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Abstract
The lightweight design of a thin-walled tube under torsion is addressed in the paper. 
A multi-objective optimization approach is adopted to minimize the mass while 
maximizing the structural stiffness of the thin walled tube. Constraints on available 
room (maximum diameter), safety (admissible stress), elastic stability (buckling), 
minimum thickness (forced by manufacturing technologies) are included in the prob-
lem. The analytical solution of the multi-objective optimization problem is obtained 
by applying a relaxed formulation of the Fritz John conditions for Pareto-optimality. 
Relatively simple analytical expressions of the Pareto-optimal set are derived both in 
the design variables (tube diameter and wall thickness) and objective functions (mass 
and compliance) domain. Simple practical formulae are provided to the designer for 
the preliminary design of thin-walled tubes under torsion. Finally, the comparative 
lightweight design of tubes made from different materials is presented and an appli-
cation of the derived formulae to a simple engineering problem is discussed.

Keywords Multi-objective optimization · Analytical solution · Thin-walled tube · 
Twisted shaft

1 Introduction

Thin-walled structures have a high ratio between load carrying capabilities and mass 
and play a primary role in lightweight design. In order to improve the structural effi-
ciency, i.e. stiffness and mass ratio, a rigorous optimization approach is required.

Multi Objective Optimization (MOO) can be effectively applied to structural 
design (Miettinen 1998; Mastinu et  al. 2006; Haftka and Gurdal 2002; Banichuk 
1990) with particular reference to mass minimization while maximizing the struc-
tural stiffness (or, equivalently, minimizing the compliance of the structure). In such 
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problems, mass and compliance are considered objective functions (to be mini-
mized). The design variables are the geometrical dimensions of the structural mem-
bers. Constraints on safety (i.e. admissible stress), elastic stability and maximum 
available room have to be satisfied.

The solution of the optimization process in the Pareto-optimal framework is com-
posed by a set of optimal solutions (the so-called Pareto-optimal set). Those solu-
tions represent the best compromise in terms of both minimum mass and compli-
ance. The designer can then choose the final structure configuration among these 
optimal solutions (Papalambros and Wilde 2000).

In Kasperska et al. (2007) and Ostwald and Rodak (2013) multi-objective opti-
mization theory was employed for mass and deflection minimization of structural 
members in bending. Optimized profiles of thin-walled open cross sections were 
obtained by means of numerical methods. Shape optimization of bars under torsion 
was addressed by Wang Wang (2013). The shape and rounding of the corners of 
polygonal bars was optimized by means of numerical methods with the aim to maxi-
mize the torsional stiffness for a prescribed target of mass. The topology of the cross 
section of thin-walled beams under torsion was optimized in Kim and Kim (2002). 
A multi-objective optimization approach was followed for maximizing the torsional 
stiffness and minimizing the distortion of the thin-walled cross section. The optimal 
solution was derived numerically by a weighted sum method. Gobbi and Mastinu 
(2001) presented a method for the optimal design of composite material tubular heli-
cal springs. In the paper, Multi-Objective Programming (MOP) was adopted. Both 
theoretical studies and experimental activities were conducted.

The solution of (simple) multi-objective optimization problems can be derived 
analytically for a number of engineering problems [see for example Mastinu et al. 
(2006), Gobbi et  al. (2014, 2017), Ballo et  al. (2017) or the four-bars plane truss 
problem in Askar and Tiwari (2011)]. When available, analytical formulae can be 
very useful for designers since they provide a broader view of the problem and may 
guide the designers at the conceptual design stage.

Referring to beams, analytical formulae for designing optimal beams under torsion 
or bending are presented in several papers. In Ashby (2011), a set of design formulae 
for beams of arbitrary cross section under torsion or bending is provided to compare 
different materials and shapes. In Gobbi et al. (2017) and Previati et al. (2017), with 
reference to the bending of a cantilever of arbitrary shape and material, it was dem-
onstrated that the Pareto-optimal set for any beam subject to bending is given by two 
connected regions, the first one is given by the elastic stability while the second one by 
the available room constraint. A more in depth analysis on optimal design of specific 
cross sections of uniformly bent beams was performed in Gobbi et al. (2014), Mastinu 
et al. (2017) and Ballo et al. (2017) where analytical solutions for the Pareto-optimal 
sets are provided both in the design variables and objective functions domains.

In this paper, the optimal design of a thin-walled tube under torsion is discussed. 
A rigorous multi-objective optimization approach is followed. The mass of the tube 
is minimized together with its compliance. Analytical formulae providing the cross 
section dimensions of the optimized tube are derived. These formulae may be a use-
ful tool for designers, who can choose an optimized cross section without any fur-
ther iteration.
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The paper is structured as follows. Firstly the basic principles related to the ana-
lytical derivation of the Pareto-optimal set of a general multi-objective optimiza-
tion problem are recalled. Then, the mathematical formulation of the optimization 
problem of a thin-walled tube under torsion is presented and analytically solved. 
The analytical expressions of the Pareto-optimal set in the design variables domain 
(tube diameter and wall thickness) and in the objective functions domain (mass and 
compliance) are given. On the basis of the derived analytical formulae, a compari-
son of optimized tubes made from different materials is performed. Finally, a practi-
cal example showing the application of the analytical expressions is presented and 
discussed.

2  The Fritz John condition for Pareto‑optimality

In this section, a brief description of the optimality conditions of a multi-objective 
optimization problem is provided. For the sake of space, the description is limited to 
the particular case in which the number of design variables is the same of the num-
ber of objective functions, all the mathematical passages are reported in “Appendix”; 
the reader can refer to Gobbi et al. (2014) for a thorough insight into the method.

Let us consider a general constrained multi-objective minimisation problem:

where F is the vector of the k objective functions, x is the vector of the n design 
variables and G is the vector of the w constraint functions.

Fritz John necessary condition (Miettinen 1998; Mastinu et  al. 2006). Let the 
objective function and the constraint vector of Eq. 1 be continuously differentiable 
at a decision vector �∗ ∈ S . A necessary condition for �∗ to be Pareto-optimal is that 
there exist vectors � ∈ �k ≥ � and � ∈ �w ≥ � (�,� ≠ (�, �)) such that

If the number of design variables n equals the number of objective functions k, the 
Pareto-optimal solution �∗ of problem 1 is given by the solution of Eq. 3

where the term ∇� = [ ∇f1 ∇f2 … ∇fk]n×k (a square matrix being n = k ) contains 
the gradient of the objective functions.

Equation 3 states that the solution of the problem is given by the active constraints 
and/or the solution of the unconstrained problem.

(1)
min �(�) = �(f1(�), f2(�,… , fk(�))

s.t. �(�) = (g1(�), g2(�),… , gw(�)) ≤ �, � ∈ �n

(2)

k∑
i=1

�i∇fi(�
∗) +

w∑
j=1

�j∇gj(�
∗) = �

�jgj(�
∗) = �

(3)

(
w∐
j=1

gj

)
⋅ det(∇�) = 0
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3  Equations for a thin‑walled tube under torsion

The torsion of a thin-walled circular tube is shown in Fig. 1.
The tube has length l, external diameter d, wall thickness t and is subject to a tor-

sional moment M. The design problem refers to mass and compliance minimization. 
For the sake of generality, mass and compliance are divided by the tube length, the 
objective functions of the problem are therefore the mass per unit of length m and the 
compliance per unit of length c of the tube.

The design parameters are the tube diameter d and its thickness t, that will be 
referred to as design variables hereafter.

The analytical expressions of the objective functions read

where � is the density of the material and �  is the shear modulus, while mt and � are 
the overall mass of the tube and the relative rotation of the two end sections of the 
tube (Fig. 1) respectively. The design variables d and t are limited by maximum and 
minimum attainable values (Papalambros and Wilde 2000)

The upper bound of the diameter dmax can be interpreted as a constraint on the avail-
able room, while the lower bound on the wall thickness tmin as a technological con-
straint. The other bounds dmin and tmax can assume, theoretically, any value. In prac-
tice, the thin-walled condition t

d
≤

1

20
 (and therefore the validity of the mathematical 

model employed) should always be checked after a solution is obtained.
The structural safety is related to the maximum stress occurring in the tube, that 

introduces a constraint in the optimization problem

The left-hand side of Eq. 8 represents the maximum shear stress acting in the cross 
section, that can be expressed as (Young and Budynas 1989)

The right-hand side of Eq.  8 represents the admissible shear stress, given by the 
yielding shear stress of the material �y divided by the safety coefficient �.

When thin-walled cross sections are employed, the structure gets more exposed 
to failure by local buckling. Local buckling phenomena depend on many parameters 
(cross section geometry, material, etc...) but mainly on the wall thickness. To avoid 

(4)m =
mt

l
= ��dt

(5)c =
�

l
=

4M

��d3t

(6)dmin ≤d ≤ dmax

(7)tmin ≤t ≤ tmax

(8)�max ≤
�y

�

(9)�max =
2M

�d2t
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buckling failure, an additional constraint on the maximum admissible torsional moment 
is introduced

where Mcr is the critical buckling moment and � the safety coefficient.
The critical moment Mcr depends on the material properties and on the geometry 

of the cross section. Many analytical expressions of this quantity can be found in the 
literature. The first work on the topic was conducted by Schwerin (1924). Other expres-
sions of the critical torsional moment of a thin-walled tube can be found in Young and 
Budynas (1989) or in Donnell’s (1935) and Lundquist’s (1934) works.

For sake of simplicity, in this analysis, Lundquist’s relation has been considered.

where E is the material elastic modulus, � is a constant equal to − 1.35 and Ks can be 
related to the geometry of the tube as (Crate et al. 1944)

with B and � numerical constants equal to 1.27 and − 0.46 respectively.

4  Optimal design of a thin‑walled tube subject to torsion

In this section the optimal design problem of the tube is formulated by following a 
multi-objective optimization (MOO Miettinen 1998; Mastinu et al. 2006) approach.

The problem is formulated as follows.
Find

(10)M ≤
Mcr

�

(11)Mcr = �
d2

2
tKsE

(
d

2t

)�

(12)Ks = B
(
2l

d

)�

(13)

min

[
c(t, d) =

4M

�� td3

m(t, d) = ��td

]
such that

�max =
2M

�d2t
≤

�y

�

M ≤
Mcr

�
= �

d2

2�
tKsE

(
d

2t

)�

Ks = B
(
2l

d

)�

tmin ≤ t ≤ tmax
dmin ≤ d ≤ dmax
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The solution of problem (13) can be obtained by applying the theory described 
in Sect. 2. Being the number of design variables equal to the number of objective 
functions Eq. 3 applies. The solution is therefore given either by the solution of the 
unconstrained problem or by the active constraint(s).

The buckling constraint provides the following relation:

while the stress constraint gives

Let us consider the unconstrained problem which reads

The solution of the unconstrained problem in Eq. 16 is given by Eq. 17.

which leads to

Equation 18 has solution for d3t → ∞ . Such solution, not belonging to the set of the 
finite positive numbers has no physical meaning and has to be discarded (Papalam-
bros and Wilde 2000).

The Pareto optimal set is therefore given by the combination of active con-
straints (Eq. 3). By applying Eq. 3 the following result is obtained

Equation 3 gives a necessary condition for the Pareto-optimal solutions of the problem. 
The Pareto-optimal solution is, in general, a subset of the solution given by Eq. 19.

In order to extract Pareto-optimal solutions the intersections among the active con-
straints have to be studied. Depending on the relative values of the parameters, different 
scenarios are possible. These scenarios are analysed in the following section.

(14)d ≥

(
2�+1M�

�BE(2l)�

) 1

2+�−�

t
�−1

2+�−�

(15)d ≥

√
2M�

�t�y

(16)min

[
c(t, d) =

4M

�� td3

m(t, d) = ��td

]

(17)det

([
�c

�d

�m

�d
�c

�t

�m

�t

])
= det

([
−

12M

��d4t
��t

−
−4M

��d3t2
��d

])
= 0

(18)−
8M�

�d3t
= 0

(19)
−

(
d −

(
2�+1M�

�BE(2l)�

) 1

2+�−�

t
�−1

2+�−�

)(
d −

√
2M�

�t�y

)
⋅

(
d − dmax

)(
t − tmax

)(
d − dmin

)(
t − tmin

) 8M�

�d3t
= 0
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5  Sizing of thin‑walled tubes with constraints on available room, 
on minimum thickness, on buckling and admissible stress

Figures 2 and 3 show the number of possible scenarios in the design variables domain. 
The grey area represents the feasible set of solutions (i.e. solutions that satisfy the 
design constraints), while the black lines are the Pareto-optimal solutions.

Case ①

The lower bounds dmin and tmin of the design variables prevent both static and buckling 
failures. Buckling and stress constraints are not active.

By inspecting the expressions of the objective functions in Eq. 13, one can observe 
that the compliance objective function is monotonically decreasing with d and t, while 
the mass objective function is monotonically increasing with d and t. This means that 
the Pareto-optimal solution (i.e. the set of solutions that minimize the mass and compli-
ance at the same time) lies on the borders of the design domain and is given either by 
the combination d = dmax and t = tmin or d = dmin and t = tmax.

By substituting d = dmin and d = dmax in the objective functions, the respective 
expression in the objective functions domain (i.e. the m, c domain) can be computed

By comparing Eqs.  20 and 21, the solution for d = dmax (Eq. 21) is always lower 
than Eq. 20 and therefore t = tmin and d = dmax are subsets of the Pareto-optimal set 
(see Figs. 2, 3).

The expression of Pareto-optimal solutions for Case ① are reported in Table 1 in the 
design variables and objective functions domain.

Case ②

This is the most general case since both the buckling constraint and stress constraint are 
active and part of the Pareto-optimal set.

From Case ① we have demonstrated that solutions t = tmin and d = dmax are Pareto-
optimal. If a sufficiently large design space is considered, the solutions t = tmin can vio-
late the constraints on buckling and admissible stress. The intersection point Pbuck,stress 
between the buckling and stress constraint reads

(20)m(c)
||||d=dmin

=
4M�

�d2
min

c

(21)m(c)
||||d=dmax

=
4M�

�d2
max

c

(22)t̂ =

(
(𝜋BE)2(2l)2𝛽

2𝛼+𝛽(M𝜂)𝛽−𝛼
(
𝜋𝜏y

)2+𝛼−𝛽
) 1

3𝛼−𝛽
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for t ≥ t̂ the stress equation is more binding than the buckling equation. This means 
that for t ≤ t̂ the buckling constraint is active, then the active constraint switches 
from the buckling equation to the admissible stress.

By substituting the stress constraint of Eq. 15 (where the ≥ is replaced by = ) in 
the objective functions expressions, a relation between m and c when the stress con-
straint is active can be obtained and reads

which is a straight line (monotonically increasing) in the objective functions domain 
and therefore does not belong to the Pareto-optimal set.

With the same procedure the buckling constraint in the objective functions 
domain can be derived and reads

which is monotonically decreasing in the objective functions domain and therefore 
belongs to the Pareto-optimal set.

(23)m(c)
||||�=�y

�

=
�M�2�

�2
y

c

(24)m(c)
����buck. = ��

�
2�+1M�

�BE(2l)�

� 1

2+�−�

⎛⎜⎜⎜⎜⎜⎝

4M

��

�
2�+1M�

�BE(2l)�

� 3

2+�−�

⎞⎟⎟⎟⎟⎟⎠

2�−�+1

4�−�−1

1

c
2�−�+1

4�−�−1

Table 1  Case ① of Figs. 2 and 3

Analytical expressions of the Pareto optimal sets in both the design variables domain and objective func-
tions domain

Pareto optimal set in the 
design variables domain

Pareto optimal design in 
the objective functions 
domain

Boundaries (Figs. 2, 3)

Pareto optimal subset Points

Analytical expressions
d = dmax m =

4�M

�d2
max

c
1

[
Ptmaxdmax

,Ptmindmax

]

t = tmin m = �
3

√
4�2Mt2

min

� c

2
[
Ptmindmax

,Ptmindmin

]

P
t
max

d
max

P
t
min

d
max

P
t
min

d
min

Coordinates of points
Design vari-

ables
t tmax tmin tmin

d dmax dmax dmin

Objective 
functions

c 4M

�� tmaxd
3
max

4M

�� tmind
3
max

4M

�� tmind
3
min

m ��tmaxdmax ��tmindmax ��tmindmin
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The expression of Pareto-optimal solutions for Case ② are reported in Table 2 in the 
design variables and objective functions domain.

Case ③

The minimum attainable diameter d is defined by the admissible stress.
The Pareto optimal set is given by the solutions t = tmin and d = dmax . The stress 

constraint, as demonstrated in Case ②, does not belong to the Pareto optimal set and 
it defines the solution with the lowest mass as shown in Fig. 3.

The expression of Pareto-optimal solutions for Case ③ are reported in Table 3 in the 
design variables and objective functions domain.

Case ④

The solution is defined by the maximum diameter d = dmax , the stress constraint is 
limiting t from below and defines the point with the minimum mass as shown in in 
Fig. 3.

The expression of Pareto-optimal solutions for Case ④ are reported in Table 4 in the 
design variables and objective functions domain.

Case ⑤

The minimum diameter d, corresponding to minimum mass is defined by the admis-
sible stress and buckling, as shown in Figs. 2 and 3.

The full analytical expressions of the Pareto optimal sets, both in the design variable 
domain and in the objective function domain, are reported in Table 5.

Case ⑥

In this case, we see from Fig. 2 that no solution within the bounds tmin ≤ t ≤ tmax and 
dmin ≤ d ≤ dmax is feasible since buckling and stress constraints are not satisfied.

6  Comparison of tubes made from different materials

In this section a comparison between optimized tubes made from two different materi-
als (material A and B) is performed. The comparison is made referring to Pareto-opti-
mal solutions (Mastinu et al. 2006). Considering Fig. 2, the Pareto-optimal sets can be 
divided into a number of subsets, depending on the considered case, namely

• d = dmax (subsets 1 in Fig. 2)
• t = tmin (subsets 2 in Fig. 2)
• active constraint on buckling (subsets 3 in Fig. 2)
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In the following, the single subsets will be compared for two thin-walled tubes made 
from different materials.

6.1  Comparison referring to Pareto‑optimal subset 1, d = dmax

If the Pareto-optimal subsets 1 of Fig.  2 are considered, the optimized tubes have 
d = dmax for any value of t. This case represents the maximum exploitation of the avail-
able room.

The Pareto-optimal subset 1 in the objective functions domain reads

If two tubes made from different materials (let’s say material A and material B) are 
considered, the ratio between the mass per unit of length at a given stiffness of the 
two tubes can be written as

where �  has been replaced by E through the relation � =
E

2(1 + �)
If we assume aluminum for material A and steel for material B (�

A
= 2800 kg∕m3,

�
B
= 7800 kg∕m3,E

A
= 70GPa,E

B
= 210GPa, �

A
= �

B
= 0.3) Eq. 26 returns 1.077, 

(25)m =
4�M

�d2
max

c

(26)
mA

mB

=
�AEB

�BEA

Table 3  Case ③ of Figs. 2 and 3

Analytical expressions of the Pareto optimal sets in both the design variables domain and objective func-
tions domain

Pareto optimal set in the 
design variables domain

Pareto optimal design in 
the objective functions 
domain

Boundaries (Figs. 2, 3)

Pareto optimal subset Points

Analytical expressions
d = dmax m =

4�M

�d2
max

c
1

[
Ptmaxdmax

,Ptmindmax

]

t = tmin m = �
3

√
4�2Mt2

min

� c

2
[
Ptmindmax

,Ptmin ,stress

]

P
t
max

d
max

P
t
min

d
max

P
t
min

stress

Coordinates of points
Design vari-

ables
t tmax tmin tmin

d dmax dmax
√

2M�

��y tmin

Objective 
functions

c 4M

�� tmaxd
3
max

4M

�� tmind
3
max

1

�

√
2�tmin�

3
y

M�3

m ��tmaxdmax ��tmindmax
�

√
2�M�tmin

�y
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meaning that when all the available room is exploited (i.e. d = dmax ) steel allows to 
design a tube with about 7.7% less mass than the aluminum counterpart.

6.2  Comparison referring to Pareto‑optimal subset 2, t = tmin

This case can be interpreted as a technological constraint that limits the minimum 
manufacturing thickness of the tube. This constraint may depend on the material and 
technological manufacturing process.

The Pareto-optimal subset 2 in the objective functions domain reads

By considering the two materials A and B the ratio 
mA

mB

 has the following expression

If we consider again aluminum for material A and steel for material B Eq. 28 returns 
0.52, thus making the mass of aluminum tube about one half of the steel one for the 
same compliance c.

(27)m = �
3

√
4�2Mt2

min

� c

(28)
mA

mB

=
�A

�B

3

√
EB

EA

Table 4  Case ④ of Figs. 2 and 3

Analytical expressions of the Pareto optimal sets in both the design variables domain and objective func-
tions domain

Pareto optimal set in 
the design variables 
domain

Pareto optimal 
design in the 
objective 
functions 
domain

Boundaries (Figs. 2 and 3)

Pareto optimal subset Points

Analytical expressions
d = dmax m =

4�M

�d2
max

c
1

[
Ptmaxdmax

,Pdmax ,stress

]

P
t
max

d
max

P
t
min

d
max

P
d
max

stress

Coordinates of points
Design variables t tmax tmin 2M�

��yd
2
max

d dmax dmax dmax

Objective functions c 4M

�� tmaxd
3
max

4M

�� tmind
3
max

2�y

�dmax�

m ��tmaxdmax ��tmindmax 2M��

dmax�y



17

1 3

Thin-walled tubes under torsion: multi-objective optimal…

Ta
bl

e 
5 

 C
as

e 
⑤

 o
f F

ig
s. 

2 
an

d 
3

A
na

ly
tic

al
 e

xp
re

ss
io

ns
 o

f t
he

 P
ar

et
o 

op
tim

al
 se

ts
 in

 b
ot

h 
th

e 
de

si
gn

 v
ar

ia
bl

es
 d

om
ai

n 
an

d 
ob

je
ct

iv
e 

fu
nc

tio
ns

 d
om

ai
n

Pa
re

to
 o

pt
im

al
 se

t i
n 

th
e 

de
si

gn
 

va
ria

bl
es

 d
om

ai
n

Pa
re

to
 o

pt
im

al
 d

es
ig

n 
in

 th
e 

ob
je

ct
iv

e 
fu

nc
tio

ns
 d

om
ai

n
B

ou
nd

ar
ie

s (
Fi

gs
. 2

 a
nd

 3
)

Pa
re

to
 o

pt
im

al
 su

bs
et

Po
in

ts

An
al

yt
ic

al
 e

xp
re

ss
io

ns
d
=
d
m
a
x

m
=

4
�
M

�
d
2 m
a
x
c

1
[ P

t m
a
x
d
m
a
x
,P

d
m
a
x
,b
u
ck

]

d
=

(
2
�
+
1
M
�

�
B
E
(2
l )
�

)
1

2
+
�
−
�

t
�
−
1

2
+
�
−
�

m
=
�
�

�
2
�
+
1
M
�

�
B
E
(2
l )
�

�
1

2
+
�
−
�

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

4
M

�
�

�
2
�
+
1
M
�

�
B
E
(2
l )
�

�
3

2
+
�
−
�

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠2
�
−
�
+
1

4
�
−
�
−
1

c−
2
�
−
�
+
1

4
�
−
�
−
1

3
[ P

d
m
a
x
,b
u
ck
,P

b
u
ck
,s
tr
es
s

]

P
t m

a
x
d
m
a
x

P
d
m
a
x
b
u
c
k

P
b
u
c
k
,s
tr
e
s
s

C
oo

rd
in

at
es

 o
f p

oi
nt

s
D

es
ig

n 
va

ria
bl

es
t

t m
a
x

( �
B
E
(2
l )
�

2
�
+
1
M
�

)
1

�
−
1

d
2
+
�
−
�

�
−
1

m
a
x

(
(�
B
E
)2
(2
l )
2
�

2
�
+
�
(M

�
)�

−
�
( �

�
y

) 2+
�
−
�

)
1

3
�
−
�

d
d
m
a
x

d
m
a
x

(
2
�
+
1
M
�

�
B
E
(2
l )
�

)
1

2
+
�
−
�

(
(�
B
E
)2
(2
l )
2
�

2
�
+
�
(M

�
)�

−
�
( �

�
y

) 2+
�
−
�

)
�
−
1

(3
�
−
�
)(
2
+
�
−
�
)

O
bj

ec
tiv

e 
fu

nc
tio

ns
c

4
M

�
�
t m

a
x
d
3 m
a
x

4
M

�
�
d

4
�
−
�
−
1

�
−
1

m
a
x

( B
E
�
(2
l )
�

2
�
+
1
M
�

)
1

�
−
1

4
M

�
�

( (B
E
�
)2
(M

�
)�

−
�
( �

�
y

) �−
�
−
2
(2
l )
2
�

2
�
+
�

)
4
�
−
�
−
1

(3
�
−
�
)(
�
−
�
+
2
)
(

2
�
+
1
M
�

B
E
�
(2
l )
�

)
3

�
−
�
+
2

m
�
�
t m

a
x
d
m
a
x

�
�
d

2
�
−
�
+
1

�
−
1

m
a
x

( B
E
�
(2
l )
�

2
�
+
1
M
�

)
1

�
−
1

�
�

( (B
E
�
)2
(M

�
)�

−
�
( �

�
y

) �−
�
−
2
(2
l )
2
�

2
�
+
�

)
2
�
−
�
+
1

(3
�
−
�
)(
�
−
�
+
2
)
(

2
�
+
1
M
�

B
E
�
(2
L
)�

)
1

�
−
�
+
2



18 F. Ballo et al.

1 3

6.3  Comparison referring to Pareto‑optimal subset 3, active constraint 
on buckling

In this case the minimum allowable thickness is determined by the constraint on 
buckling which is active. The expression of the Pareto-optimal subset 3 in the objec-
tive functions domain is

Again by considering the relation between �  and E, the ratio 
mA

mB

 reads

Substituting the values of aluminum (material A) and steel (material B) Eq. 30 gives 
0.65. Therefore it turns out that, when the buckling constraint is active, the alu-
minum tube is about 35% lighter for a prescribed compliance.

7  Optimal design of a race car driveshaft

In this section, a practical example of an application of the derived formulae is pre-
sented. The problem analysed refers to the optimal design of the main driveshaft of 
a high-performance race car. The component is highlighted in the scheme of Fig. 4 
and has the role of transmitting the drive torque M from the engine to the drive axle.

The shaft has a tubular shape, the design variables to be optimized are the tube 
diameter and its wall thickness, whereas the design objectives are:

• minimization of the overall mass of the shaft
• minimization of the deflection of the shaft when subject to the applied load

The driveshaft is subjected to the following constraints. The available room for the 
driveshaft limits the massimum diameter to 90 mm ( dmax = 90mm ) and constraints 
on structural safety and elastic stability have to be satisfied to avoid failures when 
the maximum drive torque is applied. The maximum torque M on the driveshaft is 
3600  Nm, obtained by multiplying the maximum engine torque (800  Nm) by the 
first gear (4.5). Additionally, a safety factor of 2.5 is considered in the design pro-
cess to account for overloads on the driveline and durability requirements.

(29)m = ��

�
2�+1M�

�BE(2l)�

� 1

2+�−�

⎛
⎜⎜⎜⎜⎜⎝

4M

��

�
2�+1M�

�BE(2l)�

� 3

2+�−�

⎞
⎟⎟⎟⎟⎟⎠

2�−�+1

4�−�−1

c
−

2�−�+1

4�−�−1

(30)
mA

mB

=
�A

�B

(
EB

EA

)0.545
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A C45 quenched and tempered steel is assumed as reference material for the 
shaft.

All the parameters that are necessary for the optimization are listed in Table 6.
By substituting the numerical values of Table  6 in the analytical expressions 

obtained in Sect. 5, one realizes that Case ④ applies. The Pareto-optimal solution is 
therefore given by the constraint d = dmax , the solution with the minimum attainable 
mass is defined by the intersection between the stress constraint and d = dmax ; the 
relative analytical expressions are reported in Table 4.

Figure 5 shows the set of feasible solutions both in terms of design variables (i.e. 
tube diameter and wall thickness) and objective functions (mass and compliance per 
unit of length). The (Pareto) optimal solutions are identified by the black line in the 
graphs of Fig. 5, the designer has to select his final design among this set of solu-
tions. The solution with the lowest attainable mass is identified by the black dot of 
Fig. 5 and is given by the intersection point of the stress constraint with the con-
straint d = dmax . Such a solution is characterized by an outer diameter of 90 mm and 

Fig. 4  General schematics of the driveline of a two wheel drive vehicle

Table 6  Design of the main 
driveshaft of a race car—input 
data

Description Notation Value Unit

Applied torque M 3600 Nm
Material density � 7800 kg

m3

Material tangential modulus � 80.77 GPa
Material yielding shear stress �y 261 MPa
Safety coefficient � 2.5 –
Lower bound on tube diameter dmin 0.02 m
Upper bound on tube diameter dmax 0.09 m
Lower bound on wall thickness tmin 0.0005 m
Upper bound on wall thickness tmax 0.005 m
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a wall thickness of 2.71 mm, with a mass per unit of length of 5.98 
kg

m
 ; this solution 

exhibits also the highest deflection (0.0293 rad
m

 ) when subject to the torsional 
moment.

On the other hand, the solution with the lowest compliance (marked with a dia-
mond in Fig. 5) is given by a tube with the maximum admissible diameter (90 mm) 
and the maximum admissible wall thickness (5 mm); regarding the objective func-
tions, this solution is the stiffest (with a deflection of 0.0132 rad

m
 ) but the heaviest 

one (13.23 
kg

m
).

The driveshaft currently mounted on the car is also highlighted in the graphs of 
Fig. 5 and has an outer diameter of 90 mm with and a wall thickness of 3 mm. As 
evidenced from Fig. 5, the currently adopted solution lies on the Pareto front, show-
ing that the proposed approach for the design of thin walled tubes under torsion is in 
accordance with practical designs obtained by experienced specialists.

8  Conclusion

In the paper, the analytical multi-objective optimization for the lightweight design of 
a thin-walled tube subject to torsion has been dealt with. Tube mass and compliance 
have been minimized at the same time. Constraints on safety (i.e. admissible stress), 
elastic stability (buckling), available room (maximum diameter) and manufacturing 
constraints (minimum thickness) have been considered.

Analytical formulae of the Pareto-optimal set have been obtained for the considered 
design problem. The analytical expressions are derived both in the design variables 
(tube diameter and wall thickness) and in the objective functions (mass and compliance 
of the tube) domain. A comparison of optimized designs made from different materials 
has been included.

It has been demonstrated that

• the Pareto-optimal set of the thin-walled tube under torsion is given by the combi-
nation of the buckling limit, minimum thickness and maximum diameter.

• apart from the solution having maximum thickness and maximum diameter, all the 
other designs with t = tmax are non-optimal and have to be discarded

• the stress constraint is not part of the Pareto-optimal set, actually it has a role only in 
the definition of the minimum attainable mass.

The comparative lightweight design of tubes made from different materials showed that 
aluminium alloy allows an effective lightweight construction, but when the available 
room is saturated and proper stiffness is requested, steel allows to obtain a lighter struc-
ture by 8%.

A simple engineering problem related to the design of the main driveshaft of a race 
car has been solved by employing the obtained analytical expressions, showing the 
practical use of the method and its effectiveness in the definition of early-stage optimal 
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design solutions. From a direct comparison with the currently adopted driveshaft, it has 
been shown that the proposed method is in accordance with the solution obtained by 
experienced specialists.

Appendix

Definition 1 Pareto-optimal solution. Given a MOP (Multi-Objective Programming) 
problem with n design variables and k objective functions a Pareto-optimal solution 
(vector) �∗ is that for which there does not exist another solution � ∈ X such that:

Let us consider a general constrained multi-objective minimisation problem:

where F is the vector of the k objective functions, x is the vector of the n design 
variables and G is the vector of the w constraint functions.

Fritz John necessary condition (Miettinen 1998; Mastinu et al. 2006). Let the objec-
tive function and the constraint vector of Eq.  32 be continuously differentiable at a 
decision vector �∗ ∈ S . A necessary condition for �∗ to be Pareto-optimal is that there 
exist vectors � ∈ �k ≥ � and � ∈ �w ≥ � (�,� ≠ (�, �)) such that

The condition is also sufficient if the objective functions and the constraints are con-
vex or pseudoconvex (Kim et al. 2001; Askar and Tiwari 2009). The existence of the 
Pareto-optimal front is guaranteed by weak conditions (Miettinen 1998; Dutta and 
Lalitha 2006).

Equation 33 can be rearranged in a matrix form as (Levi and Gobbi 2006; Gobbi 
et al. 2014)

where L is a [(n + w) × (k + w)]matrix defined as

with

(31)
fj(�) ≤ fj(�

∗) j = 1, 2,… , k

∃l ∶ fl(�) < fl(�
∗)

(32)
min �(�) = �(f1(�), f2(�,… , fk(�))

s.t. �(�) = (g1(�), g2(�),… , gw(�)) ≤ �, � ∈ �n

(33)

k∑
i=1

�i∇fi(�
∗) +

w∑
j=1

�j∇gj(�
∗) = �

�jgj(�
∗) = �

(34)� ⋅ � = �

(35)� =

[
∇� ∇�

� �

]

(36)∇� = [ ∇f1 ∇f2 … ∇fk]

(37)∇� = [ ∇g1 ∇g2 … ∇gw]
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and � the null matrix of dimensions [w × k] . � is a vector containing � and � 
( � =

[
� �

]T
≥ �).

The Fritz John conditions (see Eq.  33) can be relaxed by removing � ≥ � . This 
relaxation implies that we are dealing with necessary conditions also in presence of 
convex objective functions and constraints.

For n ≥ k , i.e. the number of design variables is equal or greater than the number of 
objective functions, Eq. 34 admits non-trivial solution if (Björck 1996)

This condition states that the solutions of the optimization problem are those values 
of the decision vector �∗ ∈ S for which the det(���) is equal to zero.

For square L matrix (i.e. n = k , the number of design variables is equal to the num-
ber of objective functions) it is not necessary to multiply it by its transposed and condi-
tion (39) reduces to

By inspecting Eq. 40, one may notice that in this case the gradient of the constraints 
has no influence on the solution. Furthermore, being � a diagonal matrix, Eq. 40 
can be rewritten as

and therefore the solution is either an active constraint or the Pareto-optimal set of 
the unconstrained problem (Levi and Gobbi 2006). In fact, if the problem is uncon-
strained, the � matrix is � = �� and the solution is given by

If n < k , i.e. the number of design variables is smaller than the number of objective 
functions, det(���) is always equal to zero and the problem is no longer a mini-
mization problem. The solution can be found by simply substituting the constraints 
expressions into the objective functions as explained in Gobbi et al. (2006).
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