4  Implementation

In the present study, the open-sourced CFD solver, i.e., OpenFOAM, is chosen to 
generate the full order solution snapshots. OpenFOAM solves the NS equations 
using the finite volume discretization of which the coordinates of the vertices, the 
elemental connectivity as well as other information of the mesh are respectively 
defined by files. Considering the mesh morphing operates on vertices, only the file 
defining the vertices (i.e., the file named ‘points’) is parsed during the free form 
mesh morphing. A python script is developed to read the coordinates of the vertices 
and do the mesh morphing according to the displacements of the user defined con-
trol lattice. The file defining the vertices is then overwritten with the new vertices.

The key step of the proposed method is to build the ROM parameterized with 
the external shape of the vehicle. With free form morphing, the parametric external 
shape is in fact defined in terms of the displacements of the control points within 
the lattice. To evaluate the drag force, the velocity, the pressure as well as the eddy 
viscosity should be reconstructed. Therefore, it is necessary to build the POD basis 
for the velocity (in fact, the components of the velocity), the pressure as well as the 
turbulence viscosity. In the present study, the two-equations k–ω model is chosen 
for the turbulence modeling. All the POD basis for each of the solution fields are 
computed on the same initial snapshot matrix which are enriched until a specified 
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error tolerance is reached. Once the ROM is built, the velocity, the pressure and the 
turbulent viscosity can be quickly evaluated for new shapes (i.e., new displacements 
of the control points). Then the drag and the lift coefficients can be computed by 
calling the post-processing utility of OpenFOAM.

A python package, i.e., pyOpt, is used to minimize the objective function which 
accepts the displacements of the control points as inputs and returns the drag coef-
ficient as output.

5  Numerical tests

In the present study, the aerodynamic performance of a motorbike (Fig. 4) is ana-
lyzed and optimized. The length, the width and the height of the motorbike are 
2.0 m, 0.6 m and 1.35 m, respectively. The box of the control lattice encloses the 
windshield which has a noticeable influence on the aerodynamic performance. To 
avoid any overlapping of the elements in the deformed mesh, only the eight internal 
points (hollow dots as shown in Fig. 4) are free to move.

The mesh of the whole computation domain is illustrated in Fig.  5. The mesh 
is refined around the motorbike and a boundary layers is defined. Totally around 
0.4 million points, 0.35 million cells and 1.1 million faces are generated. The inlet 
velocity is fixed at 20 m/s.

The steady-state solver for the incompressible, turbulent flow, i.e., the ‘simple-
Foam’ solver, is chosen for the full order solutions. The time step is set to be 1 s and 
the total steps are 500. The residual tolerance for all the solutions is set to be  10−8. It 
is checked that a steady state solution is ensured.

5.1  Construction of the ROM

Considering the symmetry of the model, the control points are also symmetrically 
positioned. Only one half of the internal points are needed to be considered. The 

Fig. 4  Schematic of the motorbike and the box of the control lattice
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width of the windshield (i.e., the size in the Y direction) is keep fixed and there 
are totally 8 parameters which control the shape of the windshield (Table 1). The 
Latin hypercube sampling method is used to generate the initial 16 parameter 
vectors.

For each of the parameter vector, the solutions at the final time step are col-
lected. All the computations are performed in parallel on a HP Z400 workstation 
with 12 CPU cores. The error limit for enriching the samples is set to be  10−2 and 
finally additional 13 full order solutions are supplemented to the snapshot matrix. 
It takes around 4 h to complete one full order solution and the total CPU time for 
constructing the ROM is 121 h which include the solution of the 29 snapshots and 
the operation of POD. There are 8 parameters in the problem and for the classical 
POD method, a large set of full order solutions (O(102–103)) should be collected 
during the offline stage. As an improvement, the present method begins with a 
small set of full order solutions and then gradually enriches the solution matrix. 
The enrichment process is guided by an error estimator and therefore more effi-
cient in selecting the most representative solutions. As for the test problem, 

Fig. 5  Illustration of the mesh of the computational domain

Table 1  Parameters of the 
model

Index of the control point Scope of displacements (unit: m)

(2, 2, 2) ΔX1: (− 0.1, 0.1), ΔZ1: (− 0.1, 0.1)
(3, 2, 2) ΔX2: (− 0.1, 0.1), ΔZ2: (− 0.1, 0.1)
(2, 3, 2) ΔX3: (− 0.1, 0.1), ΔZ3: (− 0.1, 0.1)
(3, 3, 2) ΔX4: (− 0.1, 0.1), ΔZ4: (− 0.1, 0.1)
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constructions of the ROM by the present method is at least 10 times faster than 
that by the conventional POD procedure.

5.2  Optimization by exploiting the ROM

Considering the fields of the velocity, the pressure, the turbulent kinetic energy and 
the turbulence frequency can be reconstructed in nearly real time, the genetic algo-
rithm (GA) is chosen to do the optimization although it is not the most efficient 
method. The size of the population is set to be 20 and 40 generations of evolution, 
i.e., totally 800 evaluations, are performed. It takes around 10  s to complete one 
evaluation and totally it takes around 2.2 h to complete the optimization procedure 
thanks to the fast-running ROM. The change of the drag coefficient during the evo-
lution is shown in Fig.  6. It is seen that 40 generations of evolution is enough to 
achieve the stabilization. A 8% reduction of the drag coefficient is achieved and the 
optimized shape is shown in Fig. 7.

To check the accuracy of the ROM, the full order solution defined on the opti-
mized shape is also performed and compared with the low-order solution recon-
structed by the ROM (Fig.  8). It is seen that the full order solution can be well 
reconstructed by the ROM.

6  Summary

The present improves a chain of techniques for aerodynamic shape optimization by 
integrating free form mesh morphing and POD with evolutionary enrichment. The 
method is tested on a non-trivial industrial model. The key advantage of the method 

0 10 20 30 40

0.255

0.270

0.285

0.300

0.315

tneiciffeoc
gar

D

Evolution

Fig. 6  Decrease of the drag coefficient with the number of evolution
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Fig. 7  Optimized profile of the windshield compared with the original profile

Fig. 8  Comparison between the order solution (left column) and the reconstructed low order solution 
(right column). Top row: magnitude of velocity; Middle row: pressure; Bottom row: turbulent viscosity
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is its considerable speed-up by using ROMs with acceptable errors. Another advan-
tage is that the method does not rely on a particular discretization method. In fact, 
the approach treats the high-fidelity solver completely as a black box. Thus the user 
can exploit any preferred software, even commercial ones. Therefore, the method is 
also applicable to other industrial fields. One improvement to be made is to replace 
the conventional POD with the incremental POD in order to lower the memory 
usage of building ROM. And another is to build a more rigorous surrogate model for 
error estimation in order to sample the new parameter more effectively.
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