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Abstract
This paper develops a hybrid optimization approach for multi-criteria optimal design 
of a compliant positioning platform for nanoindentation tester. The platform mimics 
the biomechanical behavior of beetle so as to allow a linear motion. Structure of 
the beetle-liked mechanism consists of six legs arranging in a symmetric topology. 
Amplification ratio and static characteristics of the platform are analyzed by finite 
element analysis (FEA). To improve the performances of the platform, the main 
geometric parameters of the platform are optimized by an efficient hybrid approach 
of the Taguchi method (TM), response surface methodology (RSM), improved 
adaptive neuro-fuzzy inference system (ANFIS), and teaching learning based opti-
mization (TLBO). Numerical data are collected by integrating of the RSM and 
FEA. Signal to noise ratios are determined and the weight factor of each response 
is calculated. The suitable ANFIS’s parameters are optimized through the TM. The 
results found that trapezoidal-shaped MFs is the best type for the safety factor and 
the displacement. The optimal ANFIS’s parameters for the safety factor and the dis-
placement were determined at the number of input MFs of 4, trapmf, hybrid learn-
ing method, and linear output MFs. According to improved ANFIS establishments, 
TLBO algorithm is utilized for solving the multi-objective optimization. Analysis 
of variance and sensitivity are investigated to determine the significant effects of 
design factors on the responses. The simulated and experimental validations are in a 
good agreement with the predicted results.
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1  Introduction

Nanoindentation tester is designed for the measurement of hardness, elastic modu-
lus and creep. The system can be adopted to define characteristics of organic, inor-
ganic, hard and soft materials. An indentation measurement can be carried out in 
less than 3 min without waiting for thermal stabilization with the unique top sur-
face referencing technique. Therefore, a positioning process has to be high precisely. 
Materials can be checked, including hard and soft types from tissue, biological cell, 
semiconductor nanomaterial, optics, material science, biomechanics, micro-electro-
mechanical systems, and electronics (Hu et al. 2013; O’Brien et al. 2005; Nohava 
et al. 2009). During the indentation process, multiple microscopes are used to record 
the image of sample before and after indenting test to characterize the curve of dis-
placement versus load while a material sample is bring to in front of microscope. In 
order to obtain a good image quality, a precise positioning platform is essential to 
locate the sample material. It means that the positioning platform is an important 
mechanism for the nanoindentation system. In commercialization, the entire system 
is difficult to gain high position accuracy due to using servo motors, ball screws, 
and rigid joint. This leads unfavorable disadvantages such as backlash, friction, and 
wear. To overcome the disadvantages of traditional technologies, a compliant posi-
tioning platform is proposed to improve the resolution of system because of essen-
tial merits such as no wear, no backlash, free friction, monolithic structure, light 
weight, low cost, no lubricant, high precision and compact structure (Xu 2014; Lu 
et al. 2014; Dao et al. 2017a, b; Polit and Dong 2011; Song et al. 2010; Dao et al. 
2017a, b; Fung and Lin 2009). Similar to different applications, the indentation sys-
tem also requires a large working travel with a high safety factor in order to conduct 
various positioning tasks.

A few recent years, regarding a large working travel, many studies have been 
conducted. Some concentrated on the use of various amplifiers (Ling et al. 2016). 
A large working travel of positioning stages were designed (Dao et al. 2017a, b). 
Yong et  al. (2009) developed the amplification levers for a fast nanoscale posi-
tioning. Kang et al. (2005) proposed displacement amplification mechanism inte-
grated platform-type parallel mechanisms using flexure hinges. Kim et al. (2012) 
utilized a double displacement amplifier for a 3-DOFs positioning system. Xu and 
Li (2011) presented an optimization of an integration bridge amplification mecha-
nism. Le Zhu et al. (2018) designed an amplifier integrated a Scott-Russell mech-
anism and a half-bridge mechanism for 2DOFs nanopositioning stage. Unlike 
previous studies, inspired from a high flexibility in beetle’s motion, the proposed 
platform is designed so as to reach a small parasitic motion. Subsequently, a new 
multi-lever displacement amplifier is integrated inside the platform so as to gen-
erate a large working stroke. However, the platform is difficult to obtain a large 
displacement and ensure a good strength, simultaneously through a design pro-
cess. As known, two quality responses are conflicted together. Therefore, a multi-
objective optimization problem is needed to balance between them.

Regarding an multi-objective optimization process, Huang and Dao (2016a, b) 
optimized a compliant XY positioning stage utilizing the finite element analysis 
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(FEA) and response surface methodology (RSM). Xiao et  al. (2011) optimized 
the stiffness, working travel and safety factor using the radius basis functional 
network combined genetic algorithm. More recent years, Dao et  al. (2017a, b) 
developed a hybrid Taguchi-cuckoo search algorithm to optimize overall the qual-
ity responses, simultaneously for a flexure-based focus locating stage. A hybrid 
approach of the grey relational analysis, Taguchi, RSM and entropy measure-
ment was combined (Huang and Dao 2016a, b). RSM was integrated with the GA 
(Álvarez et  al. 2009; Bahloul et  al. 2013), ANFIS and Jaya (Suraj et  al. 2016), 
GA and ant colony optimization (Zukhri and Paputungan 2013). In addition, Ling 
et  al. (2019) proposed a kinematics-based optimization method for 2-DOF mil-
limeter-range monolithic flexure mechanism. Generally, population-based optimi-
zation algorithms often require initially controllable parameters while the teach-
ing learning based optimization (TLBO) could optimize rapidly multi-criteria 
with less parameters. So, the TLBO is proposed to conduct multi-objective opti-
mization problem for the proposed platform. Prior to implement the TLBO pro-
graming, the mathematical equations or surrogate models for both displacement 
and safety factor should be established well. Because the compliant platform is 
a non-traditional type of mechanical engineering, the mathematical models are 
complicated to be established. If these equations may be wrong, the further opti-
mized solutions are not true.

For a real compliant positioning platform, a good relation between design vari-
ables and quality responses are difficult to establish precise equations. Therefore, 
it leads an imprecisely optimized solution. As known, the RSM is considered as a 
surrogate model and can approximate a regression model but the prediction accu-
racy of the RSM is strongly dependent on the coefficient of determination. To cover 
come this limitation, artificial intelligences have been developed for various fields 
in which adaptive neuro-fuzzy inference system (ANFIS) is one of the most effec-
tive approaches. ANFIS is considered as an effective black box via an integration 
of fuzzy logic and neural network (Wei 2016; Cheng and Wei 2009). So, ANFIS 
is further adopted for the proposed platform. Even though the ANFIS is still useful 
for various problems but a basic ANFIS structure are largely dependent following 
four main controllable parameters as: (1) the number of input membership functions 
(MFs) of the fuzzy logic, (2) types of input MFs, (3) the training method such as 
hybrid procedure or back propagation, and (4) type of output MFs. However, most 
previous studies used these parameters as default and there have no considerations 
in identifying the suitable parameters of the ANFIS structure for a specific problem. 
In order to determine the appropriate parameters for ANFIS, the Taguchi method 
(TM) is utilized to optimize the root mean squared error, which is a performance 
metric of ANFIS. Based on the optimized parameters of ANFIS, a surrogate model 
is well established for the platform. In addition, for a multi-objective optimization 
problem, the weight factor (WF) for each response is different. The WF is often cho-
sen based on the experiences or customer’s demands. Unlike previous studies, the 
WF can determined exactly via establishing the set of statistical equations because 
the WF depends on the sensitivity of design variables to responses.

The main aims of this study is to develop a new integration approach to conduct 
a multi-criteria optimization design for the beetle-inspired platform. A multi-lever 
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displacement is designed to amplify the working travel. Sensitivity of design vari-
ables is analysed. The optimization principle consists of the following phases. First 
of all, the numerical data are collected by integrating FEA and RSM. Next, the WFs 
are computed accurately based on statistical equations. And then, the suitable con-
trollable elements for a ANFIS structure is optimized by the TM. After improving 
the ANFIS structure, the relationships between the design variables and quality 
objectives are mapped by the improved ANFIS model. Finally, TLBO algorithm is 
adopted for solving the multi-objective optimization. A prototype was fabricated and 
its behaviors are tested to verify the predicted results.

2 � Conceptual design

2.1 � Compliant positioning platform

Inspired from the beetle’s movement, a new compliant positioning platform (CPP) 
was designed so as to reach the linear output displacement as well as decline par-
asitic motion, as depicted as Fig.  1a, b. Moreover, the body and leg movements 
of beetles are almost quite in the same plane and the high flexibility of their legs. 
Hence, beetle-like mechanism is suitable to construct a planar motion mechanism. 
Figure 1a is an image of a real beetle. Based on the shape of each beetle leg, one of 
its legs can be proposed to divide into five sections. This geometry can be imitated 
to develop a mechanism for a linear motion generation. Therefore, a model of the 
proposed CPP with five segments was designed, as shown in Fig.  1b. It included 
rigid links and flexure hinges. Its motion was replied on the flexure hinges. As a 
result, the geometric parameters of flexure hinges contributes largely on the perfor-
mances of the CPP.

The beetle-liked mechanism ensures a linear motion along the vertical direction 
and suppresses a parasitic motion along the horizontal direction. Overall perfor-
mances of the CPP was assessed regarding a large displacement, a small parasitic 
motion and a high safety factor. A small parasitic motion could achieve by a direct 

Fig. 1   Model of beetle-inspired platform: a beetle animal, b compliant positioning platform
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design but two remain responses have to carry out a further multi-objective optimi-
zation problem.

2.2 � Displacement amplification mechanism

Traditionally, a lever mechanism is used to amplify the value of force or displace-
ment. Structure of the lever includes of a beam or rigid rod placed on a fixed hinge, 
or fulcrum, as illustrated in Fig.  2a. Point O is a fixed hinge that is the rotation 
center of the lever, point A is the input and point B is the output location. The opera-
tion principle of lever mechanism is illustrated as follows: when locating a vertical 
displacement Δl1 on the input point A, the lever will rotate an angle � relative to 
the z-axis. As a result, the point B moves to B’ and the output displacement Δl2 
can gain in the vertical direction (y-axis), as illustrated in Fig. 2b. First of all, one 
lever mechanism can be used to amplify output displacement. However, this mecha-
nism creates easily large parasitic motion. So, a two-lever mechanism was designed 
to amplify the output displacement and ensure small parasitic motion based on its 

Fig. 2   Diagram: a operation principle of lever mechanism, b amplification ratio

Fig. 3   Model of lever amplifier: a one lever mechanism, b two lever mechanism

Fig. 4   Model of proposed four-
lever displacement amplifier
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symmetric structure, as shown in Fig. 3b. Moreover, in order to amplify more large 
output displacement, four-lever displacement amplifier was proposed in this paper, 
as depicted in Fig. 4.

Based on a schematic diagram (see in Fig. 2b), the amplification ratio of a lever 
can be approximately achieved as:

The equation of multi-lever displacement amplifier is assumed as follows:

where rT is amplification ratio of four-lever displacement amplifier.

2.3 � Beetle‑liked platform with amplifier

The operating principle of CPP was based on the elastic deformation of the flexure 
hinges. In this study, Al T73-7075 was chosen as material for the stage due to its 
high yield strength of 503 MPa, Young’s modulus of E = 71,700 MPa, light density 
of 2810 kg/m3 and Poisson’s ratio of 0.33. Specification of linear stage was assumed 
that input displacement was 0.13 mm, as given in Table 1. As seen in Fig. 5, it con-
sisted of elements as follows: (1) twelve fixed holes were utilized to locate the plat-
form on an un-vibration table so as to test its characteristics, (2) a translational screw 
(locating at the input displacement position) was used to create the input displace-
ment for the platform by connecting directly with the beetle-liked mechanism. The 
total dimension of the model was approximately 230  mm × 222  mm × 6  mm. The 
geometrical parameters of the platform were given in Table 1. According to a good 
static performances for positioning system, the proposed platform was required to 
create a large displacement and a high safety factor, simultaneously.

Based on the design domain and ability of wire electrical discharged machining 
(WEDM) method as well as designer’s experience, the initial design parameters of 
the structure were proposed in order to ensure to achieve a high output displace-
ment and be suitable for fabricating by WEDM method. In this study, the geometric 

(1)rlever = Δl2∕Δl1 = l2∕ l1

(2)rT = l2∕ l1 × l4
/
l3

Table 1   Material and structure parameters of the beetle-liked platform

Density Poison’s ratio Young’s modulus Yield’s strength

2810 kg/m3 0.33 71.70 GPa 503 MPa

Parameters Value Unit Parameters Value Unit

a 6.84 mm h 18 ≤ h ≤ 21 mm
b 48 ≤ b ≤ 53 mm t 0.9 ≤ t ≤ 1.1 mm
c 8 mm m 102 mm
d 30 mm n 230 mm
e 76 mm p 222 mm
f 6 mm q 70 mm
g 5 mm k 0.67 ≤ k ≤ 0.74 mm
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parameters (the length and the width as well as radius) of the flexure hinges also 
affect to the linear motion of the structure. However, compared to other geomet-
ric parameters of the beetle leg mechanism, the thickness of flexure hinge is the 
most significant effect to linear motion and output displacement according to the 
Euler–Bernoulli beam theory and theory of compliant mechanism. So, this study 
considered the thickness of flexure hinge of beetle leg mechanism as a main param-
eter for establishing design variables and ignored the other geometric parameters.

2.4 � A basic application for nanoindentation tester

The working principle of proposed CPP was based on the elastic deformation of the 
material. It was complied with the Hook’s law. Therefore, the CPP was operated 
within the elastic limitation. It was intended to apply in nanoindentaion tester. The 
CPP was utilized for positioning the material sample during nanoindentation test-
ing process. Before indenter translated downward to check the characteristics of the 
material sample, the CPP would move linearly along the horizontal direction so as 
to locate the sample to an initially precise position. At the same time, the multiple 
microscopes were used to take photos of the sample monitoring the initial character-
istics of the sample. And then, the indenter would be indented a depth into the test-
ing sample. Next, the CPP would come back a reference position in order to prepare 
for testing next times. A basic application for nanoindentation tester was proposed in 
Fig. 6.

3 � Analysis of initial performances and parasitic motion error

In this section, a 3D model of platform was designed by Inventor Professional 2018, 
and then it was simulated via using the finite element analysis in software ANSYS 
18.2. The purpose was to forecast the y-axis output displacement and safety factor of 

Fig. 5   Model: a beetle-liked platform, b design parameters
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the CPP. To perform this analysis, the automatic meshing method was applied, and 
then flexure hinges was refined to achieve a good analysis precision, as illustrated in 
Fig. 7. The boundary conditions were proposed as follows: the platform was fixed at 
the holes. After a draft platform was designed, the output displacement of the model 
was investigated by varying the input displacement of translational screw from 190 
to 220 µm, respectively in order to check the limitation of static failure and limit 
maximal input displacement for initial positioning stage.

In order to check the limitation of plastic deformation failure and determine the 
range of input displacement for the proposed stage, the input displacement from 
translational screw was varied from 190 to 220 µm. The corresponding output dis-
placement was recorded. The results of Table 2 found that the output displacement 
approaches 3.8193 mm with respect to input displacement of 220 µm. This case, the 

Fig. 6   Nanoindentaion testing instrument

Fig. 7   Mesh generation diagram for the CPP
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safety factor was lower than 1 and the resulting stress was about 503.13 MPa which 
was greater than the critical stress or yield strength of the material (503 MPa), the 
platform could lead a plastic deformation failure. Therefore, the maximal input dis-
placement should be smaller than 220 µm. Meanwhile, when the input displacement 
of 190  µm, the resulting stress was approximately 434.52  MPa which was lower 
than the yield strength of material. The safety factor was about 1.15. In this study, 
a safety factor over 1.5 was desired so as to ensure a good working life for the plat-
form. As a result, the input displacement was proposed within the range from 10 to 
180 µm. By varying the input displacement from 10 to 180 µm, the output displace-
ment in the X-and-Y directions and the parasitic error motion were calculated using 
Eq.  (3). As given in Table 3, the parasitic error motion was relatively small. The 
results also depicted that the equivalent stress was 297.31 MPa, safety factor was 

Table 2   The output displacement

Input displacement 
(mm)

Output displacement 
(mm)

Amplification 
ratio

Safety factor Von-mises 
stress (MPa)

0.19 3.2985 17.36 1.1576 434.52
0.2 3.4721 17.36 1.0997 457.39
0.21 3.6457 17.36 1.0473 498.13
0.22 3.8193 17.36 0.99973 503.13

Table 3   Results of output displacement and parasitic error motion

Input displacement 
(mm)

y-axis output displacement 
(mm)

x-axis output displacement 
(mm)

Parasitic error (%)

0.01 0.17361 2.6303e−005 0.01515
0.02 0.34721 5.2606e−005 0.01515
0.03 0.52082 7.8908e−005 0.01515
0.04 0.69442 1.0521e−004 0.01515
0.05 0.86803 1.3151e−004 0.01515
0.06 1.0416 1.5782e−004 0.01515
0.07 1.2152 1.8412e−004 0.01515
0.08 1.3888 2.1042e−004 0.01515
0.09 1.5625 2.3673e−004 0.01515
0.1 1.7361 2.6303e−004 0.01515
0.11 1.9097 2.8933e−004 0.01515
0.12 2.0833 3.1563e−004 0.01515
0.13 2.2569 3.4194e−004 0.01515
0.14 2.4305 3.6824e−004 0.01515
0.15 2.6041 3.9454e−004 0.01515
0.16 2.7777 4.2084e−004 0.01515
0.17 2.9513 4.4715e−004 0.01515
0.18 3.1249 4.7345e−004 0.01515
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1.6969, amplification ratio (AR) was 17.3608. However, all results do not meet prac-
tical requirements (AR is more than 18). Therefore, an optimization process would 
be conducted later.

When the platform moved along the y-axis, there was also a motion occurs 
along the x-axis and at the same time. The undesired movement along the x-axis 
was called as parasitic motion error. A similar analysis, the numerical simula-
tion results indicated that parasitic motion error is very small with 0.01515% 
(lower than 1%), as illustrated in Table 3. It could be concluded that the parasitic 
motion error does not affect significantly to the output displacement accuracy 
and the proposed platform approaches a good linear movement. The parasitic 
motion error was defined as follows:

where e represents the parasitic error, x and y are the output displacements along the 
x-axis and y-axis, respectively.

4 � Statement of optimization problem

Because the CPP was worked according to elastic deformation of flexure-based joints. 
As a result, it was affected significantly by geometrical dimensions of flexure-based 
joints. These dimensions were defined as length of first lever, distance between two 
levers and thicknesses of flexure hinges. Therefore, in order to enhance the quality 
responses of the CPP, the main geometrical parameters of the platform should be opti-
mized. The CPP should fulfill the following essential responses as:

a.	 A small parastitic motion to increase the accuracy in linear motion;
b.	 A large output displacement to expand broad positioning capacity of the platform 

for checking characteristics of material sample;
c.	 A high safety factor to ensure long life of the platform.

A small parasitic error could be achieved via a good design of structure, as described 
in Sect. 3. However, the displacement and safety factor were difficult to satisfy through 
a design process. So, it should be enhanced through a further optimization. As known, 
the safety factor was conflicted with the output displacement. Therefore, so as to trade-
off them simultaneously, a new efficient hybrid approach was developed in this study.

4.1 � Design variables

Through a few FEA simulations to check initial characteristics, the result showed that 
the geometric dimensions of flexure hinges were significantly contributed to the dis-
placement and safety factor. In this research, four design variables were considered, 
consisting of the length of first lever, distance between two levers as well as thicknesses 
of flexure hinges. The vector of design variables was described as � = [t, h, b, k]T . The 

(3)e =
x

y
100%
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limit conditions for the design variables were established based on specialized knowl-
edge and design engineer’s professional skills, which were expressed by:

where t, h, b, k are thickness of flexure hinge (amplification mechanism), distance 
between two levers, the length of first lever, thickness of flexure hinge (beetle’s leg 
mechanism), respectively.

4.2 � Objective functions

The following multiple-criteria functions were considered: (1) the first objective 
function, y1(�) , the high safety factor is required to ensure the strength of the plat-
form, requested as high as possible. (2) The second objective function,y2(�) , the 
output displacement along the y-axis, desired as large as possible in order to expand 
working travel capacity of the platform for checking characteristics of material sam-
ple. In conclusion, the optimization trouble was depicted as follows.

Design variables was regarded as � = [t, h, b, k]T.

In order to conduct the multi-criteria optimal problem, two objective responses 
are conveyed into a single criterion function. Then, two objective functions were 
multiplied with a weight factor. The integrated objective function was declared as 
follows:

where w1 and w2 are the weight factors of two quality responses, respectively.

4.3 � Constraints

The proposed platform was operating in a elastic bound of proposed material, it was 
required to limitations by:

where σy is the yield strength of proposed material; and SF is the safety factor.
The safety factor was expected to larger than 1.5 as:on the established

The output displacement was desired to more than 2.3 mm as:

(4)

48 mm ≤ b ≤ 53 mm

19 mm ≤ h ≤ 22.5 mm,

0.9 mm ≤ t ≤ 1.1 mm

0.67 mm ≤ k ≤ 0.74 mm

(5)Max y1(�)

(6)Max y2(�)

(7)y(�) = −w1 × y1(�) − w2 × y2(�),

(8)g(x) = � ≤
�y

SF
,

(9)y1(�) ≥ 1.5.
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where y1 and y2 represent the safety factor and displacement, respectively.

5 � Proposed hybrid approach

Considering to solve the multi-criteria optimization problem as mentioned, an effective 
hybrid approach of the RSM, the TM, improved ANFIS and TLBO was developed. 
Firstly, the experimental data was collected by RSM. Later on, the improved ANFIS 
was utilized to define relationship between design variables and quality responses. The 
improved ANFIS was achieved by using the TM. Based on minimization of the RSME, 
the TM was used to seek the suitable controllable parameters for ANFIS structure. 
Those parameters included as: (1) the number of input membership functions (MFs) of 
the fuzzy logic, (2) types of input MFs, (3) the training method such as hybrid proce-
dure or backpropagation, and (4) type of output MFs. Details about ANFIS, the read-
ers can refer to (Cheng and Wei 2009; Linh and Dao 2018; Chau et al. 2018). Finally, 
based on the established surrogate model from the improved ANFIS, TLBO algorithm 
was adopted to conduct multi-criteria optimization, simultaneously. The programing 
was implemented in Matlab R2017. A flowchart for optimal process of the CPP was 
illustrated in Fig. 8. The optimization process is divided into key phases as follows:

Phase 1: computer aided engineering design
Step 1: Define optimization problem
Multi-objective optimization problem for the proposed CPP was proposed to 

enhance two mentioned quality responses, simultaneously.
Step 2: Define design variables and objective functions
The length of first lever, distance between two levers and thickness of compliant 

joints were determined as input variables. The quality characteristics were consid-
ered, including a large output y-axis displacement and a high safety factor.

Step 3: Create 3D model and simulations
A 3D model is designed by using finite element method (FEM). During the anal-

ysis, the relationship between stress and strain was calculated as follows:

where σ, E, ε are stress, Young’s modulus and strain, respectively.
Step 4: Test initial quality characteristics by FEM simulation
Initial quality characteristics were checked many times in order to limit suit-

able upper and lower bounds of design variables and two quality output responeses 
before building design of experiments.

Step 5: Build design of experiments and collect data by integrating of RSM and 
FEM

The numerical experimentations were collected based on RSM and FEM. Firstly, 
based on a initial checked 3D model was designed and checked in the FEM in the 

(10)y2(�) ≥ 2.3 mm

(11)� = E�,
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step 3 and 4. Then, the number of numerical experiments were established via using 
the central composite design integrated with RSM. Later on, the estimated results 
for the quality responses were retrieved. The number of necessary experiments was 
determined by the following equation:

where N was the total of the design points, k was the number of design variables, f 
was the factorial number (f = 0), and nc = 1 was the number of replicates at the cen-
tral point of the design space. In this research, k = 4, the factorial number for this 
circumstance of four design variables is f = 0. Replacing these values into Eq. (12), 
overall 25 design points are needed for the design of experiments.

(12)N = 2(k−f ) + 2k + nc,

Fig. 8   Flowchart of multi-criteria optimization for compliant positioning platform
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Phase 2: define the weight factor
The two quality responses were conflicted. In addition, they had different important 

weights. Therefore, each objective function can established a WF. So far, the WF was 
defined according to a design experiences and specialized knowledge. So, in order to 
calculate the WF more accurately, we followed the methods of Dao et al. (2017a, b) 
to compute the WF for each response. Details about the WF computing equations, the 
readers can refer to Dao et al. (2017a, b). Every response function is normalized in the 
range [0, 1]. The WF is computed as follows:

(1)	 Compute signal-to-noise ratio (S/N)

The S/N ratio is established by the TM and it illustrates a better ability correspond-
ing to a larger S/N ratio value. The-larger-the-better is utilized for two reponses in 
this study, which was expressed by:

where n is the number of repetitions of experiment ith, y is the quality feature

(2)	 Normalize the S/N ratio

The normalized S/N ratios of each grade of each response function are computed by:

where �i illustrates the S/N value, max�i and min�i are the highest and smallest val-
ues of �i , respectively, zi is the normalized value of S/N for the experiment ith of 
response function (j = 1, 2, …, k), k is the number of response functions.

(3)	 Compute the mean value of normalized S/N ratios

The mean value of normalized S/N ratios at every grade for design variables were 
calculated for response functions. The S/N ratio values are normalized and the 
mean value of normalized S/N ratios can be defined as follows:

where NLji is number of repetition of grade ith. zij is the value of S/N ratio of grade 
ith of response function jth. aLi is the mean value of S/N ratio of grade ith of every 
design variable of every response function.

(13)� = −10 log

(
1

n

n∑
i=1

1

y2
i

)
,

(14)zi =
�j −min�j

max�j −min�j
,

(15)aLi =
1

NLi

m∑
i

zij,
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(4)	 Calculate the range of each input variable

The range of the every grade of every input variable was defined as following 
equation:

where rij is the range (max–min) of the S/N value for every grade of every param-
eter, j = 1, 2,… q , q is the number of input variables, m = 1, 2,… l , l is the number 
of experimental grade of every input variable.

(5)	 Define the weight factor

The weight factor (WF) is computed by:

where wi ( wi ≥ 0 ) is the WF of each response function ith.
mOF is the number of response functions.

Generally, total of weight factor for total response functions are amounting to 1 
and the equation is expressed by:

Phase 3: adaptive neuro-fuzzy inference system
ANFIS is a multi-layer feed-forward network which utilizes integration of neu-

ral network and fuzzy reasoning rules based on the merits of both fuzzy logic and 
artificial neural networks. Fuzzy logic is based on the consideration that people do 
determinations according to unaccurate and non-numerical information (Tsai et al. 
2015; Bhattacharyya et al. 2015, Chau et al. 2018). The implementation of ANFIS 
architecture based on a first order Sugeno fuzzy inference system is more effective 
and rapid than the traditional methods as the error back propagation algorithm. In 
this paper, the fuzzy if–then rules can be described as:

where x1 and x2 are inputs corresponding A1 and A2 term set, y is output, p, q, r are 
constant.

The architecture of a representative ANFIS comprises of five layers, which con-
duct various operations in the ANFIS and are detailed below.

(1)	 Layer 1: This layer conducts a fuzzification to generate the membership grades 
of the inputs. The outputs of this layer are identified by:

(16)rij = max
{
zi,j,1, zi,j,2,… , zi,j,m

}
−min

{
zi,j,1, zi,j,2,… , zi,j,m

}
,

(17)wi =

∑q

j=1
rij∑mOF

i=1

∑q

j=1
rij
,

(18)
mOF∑
i=1

wi = 1,

(19)if x1 is A1 and x2 is A2, then y = p × x1 + q × x2 + r
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where x is input to node i, and Ai is linguistic label associated with this node 
function. Mi

1
 is the membership function of Ai.

(2)	 Layer 2: Each node in this layer is fixed node, marked by a circle and labeled П. 
Each node output can be expressed by:
	 

where wi is the firing strength of a rule.
(3)	 Layer 3: Each node in this layer is fixed node, marked by a circle and labeled N. 

The node function is normalized the firing strength by computing the ratio of 
the ith node firing strength to the sum of all rules’ firing strength.
	 

where w̄ is the normalized firing strength of rules.
(4)	 Layer 4: Each node in this layer is an adaptive node, symbolized by a square. 

Each node i is expressed by:
	 

where w̄i is the output of layer 3 and p, q, r are the parameters set, referred to as 
the consequent parameters.

(5)	 Layer 5: Each node in this layer is a fixed node marked 
∑

 , which calculates the 
total output as the sum of all incoming signals by:

The hybrid learning algorithm of the ANFIS integrate the gradient algorithm and 
the least squares method in order to update the parameters. Learning and modifying 
these adjustable parameters is the two-step process, which comprises a forward pass 
and a backward pass. In the forward pass, the premise parameters are hold fixed, 
node outputs go forward to layer 4. The consequent parameters are defined by the 
least squares.

Moreover, the four design parameters, including length of first lever, distance 
between two levers and thickness of compliant joints, t, h, b, k contributed the high-
est impact on two quality characteristics, comprising the y-axis displacement and 
the safety factor. Therefore, the architecture of ANFIS for the CPP is expanded, as 
depicted shown in Fig. 9.

As depicted in Fig. 9, five network layers are utilized by ANFIS to conduct the fol-
lowing fuzzy inference steps: (1) input fuzzification, (2) fuzzy set database con-
struction, (3) fuzzy rule base construction, (4) decision making, and (5) output 
defuzzification.

(20)Mi
1
= �Ai(x)

(21)wi = �Ai(x) × �Ai(y)… i = 1, 2, 3,… ,N

(22)w̄ =
wi

w1 + w2 + w3,… ,+wn

, i = 1, 2, 3,… ,N

(23)Mi
1
= w̄i fi(px + qy,… , r), i = 1, 2, 3,… ,N

(24)Mi
5
=
�
i

w̄i fi

∑
i

wi fi

wi
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Phase 4: TLBO algorithm
Based on the established surrogate models for objective functions by the 

improved ANFIS, the optimization process was implemented by TLBO algorithm. 
Operation principle of this algorithm mimics the teaching–learning ability of the 
trainer and learners in a classroom. The expected learning outcome of TLBO was 
the marks results of students depended on the ability of trainer. It forecasted that 
a good quality student is because of a perfect training based on a excellent trainer. 
Moreover, besides learning from the trainer, the students can study other intellectu-
ality from various members in class to enhance their marks. Courses were regarded 
as design variables and the student’s results were same the fitness value of the opti-
mal process. The algorithm includes two phases: (1) trainer phase where candidates 
were distributed at random over the search space and the best solution was deter-
mined and (2) student phase where solutions tried to get new intellectuality from 
communicating with various learners. Details of the TLBO could be found in Rao 
and Patel (2013), Rao et  al. (2011, 2012), Kumar and Singh (2018), Tawhid and 
Savsani (2018) and Singh et al. (2018).

Fig. 9   Proposed ANFIS for the compliant positioning platform
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6 � Results and discussion

6.1 � Collection of numerical data

First of all, a 3D model of the CPP was built via using FEM. A model was cho-
sen for analysis and optimization later. Because there were four design variables, 
the number of experiments were 25, which was generated by the central composite 
design through the RSM. Later on, the boundary conditions and input displacement 
were assigned for the proposed platform. Eventually, by integrating of FEM and 
RSM, the values of two quality characteristics were retrieved, as depicted in Table 4.

6.2 � Calculation of weight factor

Later on, the experimental data were conveyed to the S/N ratios utilizing Eq. (13), 
as shown in Table  5. The S/N ratios were then normalized utilizing Eq.  (14), as 

Table 4   Design of number of 
experiments and computational 
results

No. t (mm) h (mm) b (mm) k (mm) y1 (mm) y2

1 1.0 20.75 50.5 0.705 1.8324 2.3562
2 0.9 20.75 50.5 0.705 1.8382 2.3633
3 1.1 20.75 50.5 0.705 1.8237 2.3359
4 1.0 19.0 50.5 0.705 1.5594 2.3628
5 1.0 22.5 50.5 0.705 1.7083 2.2432
6 1.0 20.75 48.0 0.705 1.949 2.3107
7 1.0 20.75 53.0 0.705 1.7089 2.3064
8 1.0 20.75 50.5 0.670 1.8473 2.4058
9 1.0 20.75 50.5 0.74 1.828 2.3224
10 0.9 19.0 48.0 0.670 1.5241 2.3751
11 1.1 19.0 48.0 0.670 1.5599 2.3374
12 0.9 22.5 48.0 0.670 1.7716 2.2326
13 1.1 22.5 48.0 0.670 1.7351 2.2422
14 0.9 19.0 53.0 0.670 1.5141 2.4065
15 1.1 19.0 53.0 0.670 1.5624 2.3441
16 0.9 22.5 53.0 0.670 1.7048 2.2387
17 1.1 22.5 53.0 0.670 1.6972 2.2104
18 0.9 19.0 48.0 0.740 1.5264 2.2961
19 1.1 19.0 48.0 0.740 1.6359 2.2674
20 0.9 22.5 48.0 0.740 1.731 2.1849
21 1.1 22.5 48.0 0.740 1.7701 2.1933
22 0.9 19.0 53.0 0.740 1.5835 2.2922
23 1.1 19.0 53.0 0.740 1.5844 2.2415
24 0.9 22.5 53.0 0.740 1.6912 2.1562
25 1.1 22.5 53.0 0.740 1.6867 2.1446
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illustrated in Table 6. In this Table, the normalized S/N ratios for safety factor (η1) 
and the displacement (η2) were Z1, and Z2, respectively. Utilizing the Eqs.  (16) 
and 17, the WF for the displacement and safety factor were caculated, as shown in 
Tables 7 and 8, respectively. The WF of the safety factor was 0.4416 and the WF of 
displacement was 0.5584. Sum of two WFs were equal to one. Generally, the WF 
for each characteristic was assigned 0.5 but this value was not correct. This would 
lead unaccurate optimized solution. As a result, this paper suggested an effective 
approach to determine the WFs.

Table 5   The values of S/N ratios

No. Safety factor (η1) Displacement (η2) No. Safety factor (η1) Displacement (η2)

1 5.26040566 7.444243 14 3.60309119 7.6277173
2 5.28785524 7.4703771 15 3.87584461 7.3995227
3 5.21906796 7.3690849 16 4.63346873 6.999918
4 3.8591506 7.4685392 17 4.59466046 6.8894174
5 4.65128282 7.0173599 18 3.67336715 7.219816
6 5.79623678 7.2748713 19 4.27513505 7.1105628
7 4.654333 7.2586926 20 4.76594136 6.7886313
8 5.3307486 7.6251904 21 4.95995604 6.8219608
9 5.23952383 7.3187405 22 3.99236135 7.2050502
10 3.66026926 7.513638 23 3.99729667 7.0107749
11 3.86193516 7.3746608 24 4.5638994 6.6737808
12 4.96731343 6.9762184 25 4.5407569 6.626926
13 4.7864902 7.013487

Table 6   The normalized S/N 
ratios (zi)

No. Z1 of η1 Z2 of η2 No. Z1 of η1 Z2 of η2

1 0.7557 0.8167 14 0.0000 1.0000
2 0.7682 0.8428 15 0.1244 0.7720
3 0.7368 0.7416 16 0.4698 0.3727
4 0.1168 0.8409 17 0.4521 0.2623
5 0.4779 0.3901 18 0.0320 0.5924
6 1.0000 0.6474 19 0.3064 0.4833
7 0.4793 0.6313 20 0.5302 0.1616
8 0.7878 0.9975 21 0.6187 0.1949
9 0.7462 0.6913 22 0.1775 0.5777
10 0.0261 0.8860 23 0.1797 0.3835
11 0.1180 0.7471 24 0.4381 0.0468
12 0.6220 0.3490 25 0.4275 0.0000
13 0.5396 0.3863
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6.3 � Establishment of ANFIS model

ANFIS is same to a good black box or surrogate model where maps multiple inputs 
and outputs. In this paper, four design variables affected significantly to the two 
quality responses and the mathematical equations between them were complicated 
to set up. Therefore, ANFIS was an suitable tool for this research.

Basically, the controllable parameters of ANFIS could be used as default but 
some were suitable and others were not appropriate for the proposed CPP. For exam-
ple, the MFs have a few common types such as trimf, trapmf, gbellmf, gaussmf, 
sigmf, and pimf. This simulation takes a lot of time but the retrieving solutions may 
be not reliable. To suppress this effect and make a good result, the suitable MFs 
were determined by optimizing the RMSE which was used as a performance crite-
rion of ANFIS structure. Moreover, the ANFIS algorithm also depends on the train-
ing method, the number of MFs, and the type of output MFs.

To do an optimization for the RMSE, the controllable parameters of proposed 
ANFIS were identified and divided into their levels based on the specialized intel-
lectuality and design engineer’s experiences, as depicted in Table 9. The number of 
input MFs were divided into levels as 3, 4, 5, 6 MFs. Moreover, the trimf, trapmf, 
gbellmf, and gaussmf were used as levels of the types of input MFs. The optimal 
learning method for the proposed ANFIS structure was divided into as hybrid learn-
ing procedure and backpropagation. Final sensitive factor of ANFIS structure was 
the types of output MFs that separated into constant or linear value. It was dif-
ficult to say which ones were the better for the ANFIS algorithm. As a result, an 

Table 7   The weight factor for 
the safety factor

Level The mean value of normalized S/N ratios of each 
level

A B C D

Level 1 0.3404 0.1201 0.4215 0.3489
Level 2 0.6234 0.7534 0.6270 0.6192
Level 3 0.3893 0.5085 0.3054 0.3840
Range rij 0.2829 0.6333 0.3217 0.2704
Weight factor for the safety factor: w1 = 0.4416

Table 8   The weight factor for 
the y-axis displacement

Level The mean value of normalized S/N ratios of each 
level

A B C D

Level 1 0.5366 0.6981 0.4942 0.6414
Level 2 0.7165 0.7669 0.7601 0.7015
Level 3 0.3893 0.2404 0.4496 0.3479
Range rij 0.3272 0.5265 0.3105 0.3536
Weight factor for the displacement: w2 = 0.5584
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appropriate approach to determine these sensitive parameters of ANFIS was based 
on statistics and the TM.

Based on four parameters and their levels, an orthogonal array design L16 (4^2 & 
2^2) was made to construct the 16 different training experiments for the ANFIS. The 
data of the y-axis displacement in the Table 4 would be conducted as training data 
and these data were trained in the ANFIS algorithm. And then, the RMSE values were 
determined and S/N ratios were computed using the TM. The results of RMSE and 
S/N ratios for the safety factor were calculated using the TM, as shown in Table 10.

To identify the optimal RMSE of the safety factor for the further ANFIS struc-
ture, the mean response of S/N ratios and main diagram of effects of each param-
eters were solved. From the results in Table 11 and Fig. 10, the optimal parameters 
were determined at the number of input MFs of 4, trapmf, hybrid learning method, 
and linear output MFs. The results also found that the optimal S/N ratio of RMSE is 
134.833, as given in Table 12. This value was largest value compared with the val-
ues in Table 10. It proved that a larger S/N ratio is corresponding to a better solution.

Table 9   The levels of controllable factors for the RMSE 

Factors Symbol Level 1 Level 2 Level 3 Level 4

Number of input MFs A 3 4 5 6
Types of input MFs B rimf trapmf gbellmf gaussmf
Optimal training method C Hybrid Backpropa
Types of output MFs D Constant Linear

Table 10   Orthogonal array design L16 for the RMSE of the safety factor

No. A B C D RMSE for y1 S/N ratios for y1 (dB)

1 3 trimf Hybrid Constant 1.6991E−06 115.3956
2 3 trapmf Hybrid Constant 1.6991E−06 115.3956
3 3 gbellmf Backproba Linear 0.97701 0.20202
4 3 gaussmf Backproba Linear 0.96576 0.302616
5 4 trimf Hybrid Linear 1.8333E−07 134.7353
6 4 trapmf Hybrid Linear 1.8128E−07 134.833
7 4 gbellmf Backproba Constant 1.6881 − 4.54796
8 4 gaussmf Backproba Constant 1.6878 − 4.54642
9 5 trimf Backproba Constant 1.6832 − 4.52271
10 5 trapmf Backproba Constant 1.6831 − 4.5222
11 5 gbellmf Hybrid Linear 7.1854E−06 102.871
12 5 gaussmf Hybrid Linear 2.4086E−06 112.3647
13 6 trimf Backproba Linear 1.097 − 0.80413
14 6 trapmf Backproba Linear 1.0906 − 0.75331
15 6 gbellmf Hybrid Constant 7.1147E−06 102.9569
16 6 gaussmf Hybrid Constant 6.5819E−06 103.633
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Similarly, the optimizing process for the RMSE of displacement was carried 
out. The RMSE results for the displacement were given in Table  13. Based on 
the mean response for S/N ratios for the RMSE of safety factor and main diagram 
of effect in Table 14 and Fig. 11, the optimal controllable parameters for further 
ANFIS structure were found at the number of input MFs of 4, the trapmf, hybrid 
learning method, and linear output MFs. Also in Table  15, the optimal results 

Table 11   Mean response for S/N 
ratios for the RMSE of the safety 
factor

Level A B C D

1 0.48569 0.66339 1.35907 0.84278
2 0.84398 0.66628 0.00000 0.51630
3 0.84158 0.69343
4 0.54690 0.69505
Delta 0.35828 0.03166 1.35907 0.32648
Rank 2 4 1 3

Fig. 10   Response diagram of the RSME of the safety factor

Table 12   Prediction of optimal 
RMSE of of the safety factor

Settings Optimal S/N ratio (dB) of RMSE

A B C D

4 trapmf Hybrid Linear 134.833
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depicted that the optimal RMSE is approximately 132.1082 being higher than the 
S/N ratio values in Table 13. This means that the optimal RMSE is accepted.

The ANFIS regularly uses the typical membership functions such as Gaussian, 
sigmoidal, triangular, trapezoidal, and bell types. Therefore, it is difficult to seek 
the suitable appropriate MFs. In this study, based on the results on Tables 9, 10, 
11, 12, 13, 14 and 15, the trapezoidal was suitable for an improved ANFIS struc-
ture for modeling the CPP. The trapezoidal membership function was expressed 
by:

(25)𝜇A(x, a, l, r, b) =

⎧⎪⎨⎪⎩

(x−a)

(l−a)
a ≤ x ≤ l

1 l < x < r
(x−b)

(r−b)
r ≤ x ≤ b

,

Table 13   Orthogonal array design L16 for the RMSE of the displacement

No. A B C D RMSE of y2 S/N ratios for y2 (dB)

1 3 trimf Hybrid Constant 2.29E−06 112.8109
2 3 trapmf Hybrid Constant 2.29E−06 112.8109
3 3 gbellmf Backproba Linear 1.5641 − 3.88529
4 3 gaussmf Backproba Linear 1.5527 − 3.82175
5 4 trimf Hybrid Linear 2.3E−07 132.7613
6 4 trapmf Hybrid Linear 2.48E−07 132.1082
7 4 gbellmf Backproba Constant 2.2768 − 7.1465
8 4 gaussmf Backproba Constant 2.2766 − 7.14573
9 5 trimf Backproba Constant 2.2721 − 7.12855
10 5 trapmf Backproba Constant 2.272 − 7.12817
11 5 gbellmf Hybrid Linear 1.02E−05 99.82715
12 5 gaussmf Hybrid Linear 2.73E−06 111.2694
13 6 trimf Backproba Linear 1.6419 − 4.30693
14 6 trapmf Backproba Linear 1.6341 − 4.26557
15 6 gbellmf Hybrid Constant 9.25E−06 100.6794
16 6 gaussmf Hybrid Constant 8.63E−06 101.2775

Table 14   Mean response for 
S/N ratios for the RMSE of the 
displacement

Level A B C D

1 0.77920 0.95733 1.93629 1.13719
2 1.13835 0.96023 0.00000 0.79910
3 1.13603 0.97653
4 0.81900 0.97850
Delta 0.35915 0.02117 1.93628 0.33809
Rank 2 4 1 3
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where μA depicts the MFs of the fuzzy set; a, b, l and r represent parameters; and x is 
variable. The shape of trapezoidal MFs were given, as illustrated in Fig. 12. 

After the suitable controllable parameters of ANFIS were determined based on 
the TM, the improved ANFIS structure was generated, as illustrated in Fig. 13. 

Fig. 11   Response diagram of the RSME of the y-axis displacement

Table 15   Prediction of 
optimal RMSE of of the y-axis 
displacement

Settings Optimal S/N ratio (dB) of RMSE

A B C D

4 trapmf Hybrid Linear 132.1082

Fig. 12   Shape of trapezoidal membership function
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The number of linear parameters were 1280, as seen in this Table 16. By contrast, 
the number of nonlinear parameters were 48. If a analytical approach was uti-
lized, many parameters can not determine accurately. In conclusion, ANFIS was 
the suitable method to apply for the suggested CPP. 

6.4 � Optimal results

After gaining the WFs and the surrogate models for two objective functions, the TLBO 
was utilized to optimize the CPP. The optimization process was conducted utilizing 
Matlab 2017. The initial parameters including population size of 30 as well as tolerance 
of 10−6 were utilized for the TLBO. The optimized results were produced at the genera-
tion of 79. The optimization input variables were detected at xval = [0.67 0.9 19 53] and 
fval = − 2.01241668736275. The optimized solutions were corresponding to t = 0.9 mm, 
h = 19 mm, b = 53 mm, k = 0.67 mm, y1= 1.514097 and y2 = 2.406501242 mm.

Fig. 13   Model for improved ANFIS structure

Table 16   ANFIS parameters Number of nodes 551

Number of linear parameters 1280
Number of nonlinear parameters 48
Total number of parameters 1328
Number of training data pairs 25
Number of testing data pairs 0
Number of fuzzy rules 256
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6.5 � Sensitivity analysis

Statistical technique was utilized to identify the effect grade of variables on the 
quality responses. As seen in Figs. 14 and 15, factor t illustrated that in the range 
from 0.9 to 1 mm, this parameter affected to y1 and y2 in increasing gradually, but 
in the range from 1 to 1.1 m, it caused gradually to y1 and y2 a reduction. Moreo-
ver, factor h showed that in the range from 19 to 20.75 mm, it affected a sharp 
rise to y1 and caused a slight rise to y2, however, from 20.75 to 22.5 mm, there 
was a gradual reduce to y1 and a sharp reduce to y2.

Fig. 14   Effect diagram of t and h on the safety factor

Fig. 15   Effect diagram of t and h on the output displacement
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As drawn in Figs. 16 and 17, factor b indicated that in the range from 48 to 50.5 mm, 
it affected a gradual rise to y1 and y2, but, from 50.5 to 53 mm, there was a both grad-
ual reduce to y1 and y2. Eventually, factor D illustrated that in the range from 0.67 to 
0.705 mm, it affected gradual rise to y1 and caused a slight rise to y2, however, from 0.6 
to 0.7 mm, there was a both gradual decrease to y1 and y2.

In conclusion, overall effects of design variables were showed, as in Fig.  18. It 
reveals an increase and decrease range in each factor. Therefore, the designers could 
control the factors so as to obtain a best structure for the proposed CPP.

Fig. 16   Effect diagram of b and k on the safety factor

Fig. 17   Effect diagram of b and k on the displacement
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7 � Verifications

To verify the optimized characteristics of the suggested CPP, the numerical simula-
tions and experiments were carried out. Using the optimal parameters (t = 0.9 mm, 
h = 19 mm, b = 53 mm, k = 0.67 mm), a 3D model was designed in Inventor software 
and imported into ANSYS software in order to conduct simulations. The meshes of 
flexure hinges were refined to enhance the accuracy of analysis quality. And then, 
using the optimal design variables, the prototype of the CPP platform was fabricated 
by wire electrical discharged machining. As shown in Fig. 19, the experiments were 
implemented as follows: an input displacement was driven translational screw mech-
anism measured displacement by Digital dial indicator 1 (High precision 0.001 mm, 
543-390B, Mitutoyo Japan). In addition, output displacement was measured by 
Digital dial indicator 2 (High precision 0.001 mm, 543-390B, Mitutoyo Japan) and 
Digital dial indicator mounted Magnetic base (Mitutoyo Japan).

As seen in Table 17, the maximum of the y-axis probed deformation was 2.427 mm 
and the minimum of safety factor was 1.526. Based on the FEA result, the error 
between predicted result of optimal result is small: the error of safety factor is 0.786%. 
In addition, Table 17 illustrates that an error between optimal result and FEA test is 
also small: error of the probed displacement between optimal result and FEA result 
is 0.824% and between experimental result and FEA result is 7.581%. It means that 
there is a good agreement between the forecasted values and validations. Meanwhile, 
there were also some sources such as meshing, fabricating and material errors that 
could reduce these errors. Therefore, the suggested integrated optimal algorithm was 
reliable and effectual to optimize the CPP. Therefore, the proposed hybrid approach of 

Fig. 18   Sensitivity diagram of the parameters on the responses
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FEM-based RSM, TM, improved ANFIS, and TLBO is enough reliable to search the 
optimal solution in this study. The experimental process was conducted 10 times and 
computed average values for experimental results.

The strong abilities of the positioning platform are summarized by: it allowed to 
gain working travel approximately 2406 µm, a displacement amplification ratio of more 
than 18 times. Compared with some previous researches, the proposed platform had a 
better working stroke. In conclusion, the results demonstrated that two referred regards 
are precise as the supposed theory. It can conclude the highlight performances as fol-
lows: (a) proposed platform allowed to achieve high displacement while safety factor is 
also more than 1.5 in order to ensure the platform working in the elastic condition and 
(b) the output displacement of the positioning platform is more than 18 times the input 
displacement. Figure 20 indicates relationship between input displacement and output 
displacement for FEA results and experiment results, respectively.

8 � Conclusions

This paper proposed an efficient hybrid optimization approach for the compliant 
positioning platform. The CPP was expected to locate the sample during nanoin-
dentation tester. The proposed CPP was integrated the four-lever mechanism 
amplifier and beetle-liked structure. The platform imitated the biomechanical 

Fig. 19   Experimental installation for the prototype

Table 17   Comparison among the optimization, FEA, and experimental results

Characteristics Optimi-
zation 
result

FEA result Experi-
mental 
result

Error (%) (between 
optimization and FEA 
results)

Error (%) (between FEA 
and experimental results)

y1 (mm) 2.406 2.427 2.243 0.824 7.581
y2 1.514 1.526 – 0.786 –
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behavior of beetle in order to reach a linear displacement and reduce parasitic 
motion.

To enhance the output displacement and safety factor simultaneously, the main 
geometric parameters of proposed CPP were optimized by an integration of the 
RSM, FEM, TM, improved ANFIS and TLBO. The RMSE was optimized by the 
TM to find suitable controllable parameters for the ANFIS structure. And then, the 
weight factor of both responses were calculated by establishing the sets of statisti-
cal-based equations. The results found that the WFs of safety factor and displace-
ment are 0.4416 (44.16%) and 0.5584 (55.84%), respectively. The WF’s values were 
assigned into the TLBO algorithm to conduct the multi-criteria optimal trouble. The 
sensitivity analysis as well as ANOVA were conducted to define the effects and sig-
nificant contributions of design variables on the two quality characteristics.

The results illustrated that the optimal parameters were found at t = 0.9  mm, 
h = 19  mm, b = 53  mm, k = 0.67  mm. In addition, the results indicated that the 
optimal safety factor is 1.5141 and the optimal displacement is approximately 
2.4065  mm. Moreover, the results depicted that the errors between the optimal 
results and the FEA validations for the safety factor and output displacement are 
0.786% and 0.824%, respectively. The error between experimental result and the 
forecasted result was about 7.581%. The proposed hybrid approach is useful and 
effective to carry out the multi-criteria optimal trouble for complex design.
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