
Vol.:(0123456789)

Optimization and Engineering (2019) 20:1085–1115
https://doi.org/10.1007/s11081-019-09457-y

1 3

RESEARCH ARTICLE

An efficient MILP‑based decomposition strategy for solving
large‑scale scheduling problems in the shipbuilding
industry

Natalia P. Basán1 · Mariana E. Cóccola1 · Alejandro García del Valle2 ·
Carlos A. Méndez1

Received: 31 August 2018 / Revised: 3 July 2019 / Accepted: 4 July 2019 / Published online: 11 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
This work presents a novel hybrid and systematic MILP-based solution approach for
the resolution of multi-stage scheduling problems arising in the shipbuilding indus-
try. The manufacturing problem involves the processing of a large number of sub-
blocks and blocks, which should be rigorously produced and assembled with the
aim of finalizing a project on time. Firstly, this paper presents three alternative rigor-
ous MILP mathematical formulations relied on a continuous-time representation for
solving the problem under study. Although the objective values reported by these
exact optimization approaches outperform the results found through other solu-
tion techniques proposed in the literature to solve the same problem instances, the
main drawback of the MILP models is the high computation time. Therefore, this
work proposes an algorithm for solving the mathematical models in a decompos-
able way with the goal of accelerating the resolution times. The applicability of our
proposal is demonstrated by effectively coping with several instances of a real-world
case study dealing with the construction of a ship for the development of marine
resources. Computational results show that the proposed decomposition method is
able to obtain high-quality solutions in few seconds of CPU time for all examples
considered.

Keywords Multi-stage scheduling problem · Shipbuilding process · MILP model ·
Decomposition strategy

 * Carlos A. Méndez
 cmendez@intec.unl.edu.ar

1 INTEC (UNL –CONICET), Güemes 3450, 3000 Santa Fe, Argentina
2 University of A Coruña, C/Mendizábal s/n, 15403 Ferrol, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-019-09457-y&domain=pdf

1086 N. P. Basán et al.

1 3

List of symbols

Indices
i Product order (block or sub-block)
k Processing unit
s Processing stage
p Time slot

Sets
I Set of product orders
K Set of processing units
S Set of processing stages
P Set of time slots
Ib Set of blocks
Isb Set of sub-blocks
SBi Subset of sub-blocks that integrate a block i ∈ Ib

Sb Available processing stages s to process block i ∈ Ib

Ssb Available processing stages s to process sub-block i ∈ Isb

Sa Available processing stages s to assemble sub-blocks i ∈ Isb

Pk Set of time slots for processing unit k (slot-based continuous time
formulation)

Ks Set of parallel processing units k in processing stage s

Parameters
ptis Processing time of product order i at stage s
M Constant for big-M constraints
iter Number of block to be inserted at each iteration
activei Indicating if product i is active in the current iteration
sYik Saving assignment decisions
sWii′s Saving sequencing decisions
BestSol Saving the best solution found in the improvement stage
CurrentSol Saving the last solution found by the improvement stage

Continuous variables
Tsis Start time of product i in processing stage s
Tfis Final time of product i in processing stage s
Tspk Start time of time slot p in processing unit k (slot-based continuous

time formulation)
Tfpk Final time of time slot p in processing unit k (slot-based continuous

time formulation)
MK Makespan

Binary variables
Wipk Defining if product i is allocated to the time slot p of processing unit k

(slot-based continuous time formulation)

1087

1 3

An efficient MILP‑based decomposition strategy for solving…

Wii′s Defining if product i is processed before of product i′ in processing
stage s (global general precedence formulation)

Wii′k Defining if product i is processed exactly before than i′ in processing
unit k (unit-specific direct precedence formulation)

Yik Defining if product order i is processed in processing unit k
YFik Defining if product order i is first processed in unit k

1 Introduction

Shipbuilding is a complex and long-term manufacturing process, which requires the
coordination of a considerable number of limited resources. Traditionally, this pro-
cess was carried out through a project-oriented approach. Due to a ship is gener-
ally constructed with few components, which are based on the same design but with
a certain degree of customization, a modular approach began to be implemented
several decades ago, taking into account the Lean principles and standardization
processes. This modular approach uses an integrated modular design based on the
prefabrication of blocks (or steel structures), which are then assembled in a block
erection process to finally build the ship. The ship design determines the quantity
of blocks to be produced and the size of each one of them. Figure 1 shows as a ship
is built following the principles of the modular approach: the hull is divided into
blocks and, in turn, each block is divided into sub-blocks.

According to Shin and Ciccantell (2009), the production of ships and marine
facilities tends to be large scale and greatly non-standardized, so the shipbuilding
process requires labor-intensive and technology intensive, resulting high expensive.
These authors remark that the shipbuilding industry tends to have new orders for
construction of ships concentrated in short periods according to the demand, which
generally fluctuates wildly following the rise and decline of this industry in the
world market.

The block assembly process becomes a bottleneck for the shipbuilders due to the
complexity of the production system. This process requires a high degree of coordi-
nation among several resources in order to satisfy the complex production restric-
tions and strict storage policies. A delay in the completion of a project increases the

Fig. 1 Hull production—modular approach

1088 N. P. Basán et al.

1 3

risk of incurring penalties in delivery. Moreover, the most shipbuilding contracts
provide the buyers with the right to cancel the contract in case of delayed delivery of
the vessel.

Since the block assembly process represents more than half of the whole ship-
building process, it would be very useful to have a decision-making tool that may
determine the optimal scheduling of operations, reducing at minimum the man-
hours (Cho et al. 1998). Although significant developments have emerged in recent
decades about this problem, few works have been focused on the scheduling prob-
lem. The main challenge is to obtain a good solution that takes into account the wide
range of operational constraints. Unlike other scheduling problems published in the
literature, this production problem deals with assembly operations and the process-
ing of different types of products.

In the last years, the researchers have been tried to solve the block assembly pro-
cess through heuristics, metaheuristics, and simulation-based methods with the goal
of providing feasible solutions with reasonable computational effort. Some contribu-
tions have been focused on representing the production process as a constraint sat-
isfaction problem where the precedence relationships between operations are con-
sidered constraints (Kim et al. 2002; Seo et al. 2007). In addition, some heuristic
algorithms have been used to determine the best scheduling that both improves the
use of the area in the long term and minimizes the processing times of the blocks
(Koh et al. 2008; Shang et al. 2017). Other contributions also appear in the mod-
eling and simulation area. Lee et al. (2009), Zhuo et al. (2012), and Cebral-Fernan-
dez et al. (2016) have developed three discrete event simulation models in order to
obtain a schedule that maximizes the productivity while minimizing the total time
for completing the operations. Afterwards, Basán et al. (2017) have proposed a sim-
ulation environment to evaluate the best flow of materials that minimizes the com-
pletion time of a ship through applying different heuristic rules. Although these sim-
ulation approaches are greatly useful to represent the dynamic behavior over time of
the system, the quality of solutions reported by these models are highly dependent
on the heuristic rules using within them.

On the other hand, several hybrid methods have also been reported in the litera-
ture for effectively coping with large size industrial cases. For instance, a research
conducted by Xiong et al. (2015) have formulated a MIP (mixed integer program-
ming) model for the hybrid assembly-differentiation flow shop scheduling problem.
Since the NP-hardness of the problem, these authors propose two fast heuristics
and three hybrid meta-heuristics for treating with medium and large-size instances.
Zhuo et al. (2012) have developed a hybrid planning approach using discrete-event
simulation and discrete spatial optimization to take into account both the program-
ming and the spatial arrangement. In addition, Basán et al. (2017) introduced a novel
hybrid simulation-based optimization method, where a MILP mathematical model
and a discrete event simulation model are incorporated together into an algorithm
in order to generate complete schedules with efficient computational times for large-
sized shipbuilding scheduling problems. Despite these advancements, the quality of
solutions found remains the main drawback of the hybrid approaches.

Robust and reliable solutions regarding to their quality, feasibility or optimality
can be achieved through exact optimization approaches. Due to the block assembly

1089

1 3

An efficient MILP‑based decomposition strategy for solving…

process consists of a set of products that go through different processing stages,
the problem can be mathematical treated as a multi-stage system (Pinto and Gross-
mann 1995; Méndez et al. 2001; Kopanos et al. 2009; Castro et al. 2009), where
the main objective is to find the optimal schedule that minimizes the time for com-
pleting all processing tasks. The mathematical model should consider constraints
for the assignment of tasks to processing units and the sequencing of those tasks in
each unit as in the classical multi-stage scheduling problem (Méndez et al. 2006;
Maravelias and Sung 2009). Also, a set of new mathematical constraints should be
defined for representing the assembly operations involved in the shipbuilding pro-
cess. Recently, a continuous-time MILP formulation has been proposed by Basán
et al. (2018) to determine the optimal schedule of a block assembly process consid-
ering up to ten blocks.

The main drawback of the MILP models is that they are characterized by high
computation times. From the practical point of view, the industries prefer computa-
tional tools that report the optimal or at least, near-optimal solutions but in a quickly
way. In an attempt to reduce this gap between theory and practice, the development
of MILP-based hybrid approaches (Roslöf et al. 2002; Chu et al. 2014; Persson and
Ölvander 2015; Tenne 2015; Fettaka et al. 2015; Larson and Wild 2016; Schweiger
and Liers 2018) and techniques of decomposition-aggregation and improvement
algorithms (Hasebe et al. 1991; Roslöf et al. 1999, 2001; Méndez and Cerdá 2003a;
Kopanos et al. 2010; Aguirre et al. 2012; Cóccola et al. 2015; Fettaka et al. 2015)
have emerged as alternative solution strategies for solving the complex scheduling
problems arising in industrial environments. These techniques are generally based
on rigorous mathematical programming approaches (Cerdá et al. 1997; Méndez
et al. 2000, 2001, 2006; Méndez and Cerdá 2003b).

Firstly, this work proposes three new alternative continuous-time MILP formula-
tions for the block assembly problem. The main goal is the minimization of makes-
pan. Although these exact methods allow reaching solutions that outperform those
ones achieved by evaluating alternative dispatching rules in a simulation model,
such solutions are far from being the optimal ones. Moreover, the mathematical
models show a high computational burden in the most examples solved. To develop
a more suitable tool for industrial environments without losing the robustness exhib-
ited by the exact optimization approaches of reaching good solutions, this paper pro-
poses then a MILP-based decomposition algorithm that allows finding high-quality
and practical solutions in few seconds of CPU time even for large-size problems.

All solution strategies proposed in this work are tested by solving several
instances derived from a real-world shipbuilding problem. A detailed comparison of
the computational performance of each approach is presented in order to highlight
the advantages of the decomposition method.

The remainder of this paper is organized as follows. The block assembly process
is described in Sect. 2. In Sect. 3, the problem statement is introduced. Afterwards,
Sect. 4 presents three alternative MILP models to solve the multi-stage schedul-
ing problem. Then, in Sect. 5, the development of the MILP-based decomposition
procedure is explained in detail. Several complex problem instances of a real-world
block assembly scheduling problem are presented and solved in Sect. 6. Finally, the
concluding remarks follow in Sect. 7.

1090 N. P. Basán et al.

1 3

2 The shipbuilding process

The block assembly process may be treated as a flow shop scheduling problem, in
which a set of sub-blocks and blocks must be assigned and sequenced on several
processing units belonging to different processing stages. Having into account the
ship design, the hull is divided into dozens of blocks of specific size (see Fig. 1). A
block is the largest construction unit of a ship. In turn, each block is assembled from
one or more sub-blocks, which are composed of steel plates according to the design
drawn for the ship. Both blocks and sub-blocks are considered intermediate products
in the modular approach used for constructing a ship, which contains other compo-
nents such as pipes, supports, and electronic equipment.

At early stages of the shipbuilding process, steel plates and profiles are processed
to form the sub-blocks, which are then assembled in a dedicate workshop to obtain
large blocks as an intermediate product. After that, the blocks are sequentially pro-
cessed on a set of workshops and finally, they are assembled in a dry dock, operation
known as Erection process. Although the blocks should arrive at the dry dock with
all the necessary equipment and systems effectively installed, several elements must
be usually mounted during the block erection operation. The block assembly process
is depicted in Fig. 2. In this picture, the stages processing sub-blocks are referenced
as Ssb while those ones performing operations on the blocks are classified as Sb.

Firstly, the block assembly process begins with Construction and Assembly oper-
ation, where sheets and profiles are received, cut into small parts, and welded to
form the smallest units of a ship (sub-blocks). The process continues with the Pre-
outfitting operation, consisting in the installation of different components as pipes,
brackets, and auxiliary elements in order to obtain the finished sub-blocks.

Once the sub-blocks are outfitted, they are assembled by welding operations to
form the block structure. This stage is known as Assembly. The assembly of a block

Fig. 2 The block assembly process

1091

1 3

An efficient MILP‑based decomposition strategy for solving…

cannot begin until its sub-assemblies (sub-blocks) are ready. The next stages of the
manufacturing process deal with the construction and transportation of the blocks.
After assembling the sub-blocks, the Outfitting 1 operation is performed to outfit
items like pipes and electrical and lighting lines inside the blocks. Then, these one
are blasted and painted in the painting booths during Painting operation. During
this action, the protection and design requirements of blocks are considered. After
outfitting and painting stages, a second outfitting process is performed on the blocks
before they will be moved to the dock (Outfitting 2 operation). All equipment that
might be deteriorated in the painting stations, such as wires and electronic compo-
nents, are again installed at this stage. Finally, the prefabricated and painted blocks
are transported and positioned in the dry dock for assembling the ship. The Block
erection operation is carried out to mount the blocks, one after another, according
to a pre-predefined sequence. This assembly sequence is predefined by the company,
taking into account if the unit to be assembled is a base block, a lateral block, or an
upper block, as shown Fig. 3. The building of a ship always begins with a predefined
base block and then, the remaining blocks are assembled and welded respecting
the mentioned sequence. The processing time at Erection stage is modified taking
into account the type of block to be mounted (lateral or superior block). Note that a
block may be assembled just if the erection operations of its predecessor block have
already been finished. Thus, if a block arrives at the dock before these operations
end, it must wait.

3 Problem statement

According to the integrated modular design, the shipbuilding problem involves the
processing of a set of product i ∈ I through several stages s ∈ S , following a prede-
fined and known production sequence. This manufacturing process is characteristic
of the flexible flow shop (FFSP) environments, in which each stage s has a set k ∈ Ks
of identical processing units working in parallel. In the case of shipyard, each unit
represents a workshop. Hence, the block assembly process may be mathematical
represented as a FFSP problem with the following features:

• A set of products i ∈ I should be processed by following a predefined sequence
of stages s ∈ S.

Fig. 3 Block erection assembly process

1092 N. P. Basán et al.

1 3

• The set I is partitioned in two subsets: Isb and Ib , where Isb contains the products
representing sub-blocks and Ib includes the blocks. Note that I = Ib ∪ Isb.

• Each processing stage s should be performed in a specific subset of units k ∈ Ks .
In addition, each unit k is able to perform just one processing stage (dedicated
unit).

• Each block i ∈ Ib is made up of one or more predefined sub-blocks i� ∈ SBi.
• Products i ∈ I are not processed in all the stages s ∈ S because there are several

assembly operations.
• The first stages s ∈ Ssb process sub-blocks while the last stages s ∈ Sb perform

operations on the blocks.
• Sub-blocks i ∈ Isb are assembled to form a block at intermediate stage s ∈ Sa.
• Blocks i ∈ Ib are assembled in a dock to form the hull of the ship at stage

s ∈ Sa
seq
.

• The final assembly sequence on slipway (Erection stage), which determines the
order in which the blocks must be mounted, is known a priori through the param-
eter Seqi.

• Each workshop k ∈ K can process one block (or sub-block) at a time and, like-
wise, a product i only can be processed at most in one workshop at each stage
s ∈ S.

• The processing times ptis are known with certainty remaining invariant over
time.

• Transfer times of the blocks (or sub-blocks) between stages are considered negli-
gible.

• Raw material are considered unlimited.
• Either the non-intermediate storage (NIS) policy or the unlimited intermediate

storage (UIS) policy may be adopted. When a NIS strategy is used, each work-
shop becomes intermediate storage if its processing has finished and the next
step is not available yet.

It is worth to remark that all assumptions listed above are realistic features of the
block assembly process. The problem statement does not incorporate any simplifica-
tion with regards to the real-data provided by the company.

4 Mathematical formulations

Having defined the block assembly process as a flexible flow shop scheduling problem,
three continuous-time mathematical formulations of mixed integer linear mathemati-
cal programming (MILP) that have been published in the literature for the short-term
scheduling of multistage batch plants are presented in this section (Méndez et al. 2006):
(1) the first formulation is based on the concept of time-slots (Pinto and Grossmann
1995), (2) the second one is constructed following the immediate batch precedence
concept (Cerdá et al. 1997), and (3) the last formulation is based on the general prece-
dence concept (Méndez et al. 2001). These three monolithic approaches are widespread

1093

1 3

An efficient MILP‑based decomposition strategy for solving…

used by the communities of Operations Research and Process Systems Engineering for
solving the production problems arising in the short-term scheduling area.

It is worth noticing that the MILP models presented in this paper have been modified
from their original proposals in the literature in order to adapt them to the shipbuilding
problem. The problem goal is to determine the optimal production schedule that mini-
mizes the time needed to construct a ship. In this way, the mathematical model should
determine: (1) the assignment of products to workshops, (2) the processing sequence
for any pair of product allocated at each workshop, and (3) the completion time of each
product at each processing stage.

4.1 Objective function

The shipbuilding industry aims at increasing its productive efficiency and consequently,
its profit, which is directly related to the time required to build a large-scale ship. A
delay in the completion of a project increases the risk of incurring penalties in deliv-
ery. Moreover, the buyers have the right to cancel the shipbuilding contract in case of
delayed delivery of the vessel. Hence, the makespan criterion (MK) has been chosen as
optimization goal, as shown in Eq. (1).

4.2 The slot‑based continuous time formulation

In this mathematical formulation, a set of time-slots p ∈ Pk is postulated for each pro-
cessing unit k in order to allocate in them the blocks or sub-blocks to be processed. A
binary variable Wipk is used to determine if product i is assigned to time-slot p of unit k.

(1)minimizeMK

(2)
∑

k∈Ks

∑

p∈Pk

Wipk = 1 ∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))

(3)

∑

(i∈Isb,s∈Ssb)
∪(i∈Ib,s∈Sb)

Wipk ≤ 1 ∀s ∈ S, k ∈ Ks, p ∈ Pk

(4)
∑

i∈I

Wi(p+1)k ≤
∑

i∈I

Wipk ∀k ∈ Ks, p ∈ Pk, (p + 1) ∈ Pk

(5)Tfis ≥ Tsis + ptis ∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))

(6)
Tfpk ≥ Tspk +

∑
(
i ∈ Isb, s ∈ Ssb

)

∪
(
i ∈ Ib, s ∈ Sb

)

Wipkptis ∀s ∈ S, k ∈ Ks, p ∈ Pk

(7a)Tsis = Tfi(s−1) ∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))
∶ s > 1

1094 N. P. Basán et al.

1 3

Equation (2) assures that every block i ∈ Ib is processed at each stage s ∈ Sb on
exactly one time-slot p of some unit k ∈ Ks ; in case of i ∈ Isb , the same condition
must be accomplished but in this case for every stage s ∈ Ssb . In turn, Eq. (3) defines
that each time-slot p of unit k ∈ Ks can at most be assigned to one product i corre-
sponding to stage s . To avoid empty positions between the time slots postulated for
a unit k , the allocation of any product i to slot p + 1 requires that at least other pro-
cessing task i will be assigned to slot p . This constraint is expressed through Eq. (4).

On the other hand, the timing decisions are determined by Eqs. (5)–(7). The comple-
tion time of product order i at stage s , Tfis , and the finish time of slot p in unit k , Tfpk , are
computed by Eqs. (5) and (6), respectively, as the starting time plus the processing time
ptis associated to the product order i assigned to slot p . The earliest time for starting the
processing of product order i at stage s , Tsis , is determined by Eq. (7). Equation (7a) is

(7b)Tsis ≥ Tfi(s−1) ∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))
∶ s > 1

(8)Tfpk ≤ Ts(p+1)k ∀k ∈ K, p ∈ Pk, (p + 1) ∈ Pk

(9a)
Tfis − Tfpk ≥ −M

(
1 −Wipk

)

∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))
, k ∈ Ks, p ∈ Pk

(9b)
Tfis − Tfpk ≤ M

(
1 −Wipk

)

∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))
, k ∈ Ks, p ∈ Pk

(10a)
Tsis − Tspk ≥ −M

(
1 −Wipk

)

∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))
, k ∈ Ks, p ∈ Pk

(10b)
Tsis − Tspk ≤ M

(
1 −Wipk

)

∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))
, k ∈ Ks, p ∈ Pk

(11)Tsis ≥ Tfi�(s−1) ∀i ∈ Ib, i� ∈ SBi, s ∈ Sa

(12)Tsi�s ≥ Tfis ∀
(
i, i�

)
∈ Ib, s ∈ Sa

seq
∶ Seqi < Seqi�

(13)

Wipk −Wi�,p+1,k = 0

∀
(
i, i�

)
∈ Ib, k ∈ Ks, s ∈ Sa

seq
, p ∈ Pk, (p + 1) ∈ Pk ∶ Seqi < Seqi�

(14)MK ≥ Tfis ∀i ∈ Ib, s ∈ |S|

1095

1 3

An efficient MILP‑based decomposition strategy for solving…

used when the non-intermediate storage policy is assumed by the scheduler; otherwise,
when an UIS policy is adopted, Eq. (7b) becomes active. Since the time-slots defined
for every unit k are sequentially arranged over time, the starting time of slot p + 1
requires that the processing of slot p be finished, which is expressed through Eq. (8).
Note that if the processing of product i at stage s is accomplished on slot p ∈ Pk with
k ∈ Ks , i.e. Wipk = 1 , then it must be fulfilled that Tfis = Tfpk and Tsis = Tspk . These
conditions are forced to be satisfied by Eqs. (9) and (10). For assembly stage s ∈ Sa ,
Eq. (11) determines that a block i should not start to be constructed until their specific
sub-blocks i� ∈ SBi have finished its processing in the above stage (s − 1).

For the last processing stage s ∈ Sa
seq

 , in where the blocks are mounted following
a predefined sequence, either Eq. (12) or Eq. (13) may be used to represent the ship
assembly operation. Finally, Eq. (14) states a lower bound for the variable MK to be
minimized.

4.3 The immediate precedence formulation

When the block assembly process is mathematically represented through the imme-
diate precedence notion, three sets of binary variables are defined: YFik denoting that
product i is the first being processed in unit k , Yik determining that block (or sub-block)
i is processed in k but not in the first place, and Wii′k denoting that task i is processed
right before task i′ in unit k . The constraints defining this continuous-time representa-
tion are follows.

(15)
∑

k∈Ks

(Yik + YFik) = 1 ∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))

(16)
∑

i∈I

YFik ≤ 1 ∀k ∈ K

(17)Wii�k ≤ Yik + YFik ∀
(
i, i�

)
∈ I, k ∈ K ∶ i ≠ i�

(18)Wii�k ≤ Yi�k ∀
(
i, i�

)
∈ I, k ∈ K ∶ i ≠ i�

(19)YFik +
∑

i�∈I∶i≠i�

Wi�ik ≤ 1 ∀i ∈ I, k ∈ K

(20)
∑

i�∈I∶i≠i�

Wi�ik = Yik ∀i ∈ I, k ∈ K

(21)
∑

i�∈I∶i≠i�

Wii�k ≤ 1 ∀i ∈ I, k ∈ K

(22)Tfis ≥ Tsis + ptis ∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))

(23a)Tsis = Tfi(s−1) ∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))
∶ s > 1

1096 N. P. Basán et al.

1 3

Equation (15) assures that every sub-block i ∈ Isb goes through just one unit
k ∈ Ks at each stage s ∈ Ssb and that every block i ∈ Ib is processed in just one
unit k ∈ Ks at each stage s ∈ Sb . In addition, Eq. (16) enforces the condition that
at most one product i is the first processed in every unit k . When a unit k is not
used, YFik = 0 ∀i ∈ I . For sequencing decisions, Eqs. (17) and (18) impose that
the sequencing variable Wii′k can be active only if the pair

(
i, i′

)
 are processed in

the same unit k (i.e., Yik + YFik = 1 and Yi�k = 1). Moreover, Eq. (19) assures that
a product i might be processed in unit k either in the first place or after another
product i′ while Eq. (20) states that every time a product i is not the earliest pro-
cessed at the assigned unit k , i.e. Yik = 1 , it must feature a direct predecessor i′
in the processing sequence of k . On the other hand, Eq. (21) states that at most a
single product i′ can be scheduled immediately after other product i unless i will
be the last in the processing sequence of unit k.

For timing constraints, Eq. (22) computes the ending time Tfis of product i at
stage s as its starting time Tsis plus its processing time ptis . The earliest time for
starting the processing of product i at stage s is determined by Eqs. (23)–(25).
Firstly, a product i cannot begin to be processed at stage s until its process-
ing has finished in previous stage (s − 1) . This condition is forced by Eq. (23a)
or Eq. (23b), depending on the storage policy adopted by the scheduler. The
sequencing constraint Eq. (24) determines that the starting time Tsi′s of a product
i′ at processing stage s must be greater than the ending time Tfis of its immedi-
ate predecessor i (Wii�k = 1 for any k ∈ Ks) . Moreover, Eq. (25) determines that
a block i ∈ Ib can start to be mounted at stage s ∈ Sa after their associated sub-
blocks i� ∈ SBi have completed their processing in the previous stage. To force
the assembling sequence on slipway, it may be used either the timing variables
Tfis or the sequencing variables Wii′k , as is expressed through Eqs. (26) and (27),
respectively. Finally, the makespan value is computed by Eq. (28).

(23b)Tsis ≥ Tfi(s−1) ∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))
∶ s > 1

(24)
Tsi�s ≥ Tfi,s −M

(
1 −Wii�k

)

∀
(((

i, i�
)
∈ Isb, s ∈ Ssb

)
∪
((
i, i�

)
∈ Ib, s ∈ Sb

))
, k ∈ Ks ∶ i ≠ i�

(25)Tsis ≥ Tfi�(s−1) ∀i ∈ Ib, i� ∈ SBi, s ∈ Sa

(26)Tsi�s ≥ Tfis ∀
(
i, i�

)
∈ Ib, s ∈ Sa

seq
∶ Seqi < Seqi�

(27)Wii�k = 1 ∀
(
i, i�

)
∈ Ib, k ∈ Ks, s ∈ Sa

seq
∶ Seqi = Seqi� − 1

(28)MK ≥ Tfis ∀i ∈ Ib, s ∈ |S|

1097

1 3

An efficient MILP‑based decomposition strategy for solving…

4.4 The general precedence formulation

In contrast to the previous model, this formulation generalizes the precedence con-
cept and reduces by more than half the number of sequencing variables used by the
model. This reduction is obtained by defining the sequencing binary variable Wii′s
just for all pair of products

(
i, i′

)
 with i < i′ , processed at stage s . The variable Wii′s

takes a meaning only when both products
(
i, i′

)
 are assigned to the same processing

unit k ∈ Ks , i.e.Yik = Yi�k = 1. In this case, Wii′s becomes equal to 1 whenever prod-
uct i is processed before i′ in the processing sequence of unit k , otherwise it takes
value 0, indicating that i′ is processed before i in unit k . If both product orders are
not assigned to the same unit k ∈ Ks , the value of Wii′s is negligible. On the other
hand, Yik is the assignment binary variable valuing 1 if task i is processed at unit k .
The general precedence formulation for the problem under study includes the fol-
lowing sets of constraints.

Equation (29) defines the allocation constraint. The timing constraints are deter-
mined by Eqs. (30) and (31), which are similar to Eqs. (22) and (23) previously
explained for the immediate precedence notion. The sequencing constraints on a
same processing unit k are expressed through Eqs. (32) and (33). The sub-blocks
assembly operation at stage s ∈ Sa is represented by Eq. (34). On the other hand,

(29)
∑

k∈Ks

Yik = 1 ∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))
.

(30)Tfis ≥ Tsis + ptis ∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))

(31a)Tsis = Tfi(s−1) ∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))
∶ s > 1

(31b)Tsis ≥ Tfi(s−1) ∀
((
i ∈ Isb, s ∈ Ssb

)
∪
(
i ∈ Ib, s ∈ Sb

))
∶ s > 1

(32)
Tsi�s ≥ Tfis −M

(
1 −Wii�s

)
−M

(
2 − Yik − Yi�k

)

∀
(((

i, i�
)
∈ Isb, s ∈ Ssb

)
∪
((
i, i�

)
∈ Ib, s ∈ Sb

))
, k ∈ Ks ∶ i < i�

(33)
Tsis ≥ Tfi�s −MWii�s −M

(
2 − Yik − Yi�k

)

∀
(((

i, i�
)
∈ Isb, s ∈ Ssb

)
∪
((
i, i�

)
∈ Ib, s ∈ Sb

))
, k ∈ Ks ∶ i < i�

(34)Tsis ≥ Tfi�(s−1) ∀i ∈ Ib, i� ∈ SBi, s ∈ Sa

(35)Tsi�s ≥ Tfis ∀
(
i, i�

)
∈ Ib, s ∈ Sa

seq
∶ Seqi < Seqi�

(36)MK ≥ Tfis ∀i ∈ Ib, s ∈ |S|

1098 N. P. Basán et al.

1 3

the assembly sequence on slipway is determined by Eq. (35). This sequencing con-
straint forces the starting time of block i′ to be greater than the completion time
of any block i that is before at erection sequence (Seqi < Seqi�) . Refer to Méndez
et al. (2006) and Cóccola et al. (2014) for more details about the general precedence
concept.

5 The MILP‑based decomposition algorithm

Although the mathematical formulations presented in above section are capable to
represent and solve the block assembly process, the practice shows that realistic
industrial applications are either intractable or result in poor solutions when rigor-
ous optimization approaches are used. The computational efficiency of the rigorous
MILP methods is quickly deteriorated when increasing the problem size because of
the thousands of binary variables involved. To overcome this limitation, we propose
a solution strategy based on a decomposition algorithm that allows finding good
quality solutions with very low CPU time even for large-size problems.

The decomposition method is based on the strategy of first obtaining an initial
solution (constructive stage), and then gradually enhancing it by applying several
rescheduling iterations (improvement stage). Both algorithmic stages have as core
the general precedence MILP model defined by Eqs. (29)–(36). Thus, the procedure
exploits the benefits of combining the robustness of the MILP models with the flex-
ibility of the heuristic rules. At this point, it is worth mentioning that any alterna-
tive mathematical formulation may be easily adapted to the proposed decomposition
strategy, but in general, the general precedence representation shown the best com-
putational performance.

The general structure of the algorithm is given in Fig. 4. Note that a feasi-
ble initial scheduling solution is obtained from inserting the blocks one by one in
the scheduled and fixing the decision variables at their optimum values. A block
i ∈ Ib and its sub-assemblies i� ∈ SBi are scheduled at each iteration of the construc-
tive stage. Once determining a starting solution, this one is iteratively improved
by executing several rescheduling actions in order to find a high-quality schedul-
ing solution with minimal computational effort. At each improvement iteration, the
assignment and sequencing decisions are left free just for the block i ∈ Ib (and its
sub-assemblies) that is being rescheduled. Such decomposition strategy significantly
reduces the MIP solver search space at each model execution, accelerating its resolu-
tion. When no improvements are obtained for the objective function after reschedul-
ing all blocks, the current schedule is reported as the best solution by the procedure.

5.1 Constructive step

The first phase of the decomposition algorithm aims at rapidly generating an initial
full schedule for the problem under study. Here, the production problem is solved
iteratively through the schedule of a subset of products at each solver execution. The
constructive method is based on the insertion technique presented by Kopanos et al.

1099

1 3

An efficient MILP‑based decomposition strategy for solving…

(2010) for solving large-scale pharmaceutical scheduling problems: the orders are
inserted (scheduled) one-by-one in an iterative mode by solving the original MILP
model. The sequence in which the products are inserted may vary according to

First Phase

Insert the block and its

sub-blocks associated

in the model

Solve MILP Model

SecondFase

Select the next block using

Save assignments and sequencing

decisions in input parameters of

improvement stage

Fix assignment

decisions for

and

Feasible initial
scheduling solution

Constructive
Stage

BEST SCHEDULING SOLUTION
Final assignment and sequencing

Full Schedule

Select the next block using

Update assignment and

sequencing parameters for

and

Rescheduling
iterations

Improvement
Stage

Improve the value

?

All blocks are

rescheduled?

Activate assignments and sequencing

variables only for the block and its

sub-blocks associated

Solve MILP Model

Yes

No

No

Yes

U

Improve the

value ?

Yes

No

Yes

No

All blocks are

scheduled?

Fig. 4 Overview of the iterative MILP-based algorithm

1100 N. P. Basán et al.

1 3

the characteristics of the problem (Roslöf et al. 2001, 2002). The insertion crite-
rion should be always defined taking into account the features of productive system.
Here, it is proposed to insert the products according to the assembly sequence on
slipway, known through parameter Seqi . This guarantees to find a fairly good start-
ing solution.

For programming the constructive step, the user should be also defined the num-
ber of products to be scheduling simultaneously in order to maintain a reduced
search space at each solver execution. In our proposal, just one block i ∈ Ib and
its sub-assemblies i� ∈ SBi are assigned and sequenced at each iteration, using
Eqs. (29)–(36). The constructive stage ends when all blocks have been scheduled.

The pseudo-code for the constructive step is given in Fig. 5. The scalar iter iden-
tifies the number of block i ∈ Ib to be inserted in the current iteration while the
boolean parameter activei is true when the product i (block or sub-blocks) is selected
for scheduling. Once a new block and its sub-blocks are scheduled, the MILP model
(29)–(36) is solved. After solver execution, the assignment variables Yik for these
new insertions are fixed at their optimal values. Note that variables Yik for the blocks
(and sub-blocks) that have already been scheduled in previous iterations are also
fixed and only the timing decisions can be modified for these products. In other
words, the values of variable Yik for already scheduled products cannot be modified
in the following iterations.

It is worth to remarks that the sequencing decisions are ignored in the construc-
tive stage and it is assumed that the production sequence at each processing stage
must follow the assembly order required on slipway. This assumption is made for
favoring the problem resolution. Thus, Eqs. (32) and (33) of general precedence for-
mulation are replaced by Eq. (37).

The constructive step solution ends to be computed when all products (blocks
and sub-blocks) have been scheduled. The best value obtaining for the makespan is
saved in parameter CurrentSol , while the values of binary variables Yik and Wii′s are
copied in parameters sYik and sWii′s , respectively. These data become the starting
point of the improvement stage.

5.2 Improvement step

Starting from the solution given by the first phase, the improvement step aims at
improving iteratively the current solution though several rescheduling decisions.
The procedure iterates over each element of the set Ib in order to perform reassign-
ment or reordering actions on every block i ∈ Ib and its sub-blocks i� ∈ SBi , using
the MILP model (29)–(36), until no improvement can be achieved to the objective
function (makespan MK). Note that a simultaneous rescheduling of all blocks results
impractical because it would be equivalent to solve the full space approach. Hence, a
key point for the scheduler is to determine the number of blocks to be simultaneous

(37)

Tsis ≥ Tfi�s −M
(
2 − Yik − Yi�k

)

∀
(((

i, i�
)
∈ Isb

)
∨
((
i, i�

)
∈ Ib

))
, s ∈ Si, k ∈ Ks ∶ Seqi < Seqi�

1101

1 3

An efficient MILP‑based decomposition strategy for solving…

Fig. 5 Pseudo-code for the constructive step

Set = 1, =

WHILE = and ∈

LOOP (∈ and =)

=

LOOP (′ ∈)

′ =

END LOOP
END LOOP
SOLVE MILP model (29) – (31), (34) – (37)
LOOP (∈ and =)

LOOP (∈)

LOOP (∈)

FIX variable
END LOOP

END LOOP
LOOP (′ ∈)

LOOP (∈)

LOOP (∈)

FIX variable ′

END LOOP
END LOOP

END LOOP
END LOOP

= + 1

END WHILE
=

=

LOOP ((, ′) ∈ and < ′)

LOOP (∈)

IF (< ′) THEN

′ = 1

ELSE
′ = 0

ENDIF
END LOOP

END LOOP
LOOP ((, ′) ∈ and ≤ ′))

LOOP (∈)

IF (< ′) THEN

′ = 1

ELSE
′ = 0

ENDIF
END LOOP

END LOOP

1102 N. P. Basán et al.

1 3

rescheduled at each iteration. In this case, the lowest number is adopted, i.e. one at a
time, in order to reduce at minimum the resolution times of the MILP model. Thus,
the number of iterations in each improvement loop is equal to the number of blocks:
||Ib||.

The pseudo-code for the improvement step is given in Fig. 6. Firstly, the param-
eter bestSol is initialized with a big value that should be greater than the makes-
pan found in the constructive step. Then, the procedure starts to iterate over the
set Ib following the sequence parameter Seqi ; the parameter iter indicates the next
block that will be rescheduled. When a block i ∈ Ib is chosen, the boolean param-
eter activei is set to true for the block i and its sub-assemblies i� ∈ SBi . The MILP
model (29)–(36) can take reassignment and resequencing decisions just on products
i ∈ I with activei = true . For the remaining products, those with activei = false , only
timing variables (Tsis and Tfis) can be modified. Reassignment to other units is not
allowed for blocks (and sub-blocks) with parameter activei set to false. Furthermore,
their relative position in the processing sequence remains unchanged. The binary
variables Yik and Wii′s are fixed for the products with activei = false . This resolu-
tion strategy reduces drastically the number of binary variables with regards to the
full space approach, which is equivalent to solve the MILP model (29)–(36) with
activei = true ∀i ∈ I . Every time a rescheduling iteration terminates, the current
solution is updated.

Once the rescheduling step is applied for all blocks, the procedure checks
the improvement reached for the objective function. If the current makespan
(CurrentSol) is better than the best solution found until now (BestSol) , the algorithm
updates the makespan (BestSol = CurrentSol) and goes to start the rescheduling iter-
ations again. Otherwise, the solution procedure ends and reports the best solution
found for the problem under study.

6 Computational results and discussion

In this section, several problem instances are introduced in order to evaluate and
compare the computational performance of the rigorous MILP models and the
decomposition procedure. These testing examples arise in the shipbuilding indus-
try for the development of marine resources, specifically for the offshore oil and
gas industry. The aim is to validate the performance of the proposed decomposition
algorithm and compare its computational efficiency with regards to the exact optimi-
zation approaches when the same examples are solved.

The experimentation section is organized as follows. Firstly, ten problem
instances with different features are presented. Afterwards, the inherently complex-
ity of problems addressed and model statistics for the exact optimization approaches
are shown. Finally, the MILP-based strategy is tested on all examples and a com-
parison between the alternative solution approaches is shown. All solution strategies
are implemented in GAMS 24.9.2 with CPLEX 12.7.1.0 as MIP solver and run on a
PC with four-core Intel Xeon X5650 Processor (2.6 GHz). The termination criterion
imposed for each MIP solver execution was either 0% integrality gap or 3600 s of
CPU time.

1103

1 3

An efficient MILP‑based decomposition strategy for solving…

Set =

WHILE <

=

= 1

WHILE = and ∈

=

LOOP (∈ and =)
RELEASE variables

=

LOOP (′ ∈)
RELEASE variables

′ =

END LOOP
END LOOP
SOLVE MILP model (29) – (36)

=

LOOP (∈ and =)

LOOP (∈)

LOOP (∈)

FIX variable
END LOOP

END LOOP
LOOP (′ ∈)

LOOP (∈)

LOOP (∈)

FIX variable ′

END LOOP
END LOOP

END LOOP
END LOOP
LOOP ((, ′) ∈ and < ′ and

(= or ′ =))
LOOP (s ∈)

FIX variable ′

END LOOP
END LOOP
LOOP ((, ′) ∈ and < ′ and

(= or ′ =))
LOOP (∈)

FIX variable ′ s

END LOOP
END LOOP

= + 1

END WHILE
END WHILE

Fig. 6 Pseudo-code for the improvement step

1104 N. P. Basán et al.

1 3

6.1 Real‑world case study

The real-world case of study arises in a shipyard with 41 workshops and one dry
dock, which are used for the construction of the vessels. The manufacturing process
involves 7 processing stages (s ∈ S) , each of them with Ks processing units working
in parallel, as shown in Fig. 7. Note that the last processing stage s7 has just one unit,
representing the dry dock where the ship is mounted. An interesting feature of this
manufacturing process is that there are two assembly stages: in the first one, stage
s3 , each block is form by welding one or more sub-blocks while in the second one,
stage s7 , the mounting of these blocks is carried out to build the ship. As depicted
Fig. 7, every block can be formed by a different quantity of sub-assemblies, for
instance, the block in+1 is formed by two sub-blocks (i1 and i2), the block in+2 is made
from just one sub-bock (i3), while the block in+3 has three sub-assemblies (i4, i5, and
i6). Other problem characteristic is that the processing times at each stage depend on
the type of product that is processed. It is worth to remark that due to confidentiality
issues, we cannot disclose the data of this real-world case study.

The Gantt chart of the optimal schedule for a toy example involving the process-
ing of 8 sub-blocks and 4 blocks is given in Fig. 8. In this picture, each block i ∈ Ib
and its sub-assemblies i� ∈ SBi are depicted with the same color. In the right of
Fig. 8, it is shown as the timing constraints (34) and (35) of the general precedence
formulation are used for enforcing the assembly operations. Note that, for instance,

Assembly stage
(block construction) Block erection

process
(mounting of blocks)

Stage
units

Stage
units

Orders
Sub-blocks

Stage
units

Stage
units

Stage
units

Orders
Blocks

Stage
units

Stage
units

Assembly
stages

Fig. 7 The Shipbuilding process with assembly and processing stages

1105

1 3

An efficient MILP‑based decomposition strategy for solving…

the earliest starting time of block in+3 at stage s3 should be greater than the finishing
times of its sub-assemblies i4 , i5 , and i6 at stage s2.

6.2 Problem instances

The applicability and effectiveness of the proposed solution strategy are illustrated
by efficient solving a set of realistic instances derived from the original case study
presented above. Since both the quality of the solution and the computational time
to find it depend on the number of products (blocks and sub-blocks) involved in the
scheduling problem, 10 examples are defined by varying both the amount of prod-
ucts to be processed and the storage policy adopted by the scheduler (NIS or UIS).
All problem instances are summarized in Table 1. The expression N ×M refers to a
ship constructed with N blocks and M sub-blocks. The simplest problem addressed
involves 10 sub-blocks and 5 blocks, while the biggest one deals with a ship that is
built from 50 sub-blocks and 25 blocks. For all examples, it is assumed that each
block has two sub-assemblies. This means that twice as many products go through
the processing stages s ∈ Ssb regarding to stages s ∈ Sb . The amount of products

Stage

Stage

Stage

Stage

Stage

Stage

Stage

i1

i2

i2

i1

In+2

In+1

in+1

in+2

in+1

in+1

i4

i3

i3

i4

In+3

In+4

in+3

in+4

in+2

in+2

i5

i6

i5

i6

in+2

in+4

in+3

in+3

in+3

i7

i8

i7

i8

in+2

in+4

in+4

0 10 20 30 40 50 60 70 80

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

Time

U
n

it

Fig. 8 Gantt chart of a block assembly problem involving 8 sub-blocks and 4 blocks

Table 1 Problem instances

Problem Blocks × sub-blocks (N × M) Storage policy

P.01 5 × 10 UIS
P.02 5 × 10 NIS
P.03 10 × 20 UIS
P.04 10 × 20 NIS
P.05 15 × 30 UIS
P.06 15 × 30 NIS
P.07 20 × 40 UIS
P.08 20 × 40 NIS
P.09 25 × 50 UIS
P.10 25 × 50 NIS

1106 N. P. Basán et al.

1 3

(N ×M) to be assigned and sequenced in the available processing units is closely
related to the model complexity, which directly impacts on the resolution times. The
optimization goal is the minimization of makespan for all problem instances.

6.3 Testing the exact optimization approaches

In order to underline the complexity of the problem addressed, all examples are
first solved by using the three rigorous MILP model proposed in this paper. The
best solution found within the predefined time limit of 1 CPU hour (3600 CPUs),
the integrality gap and the CPU time requirement of each alternative are given
in Table 2. In addition, Table 3 reports the problem sizes in terms of binary and
continuous variables, and linear constraints. Note that the number of binary vari-
ables is strongly incremented by increasing the number of products to be processed.
The information provided by Tables 2 and 3 allows making a comparative analy-
sis between the alternative models, highlighting the resolution complexity of the
instances considered when they are solved with full-space approaches.

From Table 2, it follows that the optimal solution is reported by the MILP mod-
els just for the least size instances (P.01 and P.02). In the remaining examples, the
MIP solver terminates without reaching the optimal solution because the time limit
is exceeded. For these cases, feasible but poorly solutions are reported. Note that
the bigger size of the model, the higher the integrality gap. Also, the worse results
are obtained for examples considering NIS policy when comparing them with those
ones reported for the UIS policy.

The worst computational performance is exhibited by the unit-specific direct
precedence formulation. For examples P.06, P.08, and P.10, this approach is not
even capable of reporting a feasible solution within the time limit. In contrast, the
other two mathematical formulations are at least capable of returning a suboptimal
solution with certain integrality gap within the predefined CPU time. For remaining
examples, the immediate precedence formulation shows bigger integrality gaps than
the other two models. This situation is directly related to the high number of binary
variables used by the formulation.

On the other hand, Table 2 also shows that the general precedence formula-
tion exhibits a slightly better computational performance than the time-slots based
model, up to 3%, in all examples considered. Particularly, a solution of 319.1 days
with an integrality gap of 47.4% is reported by the general precedence approach for
the most complex example P.10 (25 blocks, 50 sub-blocks and NIS policy), featur-
ing a model size of 61,376 equations, 31,700 binary variables, and 502 continuous
variables (see Table 3), while the time-slots based model (140,277 equations, 17,375
binary variables, and 18,866 continuous variables) reaches a solution of 321.4 days
with an integrality gap of 47.7% after 3600 s of CPU time.

Despite the high integrality gap reported by the general precedence model for
problem instance P.10, it is worth to remark that the solution found (319.1 days)
improves considerably the time currently employed by the shipyard for deliver-
ing a ship of size 25 × 50. A few years ago, the production schedule used by
the company featured a makespan of about a year and a half. Afterwards, this

1107

1 3

An efficient MILP‑based decomposition strategy for solving…

Ta
bl

e
2

 C
om

pu
ta

tio
na

l s
ta

tis
tic

s f
or

 th
e

th
re

e
al

te
rn

at
iv

e
ex

ac
t o

pt
im

iz
at

io
n

ap
pr

oa
ch

es

a A
 fe

as
ib

le
 so

lu
tio

n
ha

s n
ot

 b
ee

n
ge

ne
ra

te
d

w
ith

in
 3

60
0

C
PU

s

Pr
ob

le
m

Sl
ot

-b
as

ed
 c

on
tin

uo
us

 ti
m

e
fo

rm
ul

at
io

n
U

ni
t-s

pe
ci

fic
 d

ire
ct

 p
re

ce
de

nc
e

fo
rm

ul
at

io
n

G
lo

ba
l g

en
er

al
 p

re
ce

de
nc

e
fo

rm
ul

at
io

n

M
IL

P
so

l.
G

A
P

(%
)

C
PU

 ti
m

e
(s

)
M

IL
P

so
l.

G
A

P
(%

)
C

PU
 ti

m
e

(s
)

M
IL

P
so

l.
G

A
P

(%
)

C
PU

 ti
m

e
(s

)

P.
01

12
6.

3
0

8.
1

12
6.

3
0

2.
1

12
6.

3
0

2.
3

P.
02

12
6.

3
0

21
.9

12
6.

3
0

2.
1

12
6.

3
0

2.
1

P.
03

16
0.

7
13

.1
36

00
17

0.
6

18
.0

36
00

16
0.

1
12

.7
36

00
P.

04
16

2.
8

13
.4

36
00

16
1.

2
13

.3
36

00
16

1.
4

13
.4

36
00

P.
05

20
7.

0
25

.9
36

00
25

8.
8

40
.8

36
00

20
2.

4
24

.3
36

00
P.

06
21

1.
5

27
.5

36
00

N
A

a
–

36
00

21
0.

6
27

.2
36

00
P.

07
23

1.
1

27
.8

36
00

42
5.

8
60

.8
36

00
22

9.
2

27
.2

36
00

P.
08

24
0.

4
30

.6
36

00
N

A
a

–
36

00
24

0.
2

30
.6

36
00

P.
09

29
9.

8
40

.0
36

00
82

3.
1

78
.1

36
00

29
0.

8
37

.9
36

00
P.

10
32

1.
4

47
.7

36
00

N
A

a
–

36
00

31
9.

1
47

.4
36

00

1108 N. P. Basán et al.

1 3

total time was reduced to nearly 1 year by using the simulation models that were
developed by Basán et al. (2017) and Cebral-Fernandez et al. (2016).

Taking into account that the shipbuilding is a long-term production process,
involving several months, it is not strictly necessary to have a solution strategy
that provides a good solution in less than 1 h of CPU time. When solving the
realistic example P.10 without setting a time limit, the solution found by the
time-slots formulation is 288.6 days with an integrality gap of 37.5%, while the
general precedence model reaches a makespan of 284.7 days with an integrally
gap of 36.6%. In both cases, the MIP solver ended after several hours of CPU
time because of “out of memory” error. This solution represents a significant
saving for the company because the total time required for delivering a vessel
is reduced up to approximately 20%, from 1 year to 285 days. The best solution
found by the general precedence model for example P.10 is shown in Fig. 9. In
this picture, each block i ∈ Ib and its sub-assemblies i� ∈ SBi are depicted with
the same color and labeled according to the value of parameter Seqi . This helps
to the reader to easily visualize the block assembly operation at stage s3 . Moreo-
ver, the processing stages are separated through dashed lines. The Gant chart
shows as the blocks are orderly processed in stage s7 , following the assembly
sequence given by parameter Seqi.

Despite the good solutions found by the exact optimization approaches
(excepting the immediate precedence formulation) with regards to other solution
strategies, the computational results given in Tables 2 and 3 demonstrate that the
main drawback of continuous time models is their high computation time. How-
ever, the robustness offered by these MILP models can be exploited resolving
them in a decomposable way in order to find better solutions in considerably less
computational time.

Table 3 Model sizes for the exact optimization approaches

Problem Slot-based continuous time
formulation

Unit-specific direct prec-
edence formulation

Global general precedence
formulation

Bin Vars Cont Vars Eqs Bin Var Cont Vars Eqs Bin Var Cont Vars Eqs

P.01 485 871 4441 2780 7397 21,907 1390 102 2326
P.02 485 871 4441 2780 7397 21907 1390 102 2326
P.03 2130 2832 17,876 10,510 28,742 86,547 5255 202 9626
P.04 2130 2832 17,876 10,510 28,742 86,547 5255 202 9626
P.05 5550 6715 45,931 23,190 64,037 193,962 11,595 302 21,901
P.06 5550 6715 45,931 23,190 64,037 193,962 11,595 302 21,901
P.07 10,720 12,266 87,571 40,820 113,282 344,152 20,410 402 39,151
P.08 10,720 12,266 87,571 40,820 113,282 344,152 20,410 402 39,151
P.09 17,375 18,866 140,277 64,650 176,727 585,867 31,700 502 61,376
P.10 17,375 18,866 140,277 64,650 176,727 585,867 31,700 502 61,376

1109

1 3

An efficient MILP‑based decomposition strategy for solving…

unit

days10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Fig. 9 Gantt chart of the best solution found by the general precedence approach for example P.10 (prob-
lem structure 25 × 50 under NIS policy)

Table 4 Improvement-based algorithm solutions found

Problem Constructive stage Improvement stage Improvement
percent (%)

Stage 1 solution CPU time (s) Best solution Total CPU
time (s)

Iter.

P.01 144.0 0.6 126.3 2.3 3 12.3
P.02 144.4 0.7 126.3 2.1 3 12.5
P.03 176.3 1.5 160.0 11.1 6 9.2
P.04 177.9 1.5 160.3 6.8 4 9.9
P.05 239.1 2.1 200.2 16.3 6 16.3
P.06 241.9 1.9 202.7 24.1 10 16.2
P.07 248.8 2.8 221.0 37.6 15 11.2
P.08 255.4 3.1 228.6 41.2 13 10.5
P.09 301.1 4.6 262.8 49.8 11 12.7
P.10 298.3 4.3 270.5 56.6 15 9.3

1110 N. P. Basán et al.

1 3

6.4 Testing the iterative MILP‑based algorithm

For developing a comparative analysis, the ten examples proposed in Table 1 have
been also solved through the MILP-based decomposition strategy. The computa-
tional results reported by the algorithm are detailed in Table 4. For every exam-
ple solved, this table shows the best solution found at each algorithmic stage (MK)
together with the accumulated CPU time. The number of improvement iterations
and the percent of enhancement obtained from the starting solution are also given in
Table 4.

As can be seen in Table 4, the heuristic of scheduling the products one by one
following the assembly sequence Seqi presents a good performance and is capable of
generating a good initial solution in less of 5 s of CPU time for all examples solved.
Moreover, these starting solutions are always improved by the algorithm in the sec-
ond stage, consuming in total less than 60 s of computational time. The constructive
stage solution is always enhanced at the improvement stage, obtaining an improve-
ment percentage of around 12%, in average. For industrial-size example P.10 dealing
with 25 blocks, 50 sub-blocks, and a NIS policy, the constructive step converges to
a solution of 298.3 days, which is illustrated in Fig. 10. In this starting solution, the
products assigned to the same processing unit are sequenced according to the value
of parameter Seqi in all processing stages, not only at stage s7 (dry dock). When
this condition is relaxed in the improvement stage and reassignment and reordering
actions are iteratively applied on the schedule given in Fig. 10, the final solution

days10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

unit

days10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 days10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

unitunit

270270 280280

Fig. 10 Gantt chart of the initial schedule reported by the MILP-based strategy for P.10 (problem struc-
ture 25 × 50 under NIS policy)

1111

1 3

An efficient MILP‑based decomposition strategy for solving…

Fig. 11 Gantt chart of the best schedule reported by the MILP-based strategy for P.10 (problem struc-
ture 25 × 50 under NIS policy)

Table 5 Comparison between the exact MILP formulation and the decomposition method

Problem Global general precedence formulation Decomposition algorithm Percent of
enhancement
(%)Solution GAP CPU time (s) Solution CPU time (s)

P.01 126.3 0 2.3 126.3 2.3 0
P.02 126.3 0 2.2 126.3 2.1 0
P.03 160.1 12.7 3600 160.0 11.1 0.1
P.04 161.4 13.4 3600 160.3 6.8 0.7
P.05 202.4 24.3 3600 200.2 16.3 1.1
P.06 210.6 27.2 3600 202.7 24.1 3.8
P.07 229.2 27.2 3600 221.0 37.6 3.6
P.08 240.2 30.6 3600 228.6 41.2 4.8
P.09 290.8 37.9 3600 262.8 49.8 9.6
P.10 319.1 47.4 3600 270.5 56.6 15.2

1112 N. P. Basán et al.

1 3

depicted in Fig. 11 is reported by the procedure. The makespan is enhanced 9.3%
from 298.3 to 270.5 days.

On the other hand, a comparative table between the best results obtained through
the exact optimization strategy and the decomposition algorithm for all examples
considered is given in Table 5. Specifically, the results reported by the global gen-
eral precedence based model are used in this table because this formulation shows
the best computational performance regarding to the other two exact alternatives
(see Table 2).

As can be seen in Table 5, the decomposition strategy converges to the optimal
solution in examples P.01 and P.02, validating the solution approach. For the other
cases, the proposed algorithm reports, in few seconds of CPU time, better solutions
than those found by the MILP model after 3600 s of computational time. For realis-
tic example P.10, the global general precedence approach reports a solution featur-
ing a makespan of 319.1 days with an integrality gap of 37.9% after 1 h of CPU
time, while the decomposition algorithm reports a makespan of 270.5 days in just
56.6 CPU seconds. Moreover, this solution outperforms that one obtained after sev-
eral hours of CPU time when the MILP model is executed without setting a time
limit (see Fig. 9). The schedule given in Fig. 11 represents the best solution found
for `problem instance P.10; a reduction of approximately 26% is achieved in the total
makespan with respect to the currently schedule used by the company.

Finally, it is worth to remark that, although the iterative approach does not assure
the optimality of the solutions reported, it is capable of reaching solutions that are
up to 15.2% better than those found by the exact approach with significant less com-
putation effort. It is important to emphasize that, this improvement in the schedule
allows reducing 1 month of work in the productive system and hence, a significant
savings are obtained by the company, avoiding penalties for delay in the delivery of
the vessels. The significant difference in the computational burden presented by both
approaches is due to the iterative strategy allows decomposing the full problem into
smaller sub-problems, which are solved iteratively.

7 Conclusions

This paper has presented a systematic MILP-based iterative algorithm for solving a
complex scheduling problem of the shipbuilding industry. Moreover, this proposal
is arisen after than three alternative rigorous MILP formulations, which are based
on the notion of time-slot, global general precedence, and unit-specific direct prec-
edence were developed for representing and solving the problem under study.

From the experimentation developed, it was demonstrated that the rigorous for-
mulations converged to the optimal solution only when small problem instances are
considered. The computational efficiency of these full-space approaches is rapidly
deteriorated as the problem size increased. In order to overcome this limitation,
an efficient hybrid solution strategy, which has a MILP scheduling formulation as
its core, is proposed for the solution of this type of challenging real-world prob-
lem. It combines the robustness of the traditional MILP approach based on general
precedence formulation with the advantages of heuristic procedures. The solution

1113

1 3

An efficient MILP‑based decomposition strategy for solving…

strategy is based on a systematic decomposition methodology to first obtain an ini-
tial solution (constructive stage), and then gradually enhancing it by applying sev-
eral rescheduling iterations (improvement stage).

The performance of the proposed methodology has been deeply evaluated by
solving several instances arising in a shipbuilding industry, comparing the results
obtained with those ones found by the exact MILP models. Computational results
showed that feasible and good-quality solutions can be efficiently found in short
computational time by the decomposition algorithm, outperforming the pure exact
optimization approaches and other solution techniques published in the literature.

It would be of great interest for us to compare the results of our proposal with
other search techniques, such as genetic-algorithm-based techniques, among oth-
ers. Although the data of the real-world case of study has not been provided in this
paper by confidentiality issues, the problem structure is clearly explained throughout
the manuscript, enabling to other authors to prove other solution techniques using
data that can be generated randomly. Moreover, as the MILP formulations used in
this paper can be adapted to any type of multi-stage scheduling problem, we also
invite our colleagues to apply the decomposition strategy for solving other practical
situations.

Acknowledgements The authors gratefully acknowledge the financial support from CONICET under
Grant PIP 112 20150100641, from Universidad Nacional del Litoral under Grant CAI+D 2016 PIC
50420150100101LI and from ANPCyT under Grant PICT-2014-2392.

References

Aguirre AM, Méndez CA, Gutierrez G, De Prada C (2012) An improvement-based MILP optimization
approach to complex AWS scheduling. Comput Chem Eng 47:217–226. https ://doi.org/10.1016/j.
compc hemen g.2012.06.036

Basán NP, Achkar VG, Méndez CA, Garcia-del-valle A (2017) A heuristic simulation-based framework
to improve the scheduling of blocks assembly and the production process in shipbuilding. Winter
Simul Conf WSC F134102:3218–3229. https ://doi.org/10.1109/WSC.2017.82480 40

Basán NP, Achkar VG, Garcia-del-valle A, Méndez CA (2018) An effective continuous-time formulation
for scheduling optimization in a shipbuilding. Iberoam J Ind Eng 10:34–48

Castro PM, Harjunkoski I, Grossmann IE (2009) New continuous-time scheduling formulation for
continuous plants under variable electricity cost. Ind Eng Chem Res 48:6701–6714. https ://doi.
org/10.1021/ie900 073k

Cebral-Fernandez M, Crespo-Pereira D, Garcia-Del-Valle A, Rouco-Couzo M (2016) Improving plan-
ning and resource utilization of a shipbuilding process based on simulation. In: 28th European Mod-
eling and Simulation Symposium, EMSS 2016, pp 197–203

Cerdá J, Henning GP, Grossmann IE (1997) A Mixed-integer linear programming model for short-
term scheduling of single-stage multiproduct batch plants with parallel lines. Ind Eng Chem Res
36:1695–1707. https ://doi.org/10.1021/ie960 5490

Cho KK, Oh SJ, Ryu KR, Choi HR (1998) An integrated process planning and scheduling system for
block assembly in shipbuilding. CIRP Ann Manuf Technol 47:419–422

Chu Y, You F, Wassick JM (2014) Hybrid agent-based method for scheduling of complex batch pro-
cesses. Comput Chem Eng 60:277–296. https ://doi.org/10.1109/ACC.2014.68585 92

Cóccola ME, Cafaro VG, Méndez CA, Cafaro DC (2014) Enhancing the general precedence approach
for industrial scheduling problems with sequence-dependent issues. Ind Eng Chem Res 53:17092–
17097. https ://doi.org/10.1021/ie500 803p

https://doi.org/10.1016/j.compchemeng.2012.06.036
https://doi.org/10.1016/j.compchemeng.2012.06.036
https://doi.org/10.1109/WSC.2017.8248040
https://doi.org/10.1021/ie900073k
https://doi.org/10.1021/ie900073k
https://doi.org/10.1021/ie9605490
https://doi.org/10.1109/ACC.2014.6858592
https://doi.org/10.1021/ie500803p

1114 N. P. Basán et al.

1 3

Cóccola ME, Dondo R, Méndez CA (2015) A MILP-based column generation strategy for manag-
ing large-scale maritime distribution problems. Comput Chem Eng 72:350–362. https ://doi.
org/10.1016/j.compc hemen g.2014.04.008

Fettaka S, Thibault J, Gupta Y (2015) A new algorithm using front prediction and NSGA-II for solv-
ing two and three-objective optimization problems. Optim Eng 16:713–736. https ://doi.org/10.1007/
s1108 1-014-9271-9

Hasebe S, Hashimoto I, Ishikawa A (1991) General reordering algorithm for scheduling of batch pro-
cesses. J Chem Eng Jpn 24:483–489. https ://doi.org/10.1252/jcej.24.483

Kim H, Kang J, Park S (2002) Scheduling of shipyard block assembly process using constraint satisfac-
tion problem scheduling of shipyard block assembly process using constraint satisfaction problem.
Asia Pac Manag Rev 7:119–138

Koh S, Eom C, Jang J, Choi Y (2008) An improved spatial scheduling algorithm for block assembly shop
in shipbuilding company. In: 2008 3rd international conference on innovative computing informa-
tion and control. IEEE, pp 253–253

Kopanos GM, Laínez JM, Puigjaner L (2009) An efficient mixed-integer linear programming schedul-
ing framework for addressing sequence-dependent setup issues in batch plants. Ind Eng Chem Res
48:6346–6357. https ://doi.org/10.1021/ie801 127t

Kopanos GM, Méndez CA, Puigjaner L (2010) MIP-based decomposition strategies for large-scale sched-
uling problems in multiproduct multistage batch plants: a benchmark scheduling problem of the
pharmaceutical industry. Eur J Oper Res 207:644–655. https ://doi.org/10.1016/j.ejor.2010.06.002

Larson J, Wild SM (2016) A batch, derivative-free algorithm for finding multiple local minima. Optim
Eng 17:205–228. https ://doi.org/10.1007/s1108 1-015-9289-7

Lee K, Shin JG, Ryu C (2009) Development of simulation-based production execution system in a ship-
yard: a case study for a panel block assembly shop. Prod Plan Control 20:750–768. https ://doi.
org/10.1080/09537 28090 31641 28

Maravelias CT, Sung C (2009) Integration of production planning and scheduling: overview, challenges
and opportunities. Comput Chem Eng 33:1919–1930. https ://doi.org/10.1016/j.compc hemen
g.2009.06.007

Méndez CA, Cerdá J (2003a) Dynamic scheduling in multiproduct batch plants. Comput Chem Eng
27:1247–1259. https ://doi.org/10.1016/S0098 -1354(03)00050 -4

Méndez CA, Cerdá J (2003b) An MILP continuous-time framework for short-term scheduling of mul-
tipurpose batch processes under different operation strategies. Optim Eng 4:7–22. https ://doi.
org/10.1023/A:10218 56229 236

Méndez C, Henning G, Cerdá J (2000) Optimal scheduling of batch plants satisfying multiple product
orders with different due-dates. Comput Chem Eng 24:2223–2245. https ://doi.org/10.1016/S0098
-1354(00)00584 -6

Méndez CA, Henning GP, Cerdá J (2001) An MILP continuous-time approach to short-term scheduling
of resource-constrained multistage flowshop batch facilities. Comput Chem Eng 25:701–711. https
://doi.org/10.1016/S0098 -1354(01)00671 -8

Méndez CA, Cerdá J, Grossmann IE et al (2006) State-of-the-art review of optimization methods for
short-term scheduling of batch processes. Comput Chem Eng 30:913–946. https ://doi.org/10.1016/j.
compc hemen g.2006.02.008

Persson JA, Ölvander J (2015) Optimization of the complex-RFM optimization algorithm. Optim Eng
16:27–48. https ://doi.org/10.1007/s1108 1-014-9247-9

Pinto JM, Grossmann IE (1995) A continuous time mixed integer linear programming model for
short term scheduling of multistage batch plants. Ind Eng Chem Res 34:3037–3051. https ://doi.
org/10.1021/ie000 48a01 5

Roslöf J, Harjunkoski I, Westerlund T, Isaksson J (1999) A short-term scheduling problem in the
paper-converting industry. Comput Chem Eng 23:S871–S874. https ://doi.org/10.1016/S0098
-1354(99)80214 -2

Roslöf J, Harjunkoski I, Björkqvist J et al (2001) An MILP-based reordering algorithm for complex
industrial scheduling and rescheduling. Comput Chem Eng 25:821–828. https ://doi.org/10.1016/
S0098 -1354(01)00674 -3

Roslöf J, Harjunkoski I, Westerlund T, Isaksson J (2002) Solving a large-scale industrial scheduling
problem using MILP combined with a heuristic procedure. Eur J Oper Res 138:29–42. https ://doi.
org/10.1016/S0377 -2217(01)00140 -0

Schweiger J, Liers F (2018) A decomposition approach for optimal gas network extension with a finite set
of demand scenarios. Optim Eng 19:297–326. https ://doi.org/10.1007/s1108 1-017-9371-4

https://doi.org/10.1016/j.compchemeng.2014.04.008
https://doi.org/10.1016/j.compchemeng.2014.04.008
https://doi.org/10.1007/s11081-014-9271-9
https://doi.org/10.1007/s11081-014-9271-9
https://doi.org/10.1252/jcej.24.483
https://doi.org/10.1021/ie801127t
https://doi.org/10.1016/j.ejor.2010.06.002
https://doi.org/10.1007/s11081-015-9289-7
https://doi.org/10.1080/09537280903164128
https://doi.org/10.1080/09537280903164128
https://doi.org/10.1016/j.compchemeng.2009.06.007
https://doi.org/10.1016/j.compchemeng.2009.06.007
https://doi.org/10.1016/S0098-1354(03)00050-4
https://doi.org/10.1023/A:1021856229236
https://doi.org/10.1023/A:1021856229236
https://doi.org/10.1016/S0098-1354(00)00584-6
https://doi.org/10.1016/S0098-1354(00)00584-6
https://doi.org/10.1016/S0098-1354(01)00671-8
https://doi.org/10.1016/S0098-1354(01)00671-8
https://doi.org/10.1016/j.compchemeng.2006.02.008
https://doi.org/10.1016/j.compchemeng.2006.02.008
https://doi.org/10.1007/s11081-014-9247-9
https://doi.org/10.1021/ie00048a015
https://doi.org/10.1021/ie00048a015
https://doi.org/10.1016/S0098-1354(99)80214-2
https://doi.org/10.1016/S0098-1354(99)80214-2
https://doi.org/10.1016/S0098-1354(01)00674-3
https://doi.org/10.1016/S0098-1354(01)00674-3
https://doi.org/10.1016/S0377-2217(01)00140-0
https://doi.org/10.1016/S0377-2217(01)00140-0
https://doi.org/10.1007/s11081-017-9371-4

1115

1 3

An efficient MILP‑based decomposition strategy for solving…

Seo Y, Sheen D, Kim T (2007) Block assembly planning in shipbuilding using case-based reasoning.
Expert Syst Appl 32:245–253. https ://doi.org/10.1016/j.eswa.2005.11.013

Shang Z, Gu J, Ding W, Duodu EA (2017) Spatial scheduling optimization algorithm for block assembly
in shipbuilding. Math Probl Eng 2017:1–10. https ://doi.org/10.1155/2017/19236 46

Shin K, Ciccantell PS (2009) The steel and shipbuilding industries of south korea: rising east ASIA and
globalization. Statew Agric Land Use Baseline XV:167–192. https ://doi.org/10.1017/cbo97 81107
41532 4.004

Tenne Y (2015) An adaptive-topology ensemble algorithm for engineering optimization problems. Optim
Eng 16:303–334. https ://doi.org/10.1007/s1108 1-014-9260-z

Xiong F, Xing K, Wang F (2015) Scheduling a hybrid assembly-differentiation flowshop to minimize
total flow time. Eur J Oper Res 240:338–354. https ://doi.org/10.1016/j.ejor.2014.07.004

Zhuo L, Huat DCK, Wee KH (2012) Scheduling dynamic block assembly in shipbuilding through hybrid
simulation and spatial optimisation. Int J Prod Res 50:5986–6004. https ://doi.org/10.1080/00207
543.2011.63981 6

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1016/j.eswa.2005.11.013
https://doi.org/10.1155/2017/1923646
https://doi.org/10.1017/cbo9781107415324.004
https://doi.org/10.1017/cbo9781107415324.004
https://doi.org/10.1007/s11081-014-9260-z
https://doi.org/10.1016/j.ejor.2014.07.004
https://doi.org/10.1080/00207543.2011.639816
https://doi.org/10.1080/00207543.2011.639816

	An efficient MILP-based decomposition strategy for solving large-scale scheduling problems in the shipbuilding industry
	Abstract
	1 Introduction
	2 The shipbuilding process
	3 Problem statement
	4 Mathematical formulations
	4.1 Objective function
	4.2 The slot-based continuous time formulation
	4.3 The immediate precedence formulation
	4.4 The general precedence formulation

	5 The MILP-based decomposition algorithm
	5.1 Constructive step
	5.2 Improvement step

	6 Computational results and discussion
	6.1 Real-world case study
	6.2 Problem instances
	6.3 Testing the exact optimization approaches
	6.4 Testing the iterative MILP-based algorithm

	7 Conclusions
	Acknowledgements
	References

