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Abstract
Concentrating solar power (CSP) tower technologies capture thermal radiation from
the sun utilizing a field of solar-tracking heliostats. When paired with inexpensive
thermal energy storage (TES), CSP technologies can dispatch electricity during peak-
market-priced hours, day or night. The cost of utility-scale photovoltaic (PV) systems
has dropped significantly in the last decade, resulting in inexpensive energy produc-
tion during daylight hours. The hybridization of PV and CSP with TES systems has
the potential to provide continuous and stable energy production at a lower cost than a
PV or CSP system alone. Hybrid systems are gaining popularity in international mar-
kets as a means to increase renewable energy portfolios across the world. Historically,
CSP-PV hybrid systems have been evaluated using either monthly averages of hourly
PV production or scheduling algorithms that neglect the time-of-production value of
electricity in the market. Tomore accurately evaluate a CSP-PV-battery hybrid design,
we develop a profit-maximizing mixed-integer linear program (H) that determines a
dispatch schedule for the individual sub-systems with a sub-hourly time fidelity. We
present the mathematical formulation of such a model and show that it is computation-
ally expensive to solve. To improve model tractability and reduce solution times, we
offer techniques that: (1) reduce the problem size, (2) tighten the linear programming
relaxation of (H) via reformulation and the introduction of cuts, and (3) implement
an optimization-based heuristic (that can yield initial feasible solutions for (H) and,
at any rate, yields near-optimal solutions). Applying these solution techniques results
in a 79% improvement in solve time, on average, for our 48-h instances of (H); corre-
sponding solution times for an annual model run decrease by as much as 93%, where
such a run consists of solving 365 instances of (H), retaining only the first 24h’ worth
of the solution, and sliding the time window forward 24h. We present annual system
metrics for two locations and two markets that inform design practices for hybrid sys-
tems and lay the groundwork for a more exhaustive policy analysis. A comparison of
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alternative hybrid systems to the CSP-only system demonstrates that hybrid models
can almost double capacity factors while resulting in a 30% improvement related to
various economic metrics.

Keywords Dispatch optimization · Concentrating solar power (CSP) · Photovoltaics
(PV) · Lithium-ion battery · Mixed-integer linear programming (MILP) · CSP-PV
hybrid systems · Grid integration · System analysis

1 Introduction

Renewable energy portfolio mandates and/or standards reduce emissions and the
effects of climate change (International Energy Agency 2017). Governments within
the United States have legislated their own standards, e.g., California plans to have
50% of its energy demands met using renewable energy technologies by 2030 (Clean
Energy and Pollution Reduction Act (SB350)). However, as penetration of traditional
variable generation sources, i.e., wind and photovoltaic solar, increases, so do chal-
lenges associated with grid stability and increased energy curtailment (Denholm and
Hand 2011). Electric, thermal, and chemical energy storage mitigate this instability,
thereby potentially increasing renewable energy share of the electricity market (Dunn
et al. 2011).

Concentrating solar power (CSP) is a renewable energy technology that uses rel-
atively inexpensive media such as high-temperature salt to store thermal energy for
future power generation. CSP technologies capture solar thermal radiation by utiliz-
ing mirrors to concentrate the sun’s energy onto a receiver. There are four major CSP
technologies: parabolic trough, linear Fresnel, dish Stirling, and power tower. Each
of these technologies has its relative benefits and drawbacks. CSP power tower (also
known as a “central receiver”) uses a field of thousands of mirrors, called heliostats, to
focus the sun’s rays onto a receiver atop a tower. This CSP configuration can achieve
high concentration ratios as defined by collectors-to-surface area, and, correspond-
ingly, high operating temperatures, without the high cost, compared to those of any
other CSP technology, thereby allowing the solar heat collection system to be paired
with higher efficiency power cycles. CSP power tower technology presents a promis-
ing path forward for utility-scale energy production with the greatest potential for cost
reduction and efficiency improvement (Mehos et al. 2017).

Wagner et al. (2018) provide an overview of CSP power tower technology advan-
tages over those of other renewable and fossil alternatives. With the use of TES,
CSP power tower plants decouple solar energy collection from electricity generation,
allowing the technology to generate stable grid power through cloudy periods and
throughout the night, shown in the case study of Rice, California. This decoupling of
collection and generation also permits the power tower technology to be paired with
any conventional thermodynamic conversion power cycles, e.g, a steamRankine cycle.
However, Turchi et al. (2013) and Dunham and Iverson (2014) present supercritical
carbon dioxide power cycles as themost promising. Themethodology presented in this
paper can be adapted to supercritical carbon dioxide power cycles as the technology
matures.
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Photovoltaic (PV) solar energy uses panels comprised of an array of individual solar
cells made of semi-conducting material that, when hit by a photon, generates a flow of
electrons. Modules are connected in a variety of parallel and series configurations to
provide voltage to a power inverter that transforms the direct current (DC) to alternating
current (AC) at the grid’s regulated voltage and frequency. Photovoltaic panels can
be mounted at a fixed orientation or can track the sun using a single- or double-axis
system. PV can be coupled with electric energy storage, e.g., batteries, to provide
some dispatchablity. However, battery technologies are still expensive and incapable
of fully serving as a grid-scale storage method (Zakeri and Syri 2015). The cost of
PV systems has dropped significantly in the last decade and, as a result, deployment
has rapidly accelerated. Fu et al. (2017) reports that 2017 utility-scale PV systems
are already below the Department of Energy’s 2020 SunShot target for levelized cost
of energy. Basore and Cole (2018) argue that low-cost energy storage significantly
increases PV generation capacity.

This paper demonstrates that hybridization of PV and batteries with CSP and TES
reduces the cost of energy produced by the system while simultaneously providing
reliable, dispatchable electricity. The proposed hybrid system exports low-cost PV
generation during daytime hourswhile predominantly storing thermal energy collected
by the CSP system. Stored energy can be dispatched for electricity generation at night
or around disruptions in PV production, thereby achieving a high capacity factor and
lower overall levelized energy cost. CSP-TES-PV-battery hybrid systems, shown in
Fig. 1, are capable of replacing traditional fossil fuel baseload generation and are
therefore gaining popularity in international markets, e.g., Morocco (New Energy
Update: CSP 2018) and Chile (Meyers 2015) at the time of this writing. However,
the design and simulation of CSP-TES-PV-battery hybrid systems presents significant
challenges because the interaction of the two systems is not well understood.

To analyze a CSP-TES-PV-battery hybrid design, we develop a mixed-integer lin-
ear programming (MILP) model that prescribes a dispatch strategy at a 10-min time

Fig. 1 CSP-TES-PV-battery hybrid system configuration (Graphic c©NREL/Al Hicks). On the left, the sys-
tem consists of a molten salt power tower CSP plant, which consists of a heliostat field, molten salt receiver,
thermal energy storage, and a Rankine power cycle. On the right, the system consists of a photovoltaic
system with battery storage. The system depicted is not all-inclusive of components required for control or
operation
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fidelity. The strategy is implemented within an engineering simulation framework
on a rolling time horizon to determine the performance of the system over a longer
horizon—typically, one year. This approach makes use of existing methods and soft-
ware tools both for the MILP characterizing CSP and for the engineering simulation
of plant performance. The dispatch model determines an operating schedule that max-
imizes profits over the prescribed time horizon while accounting for solar resource
and electricity price forecasts, sub-system sizing, operational limits, and performance
characteristics.

The remainder of the paper is organized as follows: Section 2 provides a literature
review of dispatch methodologies used for stand-alone CSP with TES, stand-alone
PV with battery, and combined CSP-PV hybrids. Section 3 presents and discusses a
mathematical formulation of the hybrid system dispatch optimizationmodel. Section 4
describes the challenges of model complexity and corresponding solution techniques
implemented to improve tractability and reduce solution time. Section 5 presents
a case study that exercises the model with the CSP-TES-PV-battery hybrid system
design evaluated for two locations and two corresponding markets. We present results
regarding annual plant performance and solution time improvements, and contrast
hybrid and stand-alone system performance. Section 6 concludes with a summary and
extensions of our work.

2 Literature review

Asystem that combinesPVwith batteries ismore commonlyused in smaller residential
markets, while CSPwith TES is used only for larger commercial generation. However,
with greater penetration of renewable energy sources in the electricity market, utility-
scale battery storage is being considered to increase grid stability byproviding ancillary
services, shaving peak-load, and integrating renewables (Miller et al. 2010; Poullikkas
2013). The combination of PV and CSP has only in recent years gained traction. We
review (1) PV with battery storage, and (2) CSP with TES separately and then (3) a
combination of some subset of (1) and (2).

2.1 Photovoltaics with battery storage

In general, literature pertaining to PV-battery systems suggests that batteries should
either “peak-shift” demand, store energy from lower-demand parts of the day for
use during high demand, or smooth power output during variations in solar resource,
e.g., Heymans et al. (2014). Utility companies provide price incentives to induce this
behavior.

Combining PV and lithium-ion batteries can reduce residential electricity use on
the grid. Tervo et al. (2018) demonstrate the cost effectiveness of these systems using
bi-directional metering to sell energy back to the utility in each state in the United
States of America. PV-plus-battery system sizing can be done at the residential scale
for a single household (Weniger et al. 2014), or for a university campus (Borowy and
Salameh 1996), and can include hybrid options such as wind or fuel cells, but does
not employ mixed integer linear programs (MILPs) to determine the operations of the
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hybrid’s sub-systems such as we do. Gitizadeh and Fakharzadegan (2014) use a MILP
to optimize the capacity of a battery for a grid-connected PV system and find that the
resulting battery size is sensitive to the pricing structure.

Weather transients such as passing clouds significantly affect the performance of
PV-plus-battery systems, though performance can be described using simplified mod-
els (Giraud and Salameh 1999); the authors compare results from an artificial neural
network simulation model against experimental results during cloudy days. Shi et al.
(2012) forecast PV based on simplified categorized weather conditions for the fol-
lowing day with a view towards maximizing energy output and profit. These models
differ from ours because we use the System Advisor Model (SAM) to estimate the
performance of renewable equipment (Blair et al. 2018).

Various researchers propose linear programs to determine a dispatch, rather than
a design, strategy for a PV-plus-battery system in day-ahead and real-time markets
(Nottrott et al. 2012, 2013), respectively; however, there is no consideration of the
battery charge and discharge currents. Hassan et al. (2017) study a PV-plus-battery
storage system with a feed-in-tariff incentive. Riffonneau et al. (2011) compare opti-
mizing a PV-plus-battery grid-connected system using dynamic programming with a
rule-based heuristic. Lu and Shahidehpour (2005) analyze the impact of scheduling
short-term battery usage at hourly time fidelity on utility operations using a Lagrangian
relaxation-based optimization algorithm. While these models use optimization, they
do not simultaneously capture design and dispatch decisions, and, if a heuristic is used,
optimality of the corresponding dispatch solutions cannot be guaranteed.

2.2 Concentrated solar power with thermal energy storage

CSP systems use heliostats to focus sunlight onto a central receiver located on top of
a tower to heat molten salt. By using TES to store the heat of the molten salt for use in
power production at a later time, a CSP system can participate more reliably in day-
ahead markets. Vasallo and Bravo (2016) propose two models to optimize dispatch
scheduling and apply the approach to a 50MW CSP plant with TES to maximize
profits in a day-ahead market. Algorithms exist to optimize the CSP plant’s market
participation with scheduling and control decisions (Dowling et al. 2018); the authors
show that incorporating detailed dynamics into multi-scale electricity markets can
increase revenues by up to 50% for certain capacities of thermal energy storage.
Optimally sizing CSP-TES systems is done with the System Advisor Model using
a short-term control strategy or with a model developed by Casella et al. (2014).
Usaola (2012) create a dispatch strategy based on day-ahead electricity market prices
and examine the effects that incentives offer. Petrollese et al. (2017) discuss ways to
handle weather uncertainty to mitigate its impact on revenue.

2.3 Hybrid systems

For the purposes of this analysis, a hybrid power generation system is one in which
two or more technologies that are capable of independently producing and/or storing
energy are deployed in a coordinated—and often co-located—design. As such, many
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hybrid concepts are possible and do not necessarily include CSP. For example, PV-
battery systems might be used to support electrical generation for peak-load shaving
and prevent peaking generators from turning on. Ashari and Nayar (1999) illustrate
the use of a PV, battery, and diesel generator hybrid system to develop policies or
dispatch rules to more efficiently meet load.

Previous work on migrogrids with generators demonstrates that hybrid systems can
effectively support electrical demand. Scioletti et al. (2017) compare how integration
of solar power and batteries into a diesel-poweredmicrogrid reduces fuel consumption
relative to a microgrid possessing only diesel generators, while Goodall et al. (2018)
extend the work to capture fade and temperature effects of the batteries. Muselli
et al. (1999) optimize equipment size in a microgrid consisting of PV, a battery, and
gasoline or diesel generators, and show economic benefits over a PV stand-alone
system.Marwali et al. (1998) optimize thermal unit commitment at hourly time fidelity
for a day-long time horizon to demonstrate the benefits of the PV-battery system.

In the last half decade, the solar industry has shown increasing interest in the
design and deployment of CSP-PV hybrid systems. Preliminary analysis suggests that
the inclusion of photovoltaics can increase the capacity factor of a baseload CSP plant
from 80% to roughly 90% in a cost-effective manner (Green et al. 2015). Determining
optimal equipment sizes in the hybrid system is important for lowering the power pur-
chase agreement price, which can be different between areas of variable and constant
hourly demand (Starke et al. 2016). Denholm et al. (2013) explore the economic oppor-
tunities of solar energy systems for the United States grid. The optimal solar energy
system design with storage for constant power output has a different CSP-to-PV size
ratio in areas where there are significant changes in the length of day throughout the
year (Petrollese and Cocco 2016).

Concentrating solar power systems with TES are dispatchable, increasing overall
grid flexibility and allowing for greater penetration of other non-dispatchable renew-
able resources such as PV and wind (Denholm and Mehos 2011). Similarly, Cocco
et al. (2016) improve power dispatchability, but instead use concentrated photovoltaics.
Solar hybrids can generate baseload power at a lower levelized cost of electricity than
CSP or PV systems could alone (Pan and Dinter 2017). An evaluation of a 50MW
power plant for a mining operation in Chile shows how a PV, a CSP, and a hybrid
PV-CSP system can effectively meet the mine’s electricity demand (Parrado et al.
2016); however, the study does not include a battery system. A similar analysis is per-
formed on a desalination plant in northern Chile (Valenzuela et al. 2017), also without
batteries.

2.4 Contribution

This paper presents a newhybrid systemdispatchmodel that builds on existingwork for
optimizing dispatch for CSP (Wagner et al. 2017) and for PV with batteries (Husted
et al. 2017). The results indicate that CSP with TES supplements the diurnal and
variable PV generation profiles while the batteries provide rapid response to sudden
changes in PV production or demand conditions. Furthermore, the model generates
dispatch profiles at 10-min intervals for an annual time horizon determined in 48-h
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incrementswith a 24-h look-ahead policy, improving upon previousmodelswith lower
temporal fidelity. The approach both adapts existing and develops new techniques for
this application; specifically: it (1) modifies a fix-and-relax heuristic in twoways (both
with respect to system components and with respect to time); (2) linearizes nonlinear
terms; and (3) develops valid inequalities to improve proof of optimality.

3 Dispatch optimizationmodel

Designing CSP-PV hybrid systems possesses unique challenges, requiring simulation
to couple both subsystems, which has historically been done using monthly average
hourly PV production (Green et al. 2015). By taking an average of the monthly PV
production, the variability of PV resource is not captured, thereby over-predicting the
production of the CSP-PV hybrid system. We propose to replace a heuristic, which
had been used for dispatch solely of a CSP system, with a detailed optimization model
that contains PV and a battery and that determines decisions at a 10-min time fidelity,
to determine an optimal schedule over a year-long time horizon.

Figure 2 presents a block diagram of a solar hybrid system. On the left of the
alternating current (AC) bus, there is the PV array with battery storage. To the right
of the AC bus is a CSP field, a power cycle (for CSP generation), TES coupled to
both of these, and a connection to and from the grid. The black arrows represent
electricity flow while the red and blue arrows represent “hot” and “cold” TES molten
salt flows, respectively. The hybrid system produces electricity that can be sold to the
grid, and can also purchase electricity from the grid in the analyzed configuration.
This configuration is one of several possible, and various constraints related to grid
connection, intra-system connections, and design considerations may alter the system
topology in practice.

This section describes the sets, parameters, variables, objective function, and con-
straining relationships comprising the optimization model. Parameters and variables
that contain the subscript of time t indicate their time-varying nature. In general, upper-
case letters denote parameters while lower-case letters are reserved for variables. We
also use lower-case letters for indices and upper-case script letters for sets.

Fig. 2 System layout consisting of a CSP system (with TES), PV solar field generation, and battery storage
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3.1 Notation

The following MILP, (H), requires the initial operational state of the system, the PV
field and receiver energy generation forecasts, the expected cycle conversion efficiency
profile as a function of ambient temperature and thermal input, and the energy price
or tariff profile (Table 1).

Table 1 Hybrid dispatch model, (H), sets and parameters

Sets

T Set of all time periods in the time horizon

Time-indexed parameters

Δrs
t Estimated fraction of time period t required for receiver start-up [–]

ηamb
t Cycle efficiency ambient temperature adjustment factor in time t [–]

ηct Normalized condenser parasitic loss in time t [–]

Pt Electricity sales price in time t [$/kWhe]

Qin
t Available thermal power generated by the CSP heliostat field in time t [kWt]

WDC
t Available DC power generated by the PV field in time t [kWe]

Wnet
t Net grid transmission upper limit in time t [kWe]

Battery parameters

AV Battery linear voltage model slope coefficient [V]

α+, α− Bi-directional slope-intercept for charge and discharge [kWe]

BV Battery linear voltage model intercept coefficient [V]

β+, β− Bi-directional slope for charge and discharge [–]

CB Battery manufacturer-specified capacity [kAh]

I avg Typical current expected from the battery for both charge and discharge activities [A]

I L+, IU+ Battery charge current lower and upper bounds [kA]

I L−, IU− Battery discharge current lower and upper bounds [kA]

PB , P̄ B Battery minimum and maximum power ratings [kWe]

Rint Battery internal resistance [�]

SB , S̄B Battery state of charge minimum and maximum operational bounds [–]

Cost parameters

Crec Operating cost of heliostat field and receiver [$/kWht]

Crsu Penalty for receiver cold start-up [$/start]

Crhsp Penalty for receiver hot start-up [$/start]

C pc Operating cost of power cycle [$/kWhe]

Ccsu Penalty for power cycle cold start-up [$/start]

Cchsp Penalty for power cycle hot start-up [$/start]

CδW Penalty for change in power cycle production [$/ΔkWe]

Ccsb Operating cost of power cycle standby operation [$/kWht]

C pv Operating cost of photovoltaic field [$/kWhe]
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Table 1 continued

Cbc Operating cost of charging battery [$/kWhe]

Cbd Operating cost of discharging battery [$/kWhe]

Cbl Lifecycle cost for battery [$/lifecycle]

CSP field and receiver parameters

Δl Minimum time to start the receiver [h]

Ehs Heliostat field startup or shut down parasitic loss [kWhe]

Er Required energy expended to start receiver [kWht]

Eu Thermal energy storage capacity [kWht]

Lr Receiver pumping power per unit power produced [kWe/kWt]

Qrl Minimum operational thermal power delivered by receiver [kWht]

Qrsb Required thermal power for receiver standby [kWht]

Qrsd Required thermal power for receiver shut down [kWht]

Qru Allowable power per period for receiver start-up [kWht]

Wh Heliostat field tracking parasitic loss [kWe]

Wht Tower piping heat trace parasitic loss [kWe]

Power cycle parameters

Ec Required energy expended to start cycle [kWht]

ηdes Cycle nominal efficiency [–]

ηp Slope of linear approximation of power cycle performance curve [kWe/kWt]

Lc Cycle heat transfer fluid pumping power per unit energy expended [kWe/kWt]

Qb Cycle standby thermal power consumption per period [kWt]

Qc Allowable power per period for cycle start-up [kWt]

Ql Minimum operational thermal power input to cycle [kWt]

Qu Cycle thermal power capacity [kWt]

Wb Power cycle standby operation parasitic load [kWe]

W δlim Power cycle ramp limit per time period [kWe]

Wl Minimum cycle electric power output [kWe]

Wu Cycle electric power rated capacity [kWe]

PV parameters

α pv, β pv Inverter slope-intercept linear approximation of DC-to-AC efficiency [kWe, –]

W I Inverter DC power limit [kWe]

Miscellaneous parameters

α Conversion factor between unitless and monetary values [$]

Δ Time period duration [h]

γ Exponential time weighting factor [–]

M Sufficiently large number [–]

ε Sufficiently small number [–]
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The variables (see Table 2) describe energy (thermal kWht or electric kWhe) states
and power flows (thermal kWt or electric kWe) in the system. Continuous variables
“x ,” “ẇ,” “u,” and “s” representing power and energy relate to the receiver, power
cycle, PV field, battery, and TES. Binary variables “y” enforce operational modes and
sequencing such that start-up must occur before normal operation, for example.

Table 2 Variables used in (H)

Continuous

bc Battery cycle count [-]

bsoct State of charge of battery in time period t [–]

i+t , i−t Battery current for charge and discharge in time period t [kA]

st TES reserve quantity at time t [kWht]
ucsut Cycle start-up energy inventory at time t [kWht]
ursut Receiver start-up energy inventory at time t [kWht]
vsoct Battery voltage in time period t [V]

ẇt Power cycle electricity generation at time t [kWe]
ẇ+
t , ẇ−

t Power into and out of the battery at time t [kWe]
ẇδ
t Power cycle change in electricity production at time t [kWe]

ẇ
pv
t Power from the photovoltaic field at time t [kWe]

ẇ
pv+
t Power from PV directly charging the battery at time t [kWe]

ẇs
t Electrical power sold to the grid at time t [kWe]

ẇ
p
t Electrical power purchased from the grid at time t [kWe]

xt Cycle thermal power utilization at time t [kWt]
xrt Thermal power delivered by the receiver at time t [kWt]
xrsut Receiver start-up power consumption at time t [kWt]
Binary

yrt 1 if receiver is generating “usable” thermal power at time t ; 0 otherwise

yrhspt 1 if receiver hot start-up penalty is incurred at time t (from standby); 0 otherwise

yrsbt 1 if receiver is in standby mode at time t ; 0 otherwise

yrsdt 1 if receiver is shut down at time t ; 0 otherwise

yrsut 1 if receiver is starting up at time t ; 0 otherwise

yrsupt 1 if receiver cold start-up penalty is incurred at time t (from off); 0 otherwise

yt 1 if cycle is generating electric power at time t ; 0 otherwise

ychspt 1 if cycle hot start-up penalty is incurred at time t (from standby); 0 otherwise

ycsbt 1 if cycle is in standby mode at time t ; 0 otherwise

ycsdt 1 if cycle is shutting down at time t ; 0 otherwise

ycsut 1 if cycle is starting up at time t ; 0 otherwise

ycsupt 1 if cycle cold start-up penalty is incurred at time t (from off); 0 otherwise

y+
t , y−

t 1 if battery is charging or discharging in time period t ; 0 otherwise

y pvt 1 if the PV field is generating power at time t ; 0 otherwise
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3.2 Objective function and constraints

We maximize the sale of electricity given as the revenue based on sales minus the
cost of grid purchase throughout the time horizon in question. We decrement the
revenue by penalties incurred for start-ups and shut-downs, changes in production
between successive time periods, and operating costs related to the power cycle, the
PV field, the receiver and the battery. Lesser penalties are introduced to enforce the
logic associated with the receiver and power cycle shut down, and we also charge for
battery lifecycles consumed during the time horizon.

(H) maximize
∑

t∈T

[
Δ · Pt (ẇs

t − ẇ
p
t )

−
( 1

γ

)t
(Ccsu ycsupt + Cchsp ychspt + αycsdt + CδW ẇδ

t )

−
( 1

γ

)t(
Crsu yrsupt + Crhsp yrhspt + αyrsdt

)

−
( 1

γ

)t
Δ

(
C pcẇt + CcsbQbycsbt + C pvẇ

pv
t + Cbdẇ−

t

+ Cbcẇ+
t + Crecxrt

)] − Cblbc (1)

3.2.1 Receiver operations

We include the following constraints that govern receiver operations:
Receiver Start-up

ursut ≤ ursut−1 + Δxrsut ∀ t ∈ T : t ≥ 2 (2a)

ursut ≤ Er yrsut ∀ t ∈ T (2b)

yrt ≤ ursut

Er
+ yrt−1 + yrsbt−1 ∀ t ∈ T : t ≥ 2 (2c)

yrsut + yrt−1 ≤ 1 ∀ t ∈ T : t ≥ 2 (2d)

xrsut ≤ Qru yrsut ∀ t ∈ T (2e)

yrsut ≤ Qin
t

Qrl
∀ t ∈ T (2f)

Receiver Supply and Demand

xrt + xrsut + Qrsd yrsdt ≤ Qin
t ∀ t ∈ T (3a)

xrt ≤ Qin
t yrt ∀ t ∈ T (3b)

xrt ≥ Qrl yrt ∀ t ∈ T (3c)

yrt ≤ Qin
t

Qrl
∀ t ∈ T (3d)
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Logic Associated with Receiver Modes

yrsut + yrsbt ≤ 1 ∀ t ∈ T (4a)

yrt + yrsbt ≤ 1 ∀ t ∈ T (4b)

yrsbt ≤ yrt−1 + yrsbt−1 ∀ t ∈ T : t ≥ 2 (4c)

yrsupt ≥ yrsut − yrsut−1 ∀ t ∈ T : t ≥ 2 (4d)

yrhspt ≥ yrt − (1 − yrsbt−1) ∀ t ∈ T : t ≥ 2 (4e)

yrsdt ≥ (yrt−1 − yrt ) + (yrsbt−1 − yrsbt ) ∀ t ∈ T : t ≥ 2 (4f)

In order for the system to generate power,we imposeConstraint (2a)which accounts
for receiver start-up energy “inventory”; we employ an inequality such that inventory
can revert to a level of zero in time periods after which start-up has completed. Inven-
tory is allowed to assume a positive value during time periods of receiver start-up
(Constraint (2b)). Power production is positive only upon completion of a start-up or
if the receiver also operates in the time period prior (Constraint (2c)). If the receiver is
producing thermal power in time t − 1, it cannot be starting up in the following time
period t (Constraint (2d)). Ramp-rate limits must be honored during the start-up pro-
cedure (Constraint (2e)). Trivial solar resource prevents receiver start-up (Constraint
(2f)).

The parameter Qin
t provides an upper bound on the thermal power produced by the

receiver, from which any energy used for start-up or shutdown detracts (Constraint
(3a)). Constraint (3b) permits the receiver to generate thermal power only while in
power-producingmode. Receiver thermal power generation is subject to a lower bound
by Constraint (3c) owing to the minimum turndown of molten salt pumps. In the
absence of thermal power, the receiver is not able to operate (Constraint (3d)).

Standby mode allows molten salt to be circulated between the TES tanks and
the receiver such that a restart can occur quickly; such a restart incurs a smaller
financial penalty. Constraints (4a) and (4b) preclude (1) standby and start-up modes
and (2) standby and power-producing modes from coinciding. Standby mode can
only occur in time periods directly after which the receiver was either in standby or
power-producing mode (Constraint (4c)). Specifically through the use of the start-up
variables yrsupt and yrhspt (as opposed to yrsut which affords multiple time peri-
ods of start-up but therefore does not enforce penalty logic), Constraints (4d) and
(4e) ensure that penalties for receiver start-up from an off or from a standby state
are incurred, respectively. Constraint (4f) implements shut-down logic related to
power-producing or standby states. Constraints (12a)–(12c) and (12e) enforce domain
requirements on the variables except for xrt whose non-negativity is ensured via
Constraints (3c).
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3.2.2 Power cycle operations

Power cycle operation constraints are similar to those of receiver operations:
Cycle Start-up

ucsut ≤ ucsut−1 + ΔQcycsut ∀ t ∈ T : t ≥ 2 (5a)

ucsut ≤ Ecycsut ∀ t ∈ T (5b)

yt ≤ ucsut−1

Ec
+ yt−1 + ycsbt−1 ∀ t ∈ T : t ≥ 2 (5c)

xt ≤ Qu yt ∀ t ∈ T (5d)

xt ≥ Ql yt ∀ t ∈ T (5e)

Power Supply and Demand

ẇt = ηamb
t

ηdes
[ηpxt + (Wu − ηpQu)yt ] ∀ t ∈ T (6a)

ẇδ
t ≥ ẇt − ẇt−1 ∀ t ∈ T : t ≥ 2 (6b)

ẇδ
t ≥ ẇt−1 − ẇt ∀ t ∈ T : t ≥ 2 (6c)

ẇδ
t ≤ W δlim

+
(

ηamb
t

ηdes
Wl − W δlim

)(
yt − yt−1 + 2ycsbt + 2ycsdt

)
∀ t ∈ T : t ≥ 2 (6d)

ẇs
t ≤ Wnet

t ∀ t ∈ T (6e)

ẇs
t − ẇ

p
t = ẇt (1 − ηct ) + ẇ−

t − α−y−
t

1 + β−

− [
(1 + β+)ẇ+

t + α+y+
t

] + ẇ
pv
t − ẇ

pv+
t − α pv y pvt

1 + β pv

−Lr (xrt + xrsut + Qrl yrsbt ) − Lcxt − Whyrt − Wbycsbt

−Wht yrsut − Ehs

Δ

(
yrsut + yrsbt + yrsdt

)
∀ t ∈ T (6f)

Logic Governing Cycle Modes

ycsut + yt−1 ≤ 1 ∀ t ∈ T : t ≥ 2 (7a)

yt + ycsut ≤ 1 ∀ t ∈ T (7b)

ycsbt ≤ yt−1 + ycsbt−1 ∀ t ∈ T : t ≥ 2 (7c)

ycsut + ycsbt ≤ 1 ∀ t ∈ T (7d)

yt + ycsbt ≤ 1 ∀ t ∈ T (7e)

ychspt ≥ yt − (1 − ycsbt−1) ∀ t ∈ T : t ≥ 2 (7f)
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ycsdt ≥ yt−1 − yt + ycsbt−1 − ycsbt ∀ t ∈ T : t ≥ 2 (7g)

ycsupt ≥ ycsut − ycsut−1 ∀ t ∈ T : t ≥ 2 (7h)

Constraint (5a) accounts for start-up energy “inventory,” which can only be positive
during time periods in which the cycle is starting up (Constraint (5b)). Normal cycle
operation can occur upon completion of start-up energy requirements, if the cycle
is operating normally, or directly after stand-by mode (Constraint (5c)). Constraint
(5d) and Constraint (5e) form the upper and lower bounds on the heat input to the
power cycle, respectively. The relationship between electrical power and cycle heat
input is modeled as a linear function with corrections for ambient temperature effects
(Constraint (6a)). Constraints (6b) and (6c) measure the change in the production
of electrical power over time. Constraint (6d) limits the ramp rate under cycle start
up, stand by, and shut down to the minimum power output defined by Constraint
(6a), with the appropriate transformation after substituting Ql for xt and 1 for yt ;
otherwise, it is restricted to the corresponding limit per time period. Constraint (6e)
limits the grid transmission for net power production. Positive and negative power
flow (corresponding to sold and purchased electricity, respectively) is determined by
a power balance on the AC bus of the hybrid system (Constraint (6f)). The right-hand
side ofConstraint (6f) consists of the following terms, in the order inwhich they appear:
(1) power cycle generation less condenser parasitic power, (2) battery discharge power
accounting for DC-to-AC conversion losses, (3) battery charge power accounting for
AC-to-DC conversion losses, (4) PV field generation less power used for battery
charging directly from the field, accounting for inverter losses, (5) TES pumping
power requirements for receiver operations, (6) TES pumping power requirements for
cycle operation, (7) heliostat tracking power, (8) power cycle standby parasitic power,
(9) tower piping heat trace for receiver start-up, and (10) heliostat field stow power
for different receiver operations.

Constraint (7a) precludes power cycle start-up in consecutive time periods of power-
producing operation. Constraint (7b) precludes power cycle start-up and operation
from coinciding. The cycle-standby-mode constraint (Constraint (7c)) is analogous
to that for the receiver. Standby and start-up modes cannot simultaneously occur
(Constraint (7d)); this also holds for standby and power-producing modes (Constraint
(7e)). Constraints (7f) and (7g) implement the following logic, respectively: (1) starting
up after standby and (2) shutting down after producing power or standing by. Penalties
incurred from a cycle cold start are incurred via Constraint (7h). Constraints (12a)–
(12c) and (12f) enforce domain requirements on the variables except for xt whose
non-negativity is ensured via Constraint (5e).

3.2.3 TES energy balance

The system’s energetic state implies power terms that can assume either sign; the
thermal storage charge state (st ) reconciles their difference. We therefore impose
some additional constraints with respect to TES state of charge:
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TES State of Charge

st − st−1 = Δ[xrt − (Qcycsut + Qbycsbt + xt + Qrsb yrsbt )] ∀ t ∈ T : t ≥ 2 (8a)

st ≤ Eu ∀ t ∈ T (8b)

st−1 ≥ Δ · Δrs
t [M(−3 + yrsut + yt−1 + yt + ycsbt−1 + ycsbt ) + xt + Qbycsbt ]

∀ t ∈ T : t ≥ 2 (8c)

Constraint (8a) balances energy to and from TES with the charge; a time-scaling
parameter Δ reconcils power and energy. Constraint (8b) imposes the upper bound
to TES charge state. If the power cycle is operating or standing by in time period
t − 1 or t , and if the receiver is starting up in time t , then there must be a sufficient
charge level in the TES in time t − 1 to ensure that the receiver can operate through
its start-up period (Constraint (8c)). The expected fraction of a time period used for
receiver start-up is given by (9), if applicable.

Δrs
t = min

{
1,max

{
Δl ,

Ec

max
{
ε, Qin

t+1Δ
}
}}

(9)

Constraints (8a)–(8c)measureTES state of charge via energyflow. (Introducing energy
quality as a function of the molten salt temperature yields a non-linearity that, at the
time of this writing, is a level of detail not worth the extra computational effort.)

3.2.4 Battery and photovoltaic field operations

Lithium-ion and lead-acid batteries store energy. A lithium-ion battery outperforms
a lead acid battery because, relative to a lead acid battery: (1) the lithium-ion bat-
tery commonly uses 80% of its available capacity, compared to 50% for a lead-acid
battery; (2) throughout the life of the lithium-ion battery, it is expected to deliver
twice the number of cycles; (3) the lithium-ion battery has a faster and more efficient
charging process; (4) the round-trip DC-to-DC efficiency of a lithium-ion battery is
94–98%, compared to 76–82% for a lead-acid battery; (5) a lithium-ion battery is less
susceptible to storage issues and leaks; (6) a lithium-ion battery is less affected by
ambient temperature; (7) there are fewer maintenance requirements associated with
a lithium-ion battery; and (8) a lithium-ion battery weighs less and is smaller than
a lead-acid battery per unit capacity (O’Connor 2017; Mobbs 2016). A lithium-ion
battery is rechargeable and uses lithium ions to store or release electrical energy.When
charging a lithium-ion battery, lithium ions move from the cathode to the anode. These
ions move in the other direction, from the anode to the cathode, to release the stored
energy and produce electrical energy. We use a lithium-ion battery in our analysis
because of the benefits mentioned above.

The addition of a PV and battery system to CSP enhances dispatch flexibility. The
lithium-ion battery being used in this hybrid system is connected to PV and reacts
quickly to changes in net demand, as is shown in the green box on the left-hand side
of the connection layout in Fig. 2. The battery can either be charged directly from the
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PV system or through the rectifier connected to the AC bus; it discharges its energy
through the inverter. We connect several 3.4 amp-hour lithium-ion cells to create the
battery whose voltage is calculated for lithium-ion cells in series and shouldmatch that
of the DC (direct current) system; buck-boost voltage converters adjust the battery’s
voltage output. The capacity of the battery is determined by placing the lithium-ion
cells in parallel. The battery is connected to an inverter to convert the current from
DC to AC. The inverter is sized so as not to constitute the bottleneck such that power
output is limited. Depending on the configuration of the overall CSP and PV hybrid
system, multiple converters may be needed.

Battery Operations

ẇ+
t + ẇ

pv+
t = vsoct i+t ∀ t ∈ T (10a)

ẇ−
t = vsoct i−t ∀ t ∈ T (10b)

bsoct = bsoct−1 + Δ

(
i+t − i−t
C B

)
∀ t ∈ T : t ≥ 2 (10c)

SB ≤ bsoct ≤ S̄B ∀ t ∈ T (10d)

vsoct = AV bsoct−1 + BV (
y+
t + y−

t

) + I avg Rint (y+
t − y−

t

)

∀ t ∈ T : t ≥ 2 (10e)

PB y−
t ≤ ẇ−

t ≤ P̄ B y−
t ∀ t ∈ T (10f)

PB y+
t ≤ ẇ+

t + ẇ
pv+
t ≤ P̄ B y+

t ∀ t ∈ T (10g)

i−t ≤ IU−bsoct−1 ∀ t ∈ T : t ≥ 2 (10h)

i+t ≤ CB
(
1 − bsoct−1

Δ

)
∀ t ∈ T : t ≥ 2 (10i)

I L−y−
t ≤ i−t ≤ IU−y−

t ∀ t ∈ T (10j)

I L+y+
t ≤ i+t ≤ IU+y+

t ∀ t ∈ T (10k)

y+
t + y−

t ≤ 1 ∀ t ∈ T (10l)

bc ≥ Δ

CB

∑

t∈T

[
γ t (i+t − i+t bsoct−1)

]
(10m)

The nonlinear relationships between power, current, and voltage are represented by
Constraints (10a) and (10b) for charging and discharging, respectively. (See Husted
et al. (2017) for the associated linearization techniques.) Battery state-of-charge must
be updated (Constraint (10c)), and this quantity is bounded both below and above
(Constraint (10d)). Battery voltage is given by its current flow direction and previous
state of charge (Constraint (10e)); the voltage is linear for a state of charge speci-
fied by Constraint (10d). Net power flow is bounded by Constraints (10f) and (10g).
Constraints (10h) through (10k) restrict current flow. The battery cannot be charging
and discharging simultaneously (Constraint (10l)) while Constraint (10m) measures
battery cycle count similar to what is done in Scioletti et al. (2017).
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Photovoltaic Field Operations

ẇ
pv
t ≤ WDC

t y pvt ∀ t ∈ T (11a)

ẇ
pv
t − ẇ

pv+
t ≤ W I y pvt ∀ t ∈ T (11b)

ẇ
pv+
t ≤ ẇ

pv
t ∀ t ∈ T (11c)

PV curtailment is a process in which PV controls are purposefully set below the
maximum power point of the PV modules. Constraint (11a) allows for curtailment
by imposing only an upper limit on PV field generation. PV clipping is a process
in which the rated power of the PV modules is larger than the inverter-rated power.
When the difference between power produced by the PV field and power sent directly
to the battery is greater than the inverter-rated power, the excess is lost or clipped
(Constraint (11b)). Power sent to charge the battery directly from the PV field is
limited by PV field generation (Constraint (11c)). Constraints (12b) and (12g) enforce
domain requirements on the battery and PV field variables except for bc whose non-
negativity is ensured via Constraint (12d).

3.2.5 Variable bounds

Variable bounds are enforced in (12a)–(12g).

ucsut , ursut , ẇt , ẇ
p
t , ẇs

t , xrt , xrsut ≥ 0 ∀ t ∈ T (12a)

bsoct , i+t , i−t , vsoct , ẇ
pv
t , ẇ

pv+
t , ẇ+

t , ẇ−
t ≥ 0 ∀ t ∈ T (12b)

st , ẇ
δ
t , xt ≥ 0 ∀ t ∈ T (12c)

bc ≥ 0 (12d)

yrt , yrhspt , yrsbt , yrsdt , yrsut , yrsupt ∈ {0, 1} ∀ t ∈ T (12e)

yt , ychspt , ycsbt , ycsdt , ycsut , ycsupt ∈ {0, 1} ∀ t ∈ T (12f)

y+
t , y−

t , y pvt ∈ {0, 1} ∀ t ∈ T (12g)

4 Solution techniques

The hybrid dispatch optimization model (H) is implemented within the SAM frame-
work developed by the National Renewable Energy Laboratory in a manner shown in
Fig. 3. A Python wrapper is used to specify system design inputs directly without use
of the graphical interface and to invoke SAM’s simulation core for both photovoltaic
and CSP power tower molten salt modules, enabling annual simulation of PV-CSP
hybrids. The Python script contains decision logic that determines which processes
are executed based on the program inputs. This decision logic adds flexibility of sys-
tem designs to be explored. For example, if the hybrid plant includes some amount
of PV, the script executes SAM’s detailed PV simulation module based on the user’s
inputs. Upon completion, PV parameters used in (H) are stored in data files to be used
during hybrid dispatch. If a battery exists in the system, the script calculates design
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Fig. 3 Flow diagram of the software architecture implemented around the hybrid dispatch optimization
model (H)

parameters such as the number of cells and their configuration, operation limits, and
performance curve fits, and stores them in a data file to be used during hybrid dispatch.

After the PV annual performance simulation has been run, the SAM simulation
core generates estimates for the time-indexed parameters specified in Table 1; the
dispatch model (H) yields an optimal schedule over the immediate 48-h planning
horizon, which prescribes operational targets for the receiver and power cycle, yielding
guidance for SAM’s simulation core over the next 24h. After moving forward 24h,
the simulation core repeats the process and generates another look-ahead dispatch
problem to be solved until an annual simulation, comprised of 365 dispatch problem
instances, is complete. Wagner et al. (2017) provide a detailed description of the
software architecture and rolling time horizon solution methodology for a CSP-only
system. After the CSP simulation is complete, the annual time-series generation vector
provided by SAM is consolidated to include CSP, PV, and battery operations.

Due to the number of dispatch problem instances required for an annual simulation,
individual (H) instances must solve quickly for a hybrid design to be evaluated in a
timely manner. Solving the sub-hourly dispatch problem (H) in its original form, as
described in Sect. 3, to a MILP gap of 1 × 10−3 is computationally burdensome. To
increase tractability, we implement three major solution techniques, the first of which
is partly exact and partly inexact, the second of which does not compromise optimality,
and the third of which constitutes a heuristic: (1) problem size reduction, (2) tighter
LP relaxation, and (3) heuristic solution approach.

4.1 Problem size reduction

To reduce the overall problem instance size (i.e., number of variables and constraints),
we reformulate (H) such that it consists of windows with two different time fidelities
over the course of the horizon: (1) sub-hourly fidelity for the first 24h that corresponds
to that of the input weather file (i.e., 10-min); and (2) hourly time fidelity for the
remainder of the horizon, which mimics the day-ahead energy market used to make
future unit commitment decisions (see Fig. 4). To implement this reformulation, we
introduce a new set, W , defined as a set of time windows within the time horizon,
i.e., W = {1, 2}. Each window, w ∈ W , contains a time step duration, Δw, and a set
of time periods, Tw. The union of the time period sets comprises the complete time
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Fig. 4 The original formulation has sub-hourly time periods throughout the problem’s time horizon. The
reformulated model possesses sub-hourly time periods during the first 24 h and aggregates data to hourly
fidelity for the second 24 h

horizon, i.e., T1 ∪ T2 = T . This reformulation improves tractability of the problem
instances by reducing their size by 2280 continuous variables, 1800 binary variables,
and 8640 constraints, which corresponds to a 41.6% decrease in each dimension.

For the hourly time fidelity window,w = 2, we aggregate time-indexed parameters
by taking a simple mean over the values for each time period within the hour; the
lone exception is the parameter Δrs

t , which is recalculated using equation (9) and the
updated aggregated value of Qin

t+1. The majority of formulation (H) is valid for both
time windows. However, we modify Constraints (4f), (5c), (7b), and (6d) to reflect
operational changes betweenmodeling the system at hourly versus sub-hourly fidelity.
The left-hand side of Constraint (4f) is adjusted to index the previous time period:

yrsdt−1 ≥ (yrt−1 − yrt ) + (yrsbt−1 − yrsbt ) ∀ t ∈ T2 (13)

which results in receiver shutdown operations occurring during the same time period
as the last production or standby operation. In Constraint (5c), the time index on the
variable ucsut−1 is adjusted to the current time period:

yt ≤ ucsut

Ec
+ yt−1 + ycsbt−1 ∀ t ∈ T2 (14)

which results in cycle start-up and operation occurring in the same time period. We
add a constraint to ensure that the cycle input energy limit is not exceeded:

xt + Qcycsut ≤ Qu ∀ t ∈ T2 (15)

which results in limited cycle energy production for the time period during which the
cycle is starting up. Constraint (7b) must be removed to allow for cycle startup and
energy production to occur during the same time period. Constraint (6d) is removed
because we assume that the power cycle can ramp from minimum to maximum power
output within an hour. The original forms of Constraints (4f), (5c), (7b), and (6d) still
hold for the sub-hourly window, i.e., t ∈ T1. The union of (H) and Constraints (13),
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(14), and (15) form the reduced hybrid dispatch problem, which is inexact relative to
the problem with 10-min fidelity over a 48-h horizon but, as we show later, provides
a fairly good approximation.

We also reduce the size of our problem by eliminating variables that could not
assume values other than zero in any feasible solution during time periods with no
solar resource (e.g., night time). For example, the decision to operate the CSP receiver,
yrt , can be preprocessed out during periods in which solar resource, Q

in
t , is zero. This

technique reduces the number of variables by about 12–16%, depending on the amount
of daylight in a problem instance, and does not compromise optimality.

4.2 Tighter LP relaxation

Our formulation in Sect. 3 is weak owing to Constraints (5c), (6f), (7c)–(7g), (8a), and
(8c), specifically, with respect to the binary variables for cycle start-up and standby.
Cycle standby is an operationalmode that allows theCSP power cycle to stay in a “hot”
state by consuming TES but without generating electric power. From this operational
state, the cycle can quickly come back on-line, generating power at a reduced start-up
cost. Both cycle start-up and standby are indirectly related to the objective through
the fixed-cost penalty.

To tighten the LP relaxation, thereby improving the guarantee of optimality, we
introduce a binary variable, yofft that is defined as one if the power cycle is in an
“off” state and zero otherwise, and reformulate the dispatch problem to include set
partitioning Constraints (16) and (17):

ycsut + yt + ycsbt + yofft = 1 ∀ t ∈ T1 (16)

yt + ycsbt + yofft = 1 ∀ t ∈ T2 (17)

which results in a tighter LP relaxation because the cycle must be in exactly one of
these operational states during any time period. We strengthen Constraint (6d) by
substituting the binary variable yofft for ycsdt .

To further strengthen our formulation, we develop a cut that forces the cycle standby
operation binary variable, ycsbt , to zero when the TES heat to the cycle, xt , is equal to
its upper bound Qu , i.e., the power cycle is operating at full load:

ycsbt ≤ 1 − xt
Qu

∀ t ∈ T (18)

The introduction of the binary variable, yofft , the set partitioning constraints, and
cycle standby cut reduce solution times of certain problem instances, as shown in
Sect. 5, without compromising optimality.

4.3 Heuristic solution approach

To further reduce our solution times, we implement a two-phase heuristic solution
technique, which we invoke after making the modifications described in Sects. 4.1
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Fig. 5 Flow diagram of the two-phase solution technique, using heuristic Ĥ. The solution to Phase 1 is
given to Phase 2 as an initial feasible solution

and 4.2 and call Ĥ, shown in Fig. 5. In Phase 1, we set battery discharge power to zero,
i.e., ẇ−

t = 0 ∀ t ∈ T , effectively removing battery operation decisions, and solve
the dispatch problem. The resulting solution represents operations of the CSP field,
CSP power cycle, and PV field generation without accounting for battery interactions.
This problem solves relatively quickly and can provide a lower bound on the objective
function value of the monolith, (H). In Phase 2, we hold the power cycle standby
decisions constant (i.e., ycsbt ), unfix battery discharge power, and re-solve the dispatch
problem using the integer solution from the first solve as a warm start.

In practice, executing Ĥ allows for faster solve times because the two sub-problems
are computationally less expensive than solving the whole problem at once. Despite
being a heuristic, Ĥ produces near-optimal solutions because the interaction between
cycle standby and battery operations is weak.

5 Results

The dispatch model (H) is written in the AMPLmodeling language version 20210630
(AMPL 2009) and solved using CPLEX version 12.8 (IBM 2016). Hardware archi-
tecture to generate solutions and solve times consists of a SuperServer 1028GR-TR
with an Intel Xeon E5-2620 v4s at 2.1 GHz, running Ubuntu 16.04 with 128 GB of
RAM, 1×250 GB SSD, and 3×500 GB SSDs hard dives.

5.1 Case study inputs

Designing a hybrid system for a specific location or market is beyond the scope of
this work; therefore, we compare the dispatch of a fixed CSP-TES-PV-battery hybrid
plant design in two locations and two electricity markets.

5.1.1 Hybrid system design

The hybrid system of study is grid-limited and requires the dispatch of individual sub-
systems (i.e., power cycle and battery) to ensure that the transmission power limit of
310MWe is not exceeded. The CSP sub-system consists of two twinmolten salt power
tower CSP plants, each with a power cycle capable of 163 MWe output with 12 h, or
4716MWht, of thermal storage and a receiver capable of 565MWt production. The PV
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Table 3 Case study plant design

Parameter Symbol Units Value

For a single CSP system‡

Cycle design thermal input Qu MWt 393

Cycle maximum gross output Wu MWe 163

Cycle minimum gross output † MWe 36.4

Cycle start-up energy consumption Ec MWht 197

Cycle minimum start-up time † h 0.50

Cycle standby consumption Qb MWt 78.6

Receiver maximum/design thermal output † MWt 565

Receiver minimum output † MWt 141

Receiver start-up energy Er MWht 141

Receiver minimum star-up time † h 0.25

Thermal energy storage capacity Eu MWht 4716

PV and battery system

PV field capacity † MWdc 325

PV inverter maximum output † MWac 270

Battery capacity † MWhe 150

Battery maximum power output P̄ B MWe 150

Whole system

Net grid transmission maximum power limit for time t Wnet
t MWe 310

‡The plant consists of two CSP systems. †Used to derive the subset of parameters in Table 1 not listed in
Tables 3 or 4

sub-system consists of a single-axis tracking PVfield capable of 325MWdc production
with a maximum inverter power output of 270 MWac. The battery sub-system has a
capacity of 150 MWhe with a maximum discharge rate of 1C, where we define the
C-rate as the rate at which a battery is discharged relative to its maximum capacity;
this is equal to the amount of current one is able to extract in one hour from a battery
that is in a fully charged state. In our context, this equates to a maximum discharge
power of 150 MWe. Table 3 summarizes design parameters and defines operational
limits. Given solar resource and receiver-rated thermal power, SolarPILOT (Wagner
and Wendelin 2018) generates the CSP heliostat field layout for the two locations.

5.1.2 Operating costs

The system dispatch is determined bymaximizing revenue atminimumoperating cost.
Due the nature of maximizing revenue, sub-system operating costs are required to
enable decision making between the different energy generation technologies. Table 4
summarizes the operating cost of each sub-system. Receiver start-up cost is estimated
at $10/MWt of the receiver design thermal power. Receiver operating costs are esti-
mated based on the heliostat field and receiver annual O&M costs and thermal energy
generation, assuming daily start-ups. Power cycle operation, start-up, and change-in-
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Table 4 Estimated CSP-TES-PV-battery hybrid operating costs

Operating costs and penalties Symbol Units Value

CSP system

Heliostat field and receiver Crec $/MWht 3

Receiver cold start-up Crsu $/start 5650

Power cycle C pc $/MWhe 2

Power cycle cold start-up Ccsu $/start 6520

Power cycle change in production CδW $/ΔMWe 0.71

Power cycle standby Ccsb $/MWht 0.80

PV and battery system

Photovoltaic field C pv $/MWhe 0.50

Battery charge/discharge Cbc/Cbd $/MWhe 1

Battery lifecycle Cbl $/lifecycle 250

production (ramping) costs are adapted from Kumar et al. (2012). Hot start-up costs
of the receiver, Crhsp, and power cycle, Cchsp, are assumed to be 10% of cold start-up
costs. Battery life cycle costs penalize cycling during periods when there is excess
generation capacity. There is uncertainty associated with all of these operating cost
values. However, it is the relative magnitude of these costs that is important in decid-
ing which technologies should be used to generate electricity at any given time period
and, for days on which there is abundant solar resource, these costs determine which
technology should be curtailed. For example, due to the low operating cost of PV
systems, it is better to curtail CSP receiver generation and/or power cycle generation
than PV field generation during abundant solar resource days. These operating costs
also indicate that it is more economically advantageous to charge the battery system
using the PV field rather than using the CSP power cycle.

5.1.3 Battery specifications

We take parameter values used to model the lithium-ion battery from Husted et al.
(2017), who addresses another type of hybrid system involving diesel generators,
photovoltaics and a battery in a microgrid setting; see Table 5.

Table 5 Battery cell ratings Battery specifications Value Units

Cell max charge voltage 4.1355 V

Cell end of discharge voltage 3.2768 V

Cell nominal voltage 3.7062 V

Cell amp hour rating 3.4000 Ah

Cell internal resistance 0.1394 �
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5.2 Numerical experiment

The following analysis explores the performance and market outcomes for a fixed
hybrid system design at two locations and in twomarkets. Although location (weather)
and market are typically highly correlated, we evaluate all four market-location com-
binations to demonstrate the robustness of the solution techniques and to provide an
understanding of how a single design might operate differently depending on its loca-
tion and market conditions. The analysis is posed as a two-factor, two-level, numerical
experiment.

5.2.1 Plant location

The location of the hybrid plant affects its performance and profitability. Geographic
location determines the solar resource availability for electricity generation. For our
case study, we choose northern Chile (N. Chile) and southern Nevada (S. Nevada)
as the two levels for the location factor, the former location owing to its high solar
resource and our industry partner’s interest in the development of hybrid plants within
this region and the latter region owing to its solar resource and the availability of
sub-hourly (i.e., 1-min time scale) solar data (Andreas and Stoffel 2006b).

The University of Nevada–Las Vegas (UNLV) weather station does not measure
relative humidity or atmospheric pressure, two inputs required to model power cycle
performance. However, Nevada Power Clark Station (Andreas and Stoffel 2006a),
which is 5.2 miles, as measured by its straight-line distance from UNLV, reports
relative humidity. Due to the low spatial variability, we can safely use the measure-
ments of relative humidity from the Clark station with solar resource data from the
UNLV station without introducing error into our calculations. For atmospheric pres-
sure, we use an hourly typical meteorological year for Las Vegas and assume that
atmospheric pressure remains constant at the sub-hourly level. The UNLV solar data
reveals time periods in which the pyrheliometer instrument or the tracking system
had faulted. Figure 6 shows an instance of the measurement fault in direct normal
irradiance from the beginning of the solar day to approximately 13:40 PST, where
the global horizontal irradiance measurements are close to clear-sky values with
little-to-no measured direct normal irradiance. Therefore, we choose our data set
to consist of twelve fault-free months, which span June 2012 to May 2013. These
three data sources constitute an annual sub-hourly (i.e., 10-min) weather file for S.
Nevada.

The duration curve in Fig. 7 compares the direct normal irradiance for N. Chile and
S. Nevada using a sorted histogram. The yearly totals for the three solar irradiance
resources are given in Table 6. N. Chile has a higher solar resource than S. Nevada
because the area has low atmospheric attenuation. S. Nevada has higher annual diffuse
irradiance because there are more days with cloud cover than N. Chile. CSP systems
can exploit direct normal irradiance, while PV systems generate electricity from both
direct normal and diffuse horizontal irradiance.
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Fig. 6 Example of UNLV data (taken from Andreas and Stoffel (2006b)) for which the pyroheliometer or
tracking system had faulted

Fig. 7 Sorted histogram of the
direct normal irradiance for N.
Chile and S. Nevada

Table 6 Solar global horizontal, direct normal, and diffuse horizontal irradiance year totals for N. Chile
and S. Nevada

Global horizontal
(kWh/m2/year)

Direct normal
(kWh/m2/year)

Diffuse horizontal
(kWh/m2/year)

N. Chile 3782.1 2730.4 353.4

S. Nevada 2682.9 2083.2 490.4

5.2.2 Electricity markets

The electricity market into which the plant bids affects the dispatch strategy due to the
time-of-use price of electricity. For our factorial experiment, we choose the N. Chile
spot market (NC spot) and the 2016 Pacific Gas & Electric (PG&E) market as the two
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Fig. 8 Sorted histogram of the
normalized prices for N. Chile
spot (NC spot) and Pacific Gas
& Electric (PG&E) full capacity
deliverability markets

levels for the market factor, the former owing to our industry partner’s interest, and
the latter owing to its simple design and the possibility that a plant in southern Nevada
may be designed to dispatch against such a market.

Figure 8 compares the twomarkets using a sorted histogram of normalized electric-
ity prices. Both markets follow a similar price trend. However, the PG&E market has
more high-price and more highly priced hours relative to those in the NC spot market.
Figure 9 depicts the time-of-use variation of the NC spot and PG&E markets. The
NC spot market exhibits hourly, monthly, and week-versus-weekend variation in the
electricity price, shown in Fig. 9a. Generally, high-price time periods occur at the end
of the solar day during the winter and spring, e.g., July through December. During the
fall (April through June), the NC spot market possesses relatively flat prices– either
slightly above or below the annual average. The PG&E market has only hourly and
seasonal variation, with the high-price time periods occurring between the hours of 4
and 9 p.m. The highest values occur during themonths of July, August, and September.

Due to the seasonal variation in both markets and plant locations being in both the
northern and southern hemispheres, we shift themarket by sixmonthswhen evaluating
the location-market combinations of N. Chile in a PG&E market and S. Nevada in a
NC spot market. This seasonal shift is done by appending the first 181 days (i.e., first
six months) of the year to the end of the last 184 days (i.e., last six months) of the
year. This method does not preserve the monthly transitions present in the original
price structure. However, it does allow for comparison between the original markets
because this shift does not change the number of time periods that exhibit a particular
price.

5.3 Solve times and solution quality

Each location-market combination in the numerical experiment requires 365 instances
of the dispatch problem (H) to be solved to produce annual systemperformance results.
We limit each instance (H) to 8 threads on the computing system to allow the four
cases to be run in parallel, solving either to a relative optimality gap of 1× 10−3 or to
a specified time limit, whichever occurs first.

123



Dispatch optimization of concentrating solar power with… 361

(a) NC spot market normalized to an average electricity price of
$51.42 per MWh.

(b) PG&E market normalized by the power purchase agreement.

Fig. 9 Time-of-use variation of electricity prices for the Northern Chile spot (NC spot) and Pacific Gas &
Electric (PG&E) market
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To get a sense of the computational difficulty, we solve each location-market com-
bination using the hybrid dispatch model (H) without applying any of the solution
techniques described above and with a solve time limit of 120 s. Figure 10a shows the
distributions of solution times for the 365 instances of (H) for each location-market
combination in the numerical experiment.

From Fig. 10a, the S. Nevada location results in about three times the number
of (H) solves that reach the time limit compared to the N. Chile location. With the
exclusion of solves that reach the time limit, instances associated with the S. Nevada
location solve faster, on average, than those associated with the N. Chile location.
The annual solution times, i.e., solving all 365 instances of (H), range from 4 to 8
h, which is unacceptable for a single CSP-TES-PV-battery hybrid design evaluation.
Furthermore, due to the large number of instances of (H) that reach the time limit,
the dispatch solution quality is poor. Specifically, for the instances that reach the time
limit, the average MILP gap ranges from 2 to 4% depending on the location-market
combination, resulting in sub-optimal dispatch and lost revenue.

To discern the relative improvements each of the solution techniques described
in Sect. 4 affords, we solve (H) with the problem-size reduction technique and note
a 49–59% improvement in annual simulation solution time, relative to the original
formulation; this corresponds to an average annual simulation time of 2.5 h. The
combination of problem-size reduction and the tighter LP relaxation results in annual
simulation solution times between 36 and 43 min, corresponding to an average solu-
tion time improvement of about 70% relative to that associated with (H) using only
problem-size reduction. Finally, using Ĥ combined with problem-size reduction and
tighter formulation results in an average annual simulation time of about 34 min,
yielding an 85–93% overall solution time reduction.

Figure 10b shows the distribution of daily dispatch solution times using the heuristic
approach, Ĥ, and the other solution techniques described in Sect. 4. The distributions
differentiate between the first and second phases of Ĥ and the total solution time (i.e.,
the sumof the two solves). Each execution of Ĥ is limited to 60s. Solution times greater
than 10s are reported in the last bin of the distribution. Of the reported Ĥ solution
times, one problem instance, corresponding to the first-phase solve of Ĥ, reaches the
time limit.

For the N. Chile location, on average, the first phase solves faster than the second
phase (Fig. 10b). However, this differentiation disappears for the S. Nevada location,
owing to the grid constraint being tight in more of the N. Chile instances, resulting in
more difficulty scheduling the battery operations. In general, the S. Nevada instances’
total solve time is less than that of the N. Chile instances. However, the majority of
total dispatch solution times, for all location-market combinations, is below 8s.

5.3.1 Validation of the heuristic solution approach

To validate Ĥ, we solve each dispatch problem: (1) using Ĥ, and (2) invoking (H)
directly, with the solution techniques from Sects. 4.1–4.3 applied, and compare corre-
sponding objective function values. We use the heuristic solution from Ĥ as an initial
feasible solution to (H) and impose no time limit on this problem. We observe the
greatest difference between the objective function values of Ĥ and (H) to be $8935
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(a) Distribution of solution times from solving the 365 instances of (H), without 
solution-expediting techniques, to the lesser of a relative optimality gap of 1×10−3 

or a time limit of 120 seconds, for each location-market combination. The numbers 
above each bar denote the percentage of instances of the total included within the 
corresponding bin.

ˆˆ

ˆ(b) Distribution of solution times from solving the 365 instances of H, with 
solution-expediting techniques, to the lesser of a relative optimality gap of 
1×10−3 or a time limit of 60 seconds, for each location-market combination. 
Solve times greater than 10 seconds are reported in the last bin of the distribution. 
Solution times are categorized by H Phase 1 (i.e., without battery operations), H 
Phase 2 (i.e., cycle standby operations fixed and battery operations enabled), and 
total solve time for a given day.

Fig. 10 Distribution of dispatch solution times from solving the 365 instances of (H) and Ĥ for each
location-market combination of the numerical experiment
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for a two-day horizon, corresponding to a relative gap between Ĥ and (H) of about
0.83%. The difference between objectives averages less than $120 in revenue for a
two-day horizon over all four combinations of the 365 48-h instances.

5.3.2 Annual plant performance

Annual simulation of CSP-TES-PV-battery hybrid plants allows us to understand the
performance of a particular system design in a given location and under certain market
conditions. Figure 11 plots six annual simulation responses for the numerical experi-
ment. We calculate annual sales as the sum, over all time periods within a year, of the
product of energy generation, the normalized price multiplier, and an assumed PPA
price of $0.1/kWh. This response plot shows that the PG&E market results in greater
sales than the NC spot market owing to the higher price multiplier during high-price
time periods in the former market relative to those in the latter market. However, the
PG&E market has a greater effect on this plant design in S. Nevada than in N. Chile,
owing to the lower solar resource in S. Nevada, illustrating the importance of dispatch
optimization as solar resource decreases in a market structure similar to PG&E’s.

Figure 11 depicts annual solve time and generation responses; the former shows
that N. Chile annual dispatch strategies require more computational time. Annual
generation shows that there is little-to-no interaction between generation and market
factor because the price at which electricity is sold should not have a significant
impact on how much electricity the plant can generate throughout the year. However,
the annual generation plot shows the impact of the location factor in this study. Due
to the greater solar resource in N. Chile, this plant design produces about 700 GWh
more electricity in N. Chile than in S. Nevada.

The responses cycle starts and cycle ramping demonstrate how the power cycles
would be operated. Due to the abundant solar resource, the hybrid plant power cycle
in N. Chile would only need to start up about 20 times in a given year. However, the
same plant in S. Nevada would need to start the power cycle 50–100 times annually,
depending on themarket, which could cause more wear and tear on the cycle, resulting

Fig. 11 Annual solution responses from the numerical experiment: annual sales, solve time, annual gener-
ation, cycle starts, cycle ramping, and battery lifecycles
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in an increase in maintenance costs. Cycle ramping is the daily average percentage of
the rated power the cycle ramps up and down, e.g., 100% represents the power cycle
ramping from zero to rated power and back down to zero every day. Interestingly, the
PG&Emarket requires more cycle ramping than the NC spot market for the S. Nevada
location, but less for the N. Chile location. In the lower solar resource location of
S. Nevada, cycle start-up and ramping become more important to ensure electricity
generation occurs during high-revenue times of the PG&E market.

The last response plotted is battery lifecycles, which determines if the battery
must be replaced during the 25- to 30-year life of this project. The life of a lithium-ion
battery ranges from 500 to 4000 cycles depending on the depth of discharge (Wang
et al. 2011). Dischargingmore of a battery’s capacity at higher rates of power results in
reduced expected lifecycle of the battery. Battery lifecycles are calculated based on the
current throughput to-and-from the battery, i−t and i+t , using the following equation:

bc =
|T |∑

t=1

Δ(i−t + i+t )

2 · CB

whereCB is the capacity of the battery. Of the four cases, S. Nevadawithin theNC spot
market possesses the lowest number of battery lifecycles owing to the relatively flat
price structure in the NC spot market and less abundant solar resource in S. Nevada.
Therefore, battery storage operations become less desirable in this location-market
combination. In N. Chile, battery storage captures excess solar energy that would
otherwise be curtailed and discharged during high-price and/or less-solar-abundant
periods. However, the hybrid system could be redesigned to include little-to-no solar
curtailment. These design trade-offs are outside the scope of this paper.

5.3.3 Comparison to a CSP-only system

To demonstrate the value of a hybrid system,we compare performancemetrics for both
a CSP-PV and a CSP-PV-battery hybrid system to a stand-alone CSP system for the
four location-market cases. These hybrid systems possess the design parameters given
in the previous numerical experiments and are consistent with those produced by SAM
and the corresponding dispatch optimizationmodel (H). Table 7 provides metrics, i.e.,
capacity factor (CF), levelized cost of energy (LCOE), and power purchase agreement
(PPA), normalized by the corresponding metric for a CSP-only system, where CF
is defined as the quotient of annual energy generation and the maximum annual grid
transmission, LCOE corresponds to the quotient of lifetime costs and electrical energy
production, and PPA represents the minimum price to which a power producer can
agree in order to meet a project’s desired internal rate of return (Blair et al. 2018).
We use SAM default system costs for financial calculations, and assume that installed
battery cost is $500/kWhe with a lifespan of 2500 cycles and a replacement cost of
$250/kWhe.

Table 7 shows that both the CSP-PV-battery system and the corresponding system
without battery storage result in a significant increase in CF for all location-market
combinations we test; conversely, the value of LCOE for both types of hybrid systems

123



366 W. T. Hamilton et al.

Table 7 Metrics for alternative power generation systems normalized by the corresponding metric for a
CSP-only system

Location Market Metric CSP-PV-battery (%) CSP-PV (%)

N. Chile NC spot CF 165.8 164.9

LCOE 78.7 74.8

PPA 83.2 79.1

PG&E CF 165.5 164.6

LCOE 78.7 74.9

PPA 89.8 85.3

S. Nevada NC spot CF 183.0 182.9

LCOE 70.2 68.0

PPA 75.7 73.3

PG&E CF 183.8 183.9

LCOE 71.2 67.3

PPA 86.0 81.6

CF capacity factor, LCOE levelized cost of electricity, PPA power purchase agreement

and all location-market combinations is about three-quarters of that for the CSP-only
system, and the corresponding PPA values are about 80–90%. These comparisons
indicate that hybrid systems possess increased dispatchability at more competitive
prices than their CSP-only counterparts; furthermore, while the addition of a battery
increases the capacity factor slightly, it does so at the expense of the economic metrics.
Overall, the battery is relatively insignificant in improving these metrics owing to its
cost relative to that of the thermal energy storage with which the CSP is coupled.

6 Conclusions and future work

To analyze a CSP-TES-PV-battery hybrid system, we develop a dispatch optimiza-
tion model (H) to schedule, at sub-hourly time fidelity, the different technologies
for energy generation within a detailed simulation framework (SAM’s simulation
core). The original formulation, (H), proves to be too computationally expensive for
timely hybrid design evaluation. Therefore, we implement techniques to reduce solu-
tion times, resulting in annual instances (consisting of 365 48-h solves over progressive
24-h horizons) being executed in about 34 min, an 86–93% improvement compared
to the solve times without the solution-time improvements. With manageable solu-
tion times, we are able to exercise the CSP-TES-PV-battery hybrid simulation tool
with dispatch optimization using a two-factor, two-level numerical experiment based
on plant location and pricing market. We compare solution times and present annual
plant performancemetrics for each of these cases. Also, we compare alternative hybrid
systems to the CSP-only systems based on capacity factor, levelized cost of energy,
and power purchase agreement. This analysis shows that hybrid systems dramatically
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outperform their CSP-only counterparts both from a capacity factor perspective and
also economically.

An extension of this work uses our model (H) to inform the design of a hybrid
system. At the opposite end of the planning spectrum, future research efforts might
shorten the time fidelity of the model to 5 min to make dispatch decisions in the real-
time electricity market using weather uncertainty, improving the return-on-investment
for solar hybrid generation facilities and making them more competitive with conven-
tional energy generation plants. Indeed, the presence of the battery in the hybrid system
offers opportunity to participate in ancillary or real-time markets. However, such par-
ticipation may only be of marginal value from a revenue standpoint for CSP-only
systems (Jorgenson et al. 2018).
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