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Abstract
The continuous adjoint method is formulated and utilized for the optimization of a 
static mixing device. The CFD tool used for the simulations is based on a two-phase 
model governing flows of two miscible fluids. The formulation of the corresponding 
continuous adjoint problem is presented and the computed gradients are utilized in 
an optimization loop. In specific, a multi-objective optimization problem is formu-
lated and solved for maximum mixture uniformity at the outlet and minimum total 
pressure losses inside a static mixing device. The weighted sum of these two quanti-
ties of interest is the objective function to be minimized by solving a single-objective 
problem. Through the solution of a number of optimization problems, with different 
weights each, the Pareto front of optimal solutions is computed. Two optimization 
approaches are employed taking the manufacturability of the final shape into con-
sideration, giving rise to different optimal designs to be discussed and compared. 
Differences in the efficiency and the optimal shapes between the two approaches are 
thoroughly discussed and compared.

Keywords Shape optimization · Continuous adjoint · Multi-objective optimization · 
Multiphase flow · Mixing model

1 Introduction

Nowadays, due to the continuous demand for designing energy efficient and high-
performance engineering systems and devices, the usage of optimization meth-
ods is of high importance. Regarding flow systems, in specific, Computational 
Fluid Dynamics (CFD) combined with optimization algorithms come in handy for 
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designing new models with higher performance measured by an appropriate objec-
tive function. The choice of the objective function together with the set of design 
variables, according to a shape parameterization scheme, is the first step. The opti-
mization intends to find the optimal value-set of the design variables that minimizes 
the objective function.

To find the optimal value-set of design variables, an efficient approach is to use 
gradient-based optimization methods, after computing the gradient of the objective 
function, to improve the existing geometry at each optimization cycle. These meth-
ods have good convergence properties and are cost-effective, with the risk of occa-
sionally being trapped into local minima and, of course, the extra burden to compute 
gradients. In the literature, there are many techniques on how to compute the gradi-
ent e.g. finite differences, complex variable method (Martins et al. 2003), automatic/
direct differentiation (Rall 1981); among them, the adjoint method (Pironneau 1984; 
Jameson 1988) is the most cost-efficient as the cost is independent from the number 
of design variables. This method allows the use of a rich parameterization, leading 
to a rich design space, being beneficial for the optimization.

There are two main approaches for the adjoint method (discrete and continuous) 
depending on whether the differentiation or discretization comes first; this paper 
relies upon the continuous adjoint method in which the system of equations is first 
differentiated to derive the adjoint to‘x the fluid flow differential equations; these 
are then discretized and numerically solved. The continuous adjoint method is well 
formulated in the literature for the single-fluid compressible and incompressible 
Navier-Stokes equations, including also the differentiation of various turbulence 
models and integrated into shape and topology optimization frameworks that can 
successfully optimize even complex geometries as demonstrated by Jameson (1988), 
Anderson and Venkatakrishnan (1999), Papoutsis-Kiachagias and Giannakoglou 
(2014) and the papers cited there.

In cases involving two or more fluids, a multiphase model considers the interac-
tions between them. There is a variety of models on how to cope with the existence 
of more than one fluids in the same computational domain (Hirt and Nichols 1981; 
Brennen 2005; Ishii and Hibiki 2011; Drew 1983; Manninen 1996). The most suit-
able model depends mostly on the nature of the fluids (miscible or immiscible), the 
way they interact (formation or not of a discrete interface) and their concentrations 
inside the fluid domain (if one of the phases could be considered dispersed, formula-
tions that treat the dispersed phase as particles might be needed).

This paper is dealing with cases with (two) miscible fluids and uses a Eulerian 
description for the simulation of flows inside static mixing devices. These are motion-
less structures (also called mixers) used for the continuous blending of fluids inside a 
pipeline and are met in a wide range of different applications, from wastewater treat-
ment to chemical processes and medical applications. Their role is to secure high mix-
ing for liquids traveling through a pipeline by enforcing flow recirculation through sev-
eral baffles (or blades) placed inside the pipeline. It is essential, especially for chemical 
engineering applications, to have a uniform flow at the exit of the pipeline. It is also 
important to have the smallest possible total pressure losses in order to reduce energy 
consumption. There are several papers dealing with the optimization of static mixing 
devices for improving mixture uniformity (Regner et al. 2006; Byrde and Sawley 1999; 
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Hanada et al. 2016) and/or total pressure drop (Hirschberg et al. 2009; Song and Han 
2005), though none of them uses the adjoint method, at least to the author’s knowl-
edge. In detail, Regner et al. (2006) makes a parametric study comparing the efficiency 
of two commercial static mixer geometries in different flow regimes. Similarly, Byrde 
and Sawley (1999) derived correlation graphs between the twist angles of the blades 
of a mixer and the total pressure losses and mixing efficiency. Hanada et  al. (2016) 
presents a parametric study in which, by changing the pitch and diameter of the com-
ponents of a time-difference-type mixer, a configuration that achieves up to 40% reduc-
tion in total pressure drop between the branch paths was found. Finally, Song and Han 
(2005) proposed a correlation between geometry and total pressure drop inside a Ken-
ics type static mixer, by also investigating its efficiency for different Reynolds numbers, 
whereas Hirschberg et al. (2009) validated the improvement in total pressure losses for 
a modified Sulzer SMX mixer.

In this paper, a method for optimizing static mixing devices, through the develop-
ment of a continuous adjoint to a two-phase flow model that allows the computation 
of gradients of the mixing device geometry is proposed. A two-phase model is used 
for a laminar steady-state flow of two incompressible fluids, assuming a Fickian diffu-
sion between them. The optimization focuses on finding optimal shape configurations 
for the baffles inside the mixing device by also respecting a set of manufacturing con-
straints. The objective function(s) gradients over the surface of the baffles, combined 
with a shape deformation tool, are parts of a gradient-based optimization framework 
used to optimize a static mixing device. The optimization problem is formulated with 
two objective functions, namely mixture uniformity ( FU ) and total pressure losses ( FP ), 
combined into a single one using weights; optimization runs with different combina-
tions of weights lead to the Pareto front of optimal solutions.

2  Two‑phase model description

The two-phase flow model conservation includes the continuity, the momentum and a 
phase transport equation for the mixture, assuming a laminar flow and steady-state con-
ditions (Ishii and Hibiki 2011; Manninen 1996).

where vi are the velocity components, p is the static pressure, � is the density, � is 
the dynamic viscosity and �ij =

�vi

�xj
+

�vj

�xi
 is the strain tensor of the mixture. � is the 

(1)Rp = −
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�xi
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volume fraction of the mixture and D is the mass diffusivity coefficient. Equation 3 
is equivalent to Fick’s law of diffusivity. D depends on the fluid characteristics, such 
as the temperature, the viscosity and the size of the fluid molecules. Diffusivity coef-
ficients of one substance into the other are commonly determined experimentally 
and presented in reference tables (Cussler 2009), from which a representative value 
is chosen based on the densities and viscosities of the two fluids. Throughout this 
paper, repeated indices imply summation according to Einstein’s convention.

For the closure of the above system, the mixture density and viscosity are linear 
combinations of �i and �i which are the constant density and viscosity values for 
each of the two fluids, based on the volume fraction �,

Note that, even if both fluids are assumed to be incompressible, this does not mean 
that the mixture has a constant density: in fact, there is a non-uniform spatial distri-
bution of density depending on the local values of the volume fraction. This does 
not allow to neglect ��

�xi
 in the above equations as standard incompressible flow solv-

ers do; the same is valid for the spatial derivatives of �.
The static mixing device comprises of walls, inlets and outlets. Dirichlet condi-

tions for vi and � together with zero Neumann conditions for p are imposed at the 
inlet(s). For the solid walls, Dirichlet conditions for vi together with zero Neumann 
conditions for p and � are imposed. In addition, zero Neumann conditions for vi and 
� together with a Dirichlet condition for p are imposed at the outlet(s).

3  Continuous adjoint method

The gradient of the objective function with respect to (w.r.t.) the design variables 
bn = [b1, b2,… , bN] controlling the shape is computed by the continuous adjoint 
method. The objective functions are expressed in a generic form as surface integrals 
(Papoutsis-Kiachagias and Giannakoglou 2014),

where SI is the inlet and SO the outlet boundary of the flow domain � . The first 
objective function this paper is dealing with, is the volume-averaged mixture uni-
formity at the outlet, written as

where ni is the unit outward normal vector to the boundary and �̄� is the mean value 
of � at the outlet,

(4)� = ��1 + (1 − �)�2

(5)� = ��1 + (1 − �)�2

(6)F = ∫SI

FSI,i
nidS + ∫SO

FSO,i
nidS

(7)FU =
1

2 ∫SO

vini(𝛼 − �̄�)2dS

(8)�̄� =
1

|SO| ∫SO

𝛼dS



635

1 3

Optimization of a static mixing device using the continuous…

For a steady state simulation, �̄� depends on the inlet mass-flow of the two phases. 
Accordingly, for the (volume-averaged) total pressure losses, the corresponding 
objective function is

Both FU and FP should be minimized. To do so, the two objectives are combined 
into a single one as follows

where w1 and w2 are user-defined weights.
For the differentiation of the objective function, the total variation � on any quan-

tity � is given by (Papoutsis-Kiachagias and Giannakoglou 2014)

so as to get

The augmented objective function Faug is defined as

where q, ui,� are the adjoint pressure, velocities and phase fraction accordingly. Faug 
is then differentiated w.r.t. the design variables bn

where S is the boundary of the domain � formed by inlet ( SI ), outlet ( SO ) and 
parameterized ( SWP

 ) solid walls. The last term in Eq. 14 is the Leibniz term which 
is herein neglected under the assumption that the residuals of the field equations are 
asymptotically zero along the domain boundary. Nevertheless, as demonstrated by 
Kavvadias et al. (2015), this term can be important especially in cases with coarse 
computational meshes.

The application of the Green–Gauss theorem to the volume integrals of Eq. 14 
gives the following in a term-by-term basis. The first volume integral becomes
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where �� = �1 − �2 represent the density difference between the two phases. The 
second volume integral can be written as

where ��
ij
=

�ui

�xj
+

�uj

�xi
 is the adjoint strain tensor and �� = �1 − �2 is the dynamic vis-

cosity difference between the two phases. The third volume integral can be written 
as

In order to avoid the computation of the partial derivatives of the flow variables vi, p 
and � w.r.t. bn involved in the field integrals, their multipliers in Eq. 14 are set to zero 
giving rise to the system of the field adjoint equations 
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After satisfying the adjoint equations, the remaining terms in the gradient expres-
sion are

From Eq. 19, the adjoint boundary conditions are derived together with the expres-
sion of the sensitivity derivatives.

3.1  Adjoint boundary conditions

During the optimization, only the parameterized boundaries ( SWP
 ) are changing 

whereas the rest ( SI , SO ) remain fixed.
For the inlet ( SI ), ��∕�bn = ��∕�bn = 0 and �vi∕�bn = �ui∕�bn = 0 . Thus, the 

first two integrals in Eq. 19 are eliminated. The elimination of the third and fourth inte-
gral under the assumption of a uniform velocity distribution at the inlet imposes the 
following two conditions

where un is the normal to the boundary adjoint velocity component and uI
t
 and uII

t
 

are two tangential components forming a local Frenet trihedron with un . Finally, the 
elimination of the last integral in Eq. 19 imposes a zero Dirichlet condition for � at 
the inlet.

For the outlet ( SO ), �p∕�bn = �p∕�bn = 0 . So the fourth integral in Eq. 19 vanishes. 
Also, assuming a uniform velocity profile distribution at the outlet, the third integral 
vanishes as well. The rest of the terms in the first and second integrals are set to zero, 
resulting to the adjoint boundary conditions for � and ui at the outlet.
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Finally, for the parameterized walls ( SWP
 ), the first, third and fourth integrals in 

Eq. 19 vanish by setting

Since wall integrals are excluded from the objective functions (Eqs.  7, 9), it holds 
that

leading to a zero-Dirichlet and zero-Neumann conditions for ui and � , respectively.
For the second integral in Eq.  19, because of the zero-Dirichlet conditions for 

the primal velocity components, �vi∕�bn = 0 , the partial derivatives of the velocities 
w.r.t. bn read

Assuming that the tangential component of �xj∕�bn does not have an impact on sur-
face deformation, only its normal component is kept resulting in

Before deriving the final sensitivities expression, a brief analysis has to be made for 
the term ∫
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The first integral in Eq.  25 can be neglected because of the zero-Neumann con-
dition for � . The other two integrals contribute to the final sensitivity derivatives 
expression.

3.2  Sensitivity derivatives expression

After satisfying the adjoint field equations and their boundary conditions, the result-
ing terms in Eq. 19 stand for the sensitivity derivatives,

4  Optimization of a static mixing device

The developed method and software is applied to the shape optimization of a static 
mixing device. Figure 1 shows such a device which has two inlets and one outlet. It 
is equipped with seven baffles, evenly distributed in the axial direction, which force 
the flow to recirculate increasing, thus, the mixing procedure. The initial positions 
of the baffles across the mixer are demonstrated in Fig. 2. The material properties of 
the two fluids are listed in Table 1.

The duct has a length of 0.6 m and an inner radius of 0.1 m which is equal to the 
radius of the baffles. The mean Reynolds number of the flow is based on the mean 
values of viscosity and the mixture mass flow rate and is ∼ 450 . The computational 
mesh is unstructured and consists of 200 K cells with higher resolution refinement 
around the baffles in order to accurately capture the flow separation and recircu-
lation. These meshes have been tested to produce solutions which are insensitive 
to further refinement (studies not included in the paper). Figure  3 shows velocity 
streamlines in the initial geometry, colored by the velocity magnitude. In order to 
facilitate the weight selection process, one can define

(26)
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Fig. 1  Static mixer geometry. The colored zones are associated with the application presented in 
Sect. 4.2
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where F0

P
 and F0

U
 are the values of the mixture uniformity and total pressure losses 

of the initial static mixer geometry, respectively.
Two different optimization problems are solved and for each a different param-

eterization approach is considered. The first one considers that the axial positions 
of the baffles are fixed and seeks the optimal shape for each baffle that minimizes F 
for the given set of w̄1 and w̄2 . The second one seeks the optimal positional angle of 
each baffle, by keeping the same longitudinal distance between them. This means 
that each baffle is allowed to rotate around an axis with a fixed center of rotation. 
In both optimization runs, the baffles are retained planar, with a constant thickness 
for manufacturing reasons. The way geometry is parameterized and constraints are 
satisfied in each approach is explained below in detail. The first one is referred to as 
“in-plane” whereas the second one as “positional angle” optimization.

Fig. 2  Locations and geometry of the baffles in the initial geometry of the static mixer device

Table 1  Properties of the two 
fluids

Fluid n.1 Fluid n.2

Density (Kg/m3) 1500 1300
Kinematic viscosity  (m2/s) 1.5−5 1.3−5

Mass flow rate (Kg/s) 0.29 0.26

Fig. 3  Velocity streamlines in the initial geometry
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4.1  In‑plane optimization

For the in-plane optimization, only the baffles’ shapes are subject to deformation 
while the duct’s boundaries remain fixed. The goal is to re-design the profile of each 
baffle separately by retaining its flatness and thickness. In more detail, only the sen-
sitivities along the top part of each baffle are taken into account and by doing this, 
the baffle is not allowed to change in the longitudinal direction and thus it remains 
in the same plane. The first thing is to define a parameterization to translate sen-
sitivity derivatives into shape deformation. A node-based parameterization which 
considers the normal displacements of the surface nodes as design variables, is fol-
lowed. This approach offers the richest design space possible (for the given spatial 
discretization) but any numerical noise in the adjoint derivatives, combined with the 
fact that each surface node is being perturbed independently from its neighbors, can 
create wiggles and irregularities. To cope with this problem, an implicit smoothing 
technique together with a mesh regularization method are used, which allow smooth 
deformations while maintaining high mesh quality as demonstrated by Alexias and 
de Villiers (2019).

By solving the adjoint system of equations and computing the gradient of the 
objective function (Eq. 26), the sensitivity map is generated. Figure 4 demonstrates 
an example of the surface sensitivities on the top part of one of the baffles, for FU , 
in the initial geometry. Figure 5 shows an example of changing the profile of the top 
part of one of the baffles during the optimization. It has to be noted that the periph-
ery of the baffle remains attached to the rest of the duct and that the edge points of 
the top part of the baffle have a fixed position.

Six value-sets of weights, Table 2, are tried and, for each optimization problem a 
limited memory BFGS method (Nocedal 2006) is used.

By running these six optimizations, a Pareto front is computed as shown in Fig. 6. 
A higher weight for FU (higher w̄1 values) results in a massive drop in this objec-
tive function. For instance, using w̄1 = 1 and w̄2 = 0 , FU has reduced by 96% . The 

Fig. 4  In-plane optimization. 
Sensitivity map obtained from 
the sensitivity expression. Red 
color indicates that the surface 
should be pushed in whereas 
blue that it must be pulled out, 
to reduce the objective function. 
(Color figure online)
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unexpected result is that, even if the weight of the FP objective is zero, this experi-
ences a drop by 8%. On the other side, the opposite optimization run with w̄1 = 0 
and w̄2 = 1 gives a huge drop in FP (around 60%) but for a higher FU value. To have 
a complete overview of the effect baffles have on the flow, an additional simula-
tion is performed for the static mixer after removing all the baffles. The computed 
values of FP and FU are demonstrated in Fig. 6 together with the rest of the Pareto 
points. Removing all the baffles results in the smallest FP value (compared to all 
other Pareto points) and the weakest mixing, as there is no mechanism to enhance it.

Figure  7 shows the optimal baffle shapes for each set of weights. As it can be 
noticed, in case the FP weight is higher, the optimization tends to reduce the area of 
the baffles in order to reduce the losses caused by flow recirculation. Figure 8 shows 
the final distribution of the phase fraction at the outlet for each Pareto point.

In case the uniformity objective is given priority, using for instance w̄1 = 0.9 and 
w̄2 = 0.1 (see Fig. 9, which comparing streamlines in the initial and optimal geome-
tries; streamlines are coloured with the value of the phase fraction) the flow vorticity 
vector after the optimization is redirected and the resulting vortical flow increases 
the mixing between the two fluids. The vortical flow can also be seen in Fig. 10, 
where the velocity components that are tangent to the plane are plotted.

In all optimization runs, the primal and adjoint systems of equations are con-
verged to a relative residual of 10−7 . Indicatively, the convergence history of the pri-
mal and adjoint set of equations, for the first optimization cycle, with a value set of 
w̄1 = w̄2 = 0.5 is demonstrated in Fig. 11.

Fig. 5  In-plane optimization. 
Example of the modification 
of the profile of an arbitrarily 
selected baffle. Initial flat-lined 
profile (top) and the outcome of 
the optimization (bottom)

Table 2  Value-sets of the 
weights of the objective function w̄1 0 0.25 0.5 0.75 0.9 1

w̄2 1 0.75 0.5 0.25 0.1 0
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Fig. 6  In-plane optimization. Pareto front of optimal solutions (asterisks) together with the convergence 
history of each optimization for the different sets of weights

Fig. 7  In plane optimization. Optimal baffle shapes for each set of weights colored by the final displace-
ment vector from its original position
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Fig. 8  In-plane optimization. Final distribution of the phase fraction on the outlet for each Pareto point

Fig. 9  In-plane Optimization. Velocity streamlines colored with the phase fraction value ( � ) before (top) 
and after (bottom) the optimization
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Fig. 10  In-plane Optimization. 
Projected velocity vectors that 
indicate the generation of a 
more intense vortical flow in 
the optimized geometry (bottom 
figure). The vortical flow has 
an impact on the mixing of the 
two fluids
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Fig. 11  In-plane Optimization. Convergence history of primal (left) and adjoint (right) equations for the 
first iteration of the optimization run with a selected value-set of w̄1 = w̄2 = 0.5
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4.2  Positional angle optimization

In this optimization run the goal is to find the optimal angle to place each baffle in order 
to minimize F (Eq. 10), for each set of w̄1 and w̄2 . The outcome of this run, compared 
to the previous one, has an important advantage from the manufacturing point of view 
because there is no need to re-design the shape of the baffles. In fact, the baffles retain 
their shapes and their axial positions and only the positional angle varies. The mixer is 
aligned with the z-axis; the design variables are the positional angles around this axis 
for each baffle. To calculate these angles at each optimization step, the “torque” of the 
sensitivities around the z-axis for each baffle is calculated through

where �j is a vector pointing from the origin of rotation to the center of each bound-
ary. Gj is the gradient computed from Eq. 26, �j is the surface normal of each face.

Then, the “torque” of each baffle is translated into a change of the positional 
angle around the z-axis through

where H−1 is the inverse Hessian matrix approximated by the limited memory BFGS 
method.

The difficulty with this run is that one cannot change the positional angle of 
the baffle without redesigning the CAD model of the mixer or without using an 
advanced morphing method [e.g. Biancolini (2017)], which could allow the baffle 
to slide along wall. In this paper, to cope with this problem, the mesh is divided 
into eight different regions, differently colored in Fig. 1, with each baffle belong-
ing solely to one region. Consecutive mesh regions are communicating by inter-
polating each discrete field vi , p, a over their interfaces. The same is done also 
for the adjoint variables ui , q and � To do this effectively, a Galerkin projection 
method is used as demonstrated by Farrell and Maddison (2010). This has the 
advantage of minimizing the L2 norm of the interpolation error and guarantees 
mass conservativeness in the general case of unstructured meshes. By doing this 
and since all regions are cylindrical, they can be displaced in the peripheral direc-
tion independently from each other. This means that, after having computed �bi 
for each baffle, each mesh region can be rotated by ��bi.

For this optimization run, the same set of weights as in Table 2 is used. Thus, 
the Pareto front is generated and presented in Fig.  12 in logarithmic scale for 
the x-axis for better illustration. The same figure also depicts the Pareto points 
computed from the in-plane optimization, together with the initial design point 
and the solution obtained for the geometry without baffles. By comparing the cor-
responding Pareto points based on their weights for the two different approaches 
(in-plane and positional angle), it can be noticed that those points computed by 
the latter have a much bigger reduction in FU compared to the former. This hap-
pens because the peripheral displacement of the baffles creates a more effective 
mixing mechanism, through the continuous change of the flow vorticity vector. 
In contrast, the reduction of FP is a bit smaller compared to the in-plane (though 

(28)�bi =
∑

j

(�j × Gj�j) ⋅ �

(29)𝛿�̄�b = H−1
⋅ 𝜏b
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there is still a substantial reduction) as the primary mechanism to reduce FP , 
which is to reduce the height of the baffles, is not allowed. Finally combining 
both sets of Pareto points, the final set of non-dominated solutions can be com-
puted, Fig. 12. All the points of the positional angle optimization are non-domi-
nated solutions. On the other hand, for the in-plane optimization, the three points 
with the lowest total pressure losses belong to the set of non-dominated solutions. 
It is important to notice that the design that does not include baffles is also a non-
dominated solution as it is the design with the highest FP reduction.

Figure  13 shows the final position of the baffles for the two extreme Pareto 
solutions resulting from the positional angle optimization. For the case target-
ing only FP (the weight of FU is zero), the baffles tend to be placed on the same 
side of the duct rather than alternate, in order to reduce total pressure losses. The 
final/optimal positional angles for the two extreme Pareto solutions are illustrated 
in Fig. 14.

5  Conclusions

In this paper, the continuous adjoint method for a two-phase model for laminar flows 
of miscible fluids was developed. The derivation of the adjoint equations was pre-
sented, and a multi-objective optimization problem was formulated aiming at maxi-
mizing the mixture uniformity and minimizing total pressure losses inside a static 
mixing device.

The optimization runs produced optimal results while generating flat baffles 
shapes with the same thickness. By using the in-plane optimization, a Pareto front 
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of optimal solutions was generated. The two extremes are associated with differ-
ent baffle shapes pointing out the primary mechanism to improve mixing uniformity 
and total pressure losses, respectively. Namely, by creating “wavy” baffle profiles 

Fig. 13  Positional Angle 
Optimization. Final positions of 
the baffles for the two extreme 
Pareto solutions. Top: positions 
when optimizing only for FP ; 
bottom: positions when optimiz-
ing only for FU
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improved the mixing performance whereas by reducing the area of the baffles the 
total pressure losses are reduced.

On the other hand, the positional angle optimization has led to greater reductions 
in the mixture uniformity for the same sets of weights, compared to the in-plane 
optimization, which means that rearranging the baffles in different angles is a much 
more effective mechanism to improve mixing performance. However, this approach 
is lagging on the effectiveness of reducing the total pressure losses compared to the 
in-plane optimization. This is mostly because shrinking (or, even, removing com-
pletely) the baffles leads to a drastic reduction in the total pressure losses of the 
static mixer.

The combination of in-plane and positional angle optimizations into a single 
work-flow is expected to provide better results as it will share the advantages of both 
approaches. It is expected to exploit a greater number of shape variations, alleviating 
the inherent limitation of the two approaches. This work is in progress.
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