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Abstract
Water supply of high-rise buildings requires pump systems to ensure pressure 
requirements. The design goals of these systems are energy and cost efficiency, both 
in terms of fixed cost as well as during operation. In this paper, cost optimal decen-
tralized and tree-shaped water distribution networks are computed, where place-
ments of pumps at different locations in the building are allowed. We propose a 
branch-and-bound algorithm for solving the corresponding mixed-integer nonlinear 
program, which exploits problem specific structure and outperforms state-of-the-art 
solvers. A further desirable feature is that the system is K-resilient, i.e., still able 
to operate under K pump failures during the use phase. Using a characterization 
of resilient solutions via a system of inequalities, the branch-and-bound scheme is 
extended by a separation algorithm to produce cost optimal resilient solutions. This 
implicitly solves a multilevel optimization problem which contains the computation 
of worst-case failures. Moreover, using a large set of test instances, the increased 
energy-efficiency of decentralized networks for the supply of building is shown and 
properties of resilient layouts are discussed.
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1  Introduction

Increasing population density and land prices in cities make high-rise buildings an 
attractive construction option. Such buildings have to be supplied with water, which 
requires so-called booster systems to increase the water pressure in order to reach 
all floors. The conventional network layout of high-rise buildings consists of a set of 
parallel pumps installed in the basement and of a single-stranded pipe system sup-
plying the building’s single floors or several floors grouped into zones with the same 
pressure. This design has two advantages: (i) the piping cost is lowest for this layout, 
(ii) if one pump fails, water supply can be maintained by using parallel pumps.

However, besides the initial investment and the availability of the system, also its 
operation cost play a key role. Recent studies by Nault and Papa (2015) estimate that 
70% of a pump system’s life cycle cost are caused by its electricity consumption. 
Thus, planning energy-efficient water distribution networks and especially optimiz-
ing their layout and operation simultaneously seems promising.

In this paper, we therefore investigate more complex, decentralized system lay-
outs that may lead to a more efficient operation and thus to lower overall cost. As 
one main contribution, we present a branch-and-bound method to solve the cor-
responding design problem to global optimality, thereby exploiting the underlying 
tree-structure of the network. We demonstrate that this approach is faster than apply-
ing state-of-the-art mixed-integer nonlinear program  (MINLP) solvers. In general, 
such problems are difficult to solve, due to the interaction of network design choices 
and nonlinear physics. Indeed, it seems that no global optimization approaches for 
this joint design and operation problem have appeared in the literature (see Sect. 2).

A second contribution concerns the anticipation of the system availability during 
the design phase. In this paper, we consider systems that are K-resilient, i.e., these 
systems allow to ensure a certain percentage of the demand even if up to K pumps in 
the system fail. Such problems are even harder to solve, since they involve a multi-
level optimization structure: the goal is to find a cost efficient design such that for 
every possible failure scenario there exists an operation plan of the pumps such that 
the required demand is satisfied. Nevertheless, we show that the branch-and-bound 
method can be extended to this case and that it allows for the relative efficient com-
putation of such K-resilient systems. Again, the underlying structure is exploited to 
this end.

These two contributions allow for the design of large realistic water supply sys-
tems of high-rise buildings. As a third contribution, we discuss the influence of 
decentralized layouts and its consequences for engineering such systems. Depend-
ing on the requirements on cost and resilience, there are clear advantages for certain 
layouts.

The paper is organized as follows. Section  2 contains an extensive literature 
review on optimal water distribution networks. In Sect. 3, we present the MINLP 
model which computes an optimal system layout as well as its operation. We also 
discuss the computational complexity of this model. In Sect.  4, we develop the 
branch-and-bound framework together with a relaxation to solve the MINLP more 
efficiently. In Sect.  5, we characterize resilient solutions and adapt the framework 
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using a separation scheme to compute optimal solutions which can handle the failure 
of pumps. Section 6 contains the description of the creation of test instances and the 
performance of the proposed algorithms. The resulting realistic test instances allow 
us to draw conclusions on the design of efficient and also resilient water networks. 
We conclude the paper in Sect. 7 addressing future research directions.

2 � Related work

The water supply of high-rise buildings can be regarded as a water distribution net-
work. Mathematical programming has been successfully applied to optimize such 
networks for several decades. A detailed review is given, e.g., by D’Ambrosio et al. 
(2015). The complexity of the respective problems depends on (i) whether the net-
work is fixed or designed, (ii) stationary or transient operation, (iii) the technical 
components considered (pipes, pumps, valves and/or tanks) and (iv) the underly-
ing physical and technical models, which may comprise systems of partial differ-
ential equations (PDEs) and nonlinear component characteristics. In the following, 
we give a short overview of related work. We refer to Mala-Jetmarova et al. (2017) 
for an extensive overview. For an introduction to MINLP we refer to Belotti et al. 
(2013).

Optimization of water distribution network operation Optimizing the operation 
of water distribution networks with given design has been investigated in numerous 
works which all focus on special aspects of the problem.

The optimal stationary operation of a water distribution network is addressed by 
Gleixner et al. (2012). They include continuous operation decisions, such as volume 
flow and pressure, as well as discrete decisions to model the on/off-state of pumps. 
However, only pumps with fixed speed are considered. Handling non-convex non-
linearities in constraints and objective function using problem-specific reformula-
tions and presolving, they are able to solve the resulting large real-world MINLP 
instances to global optimality.

To model dynamic aspects in water distribution networks, the so-called water 
hammer (mass and momentum) equations are used – a set of PDEs which model 
transient flow in pipes, cf. Ghidaoui et  al. (2005). In optimization models these 
PDEs are usually discretized in time and/or space. Kolb and Lang (2012) use an 
implicit box scheme and solve the continuous control task using gradient-based opti-
mization methods. This approach allows to find optimal rotational speeds of pumps, 
but does not cover their optimal switching.

To optimize pump switching and control, often referred to as “optimal pump 
scheduling”, several methods have been applied, such as linear (Jowitt and Ger-
manopoulos 1992), nonlinear (Yu et al. 1994; Skworcow et al. 2014) and dynamic 
programming (Zessler and Shamir 1989). However, many of these approaches 
relax the problem by approximating the underlying physical laws or the technical 
characteristics.

In general, the physical models lead to non-convex constraints for the head-flow 
relations, and binary variables for pump switching. State-of-the-art methods for 
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solving the respective MINLPs can be divided into non-convex optimization and 
approaches using piecewise linear approximations.

The latter has first been proposed in the joint works of Geißler et al. (2011) and 
Morsi et al. (2012). By a piecewise linearization of the nonlinear physical and tech-
nical constraints, the authors present a mixed-integer linear program (MIP) for opti-
mizing the operation of water supply networks. Given these approximations, they 
are able to find an optimal operation strategy for a given network consisting of 20 
pipes, three pumps, two tanks, one source and four sinks. Verleye and Aghezzaf 
(2013) have extended this approach to a network with multiple sources and reduced 
the amount of binary variables considerably, using a piecewise linear approximation 
by Vielma and Nemhauser (2011) that requires only a logarithmic number of binary 
variables.

Non-convex optimization in the context of pump scheduling has been introduced 
by Burgschweiger et al. (2009) for investigating the minimum cost operative plan-
ning of water supply networks for a time horizon of 24 h. However, the authors sim-
plify the problem by subsuming single pumps within pump stations while approxi-
mating their aggregate efficiency, and by using smooth approximations of the 
hydraulic pressure loss. Since solving the resulting MINLP to global optimality is 
not practical for the network size they consider, they present a nonlinear program-
ming (NLP) model and use special techniques to address the binary decisions. Using 
this approach, they compute near-optimum solutions for large networks in accept-
able time.

Bonvin et al. (2017) treat the 1-day ahead optimal operation of a special class of 
branched water networks with one pumping station. They show that due to the pres-
ence of a flow control valve at each water tower, non-convex constraints modeling 
the hydraulic pressure loss and the pump characteristics can be relaxed. The result-
ing convex MINLP can then be solved with general-purpose solvers.

Another non-convex optimization approach in this context has been presented 
by Ghaddar et al. (2015), who use Lagrangian decomposition to find solutions with 
guaranteed upper and lower bounds. However, they assume in their model that all 
pumps have a constant rotational speed.

Optimization of layout and design Besides optimizing their operation, also the 
optimal layout and design of water distribution networks has been studied. Note that 
in this context the terms “layout” and “design” may be used to distinguish between 
different optimization problems, cf. De Corte and Sörensen (2013): While layout 
problems deal with finding an optimal network topology, i.e., with deciding where 
pipes, pumps and other components are placed and how they are connected, design 
problems deal with finding the optimal material and diameter of pipes, and the opti-
mal pump types and sizes for a network with a given topology.

In the area of design problems, the majority of works focuses on the so-called 
gravity-fed design optimization problem, i.e., for a given layout solely the optimal 
selection of pipe types and diameters is treated. The optimal selection of active com-
ponents like pumps is not considered. While some of the early works apply nonlin-
ear programming approaches, in which the pipe diameter is a continuous variable, 
cf., e.g., Fujiwara and Khang (1990) or Varma et al. (1997), Bragalli et al. (2012) 
use a MINLP approach to select from a set of commercially available diameters and 
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demonstrate its ability to find good solutions for practical instances. In Robinius 
et al. (2018) a tree-shaped potential flow-based (e.g., water-distribution) network is 
designed such that it is robust against uncertain demand.

Since the problem of selecting optimal pipe diameters for a water distribution 
network is NP-hard (Yates et  al. 1984), also the development of (meta-)heuristic 
approaches has received considerable attention. Many of these approaches use exter-
nal solvers such as EPANET, cf. Rossman (2000), to assess the feasibility of the 
hydraulic constraints. For a detailed review on the state-of-the-art in this context we 
refer to De Corte and Sörensen (2013).

While design problems typically only comprise pipe sizing, layout problems also 
comprise the piping layout as well as the selection, sizing and/or placement of other 
components such as pumps, valves or tanks. Lejano (2006) optimize the piping lay-
out and design of a branched water distribution system. Assuming linear models for 
the investment cost of pipes and pumps and the pump operative costs, they solve 
the resulting MIP. Therefore, they aggregate pumps into pump stations and use lin-
ear models for their power consumption. To find the optimal placement of pressure 
reducing valves in an existing network and determine their optimal settings, Eck and 
Mevissen (2012) employed MINLP techniques, while using a quadratic approxima-
tion for the pipe head loss.

Joint optimization of layout and/or design and operation In addition to the initial 
investment, also the operation cost can make up a large proportion of the life cycle 
cost of a water distribution network. Thus, for cost-optimal planning, the simultane-
ous optimization of investment and operation cost should be addressed. While dif-
ferent approaches based on heuristic methods exist for this complex problem [cf., 
e.g., Dandy et al. (1994), Ostfeld and Tubaltzev (2008), Prasad (2009), Narayanan 
et al. (2012)], the global optimization of layout, design and operation of water distri-
bution networks from scratch has to the best of the authors’ knowledge not yet been 
addressed.

Resilience and survivable networks Next to investment and operation cost, the 
concept of resilience has emerged as an important feature of water distribution net-
works, and numerous different resilience measures have been proposed in the litera-
ture. Shin et al. (2018) give an overview over different quantitative resilience meas-
ures used in the context of water distribution networks. The presented resilience 
measures are manifold and range from static to dynamic, and from deterministic to 
probabilistic approaches. One of the most prominent quantitative measures proposed 
is the so-called “resilience index” by Todini (2000). The idea of this index is that a 
surplus of pressure head in normal operating conditions will allow the network to 
overcome critical operating conditions, such as component failures.

Recently, also complex network theory and statistical graph metrics such as aver-
age path length, link density, central point dominance or k-shortest path length have 
gained increased interest to assess the resilience of different network topologies. 
Herrera et  al. (2016) propose a graph-theoretic framework to assess the resilience 
of sectorized networks. They analyze the network’s connectivity by approximating 
it via averaging over the k-shortest paths from water sources to consumption nodes. 
Using a multiscale decomposition and since computations for the proposed index 
scale quasi-linearly with the number of nodes, they are able to assess the resilience 
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of large sectorized networks against failures of multiple pipes. In another recent 
study, Meng et al. (2018) showed that for 85 benchmark water distribution networks, 
specific graph metrics strongly correlate with the network resilience against pipe 
closures.

While the work mentioned above is based on simulative approaches, the optimi-
zation of network topologies to guarantee performance in case of failures has been 
investigated in other fields. Especially in the field of telecommunication, designing 
survivable networks has become a major objective, cf., e.g., Grötschel et al. (1995). 
The goal is to design a network that is still connected if a specific number of vertices 
and/or edges is removed. This problem can be formulated as a MIP, cf. Goemans 
and Bertsimas (1993).

However, optimizing the layout of water distribution networks such that they may 
perform sufficiently in case of failures comprises more than just their connectivity. 
Not only the limited amount of paths after the failure, but also effects upon hydraulic 
head losses and subsequent pump adjustments have to be considered.

An alternative approach to resilience in the form of component failure gives rise 
to multi-level optimization problems, where an attacker chooses the worst-case fail-
ure scenario, with respect to an optimal response of a defender or a defender designs 
an optimal system which can withstand the worst-case actions of an attacker. Exam-
ples in this field include the work of Brown et  al. (2006), Chen et  al. (2014) and 
Bienstock and Verma (2010). Note that there are newly developed approaches for 
bilevel programming including integer variables, e.g., by Fischetti et al. (2017), Mit-
sos (2010) or Kleniati and Adjiman (2015).

3 � Problem statement and model formulation

We consider the design of decentralized water distribution networks in high build-
ings. The decentralized arrangement of pumps leads to an efficient use of hydraulic 
power, since multiple floors can be supplied individually. To select the optimal lay-
out consisting of different pump types and their number and placement in the system 
as well as to find the optimal pipe diameter design, we present a MINLP model, that 
is an extended model compared to Leise et al. (2018), Leise and Altherr (2018) and 
Altherr et al. (2018b). This model is based on a directed acyclic graph, which mod-
els the underlying pipe network. We partition the total number of floors of the high-
rise building into several pressure zones. Next to the traditional approach, in which a 
booster station in the basement supplies all floors with one rising pipe, this is also a 
possible system layout according to the technical standard DIN 1988-500 (2011). In 
this case, each pressure zone consisting of multiple floors is supplied by a separate 
booster station and pipe. In our model, the number of pressure zones is given by N. 
We model rising pipes that supply different pressure zones as arcs and different pres-
sure zones as nodes. It is possible to place pumps on each of these different arcs. 
This allows a decentralized placement and therefore potential energy and cost sav-
ings in the utilization phase, which results in lower overall costs. We consider pipe 
wall friction, but neglect friction losses of individual parts, like valves, pumps and 
fittings.



611

1 3

Resilient and efficient layout of water distribution networks

Hereafter we use the abbreviations [n] ∶= {1,… , n} and [n]0 ∶= {0,… , n} 
and for a node v in a directed graph the set of incoming and outgoing arcs is given 
by �−(v) and �+(v) , respectively. The used variables of the different presented models 
and further symbols used in this paper are collected in Tables 1 and 2, respectively.

Only steady state conditions are considered, i.e., a fixed amount of volume flow 
has to be transported from the water main, which is connected to the municipal 
water supply network, to each pressure zone. The objective consists of minimiz-
ing pipe and pump investment costs as well as pump operating costs. To transport 
water to each zone, it has to be connected to the water main. This is done either 
by connecting it to other lower zones or directly to the inlet. All possible pipe 
layouts are summarized in a directed graph  = ( ,) whose nodes represent the 
inlet 0 and the pressure zones 1 to N, so  = {0} ∪ [N] . The arc set represents the 
possible connections of pressure zones,  = {(u, v) ∈  ×  ∶ u < v} , cf. Fig-
ure 1c. In the example building, Fig. 1a, all zones but the highest are connected 
to the water main, whereas the highest zone is connected to the zone directly 
below. In the graph, given in Fig. 1b, this is represented by four arcs which con-
nect node 0 to nodes 1 to 3, and node 3 to node 4.

In this paper, we restrict the possible pipe layout by allowing only one connection 
from the water main to each zone, i.e., to connect a pressure zone v to the inlet, only 
one arc of �−(v) may be chosen. Therefore, only the directed spanning trees of  rooted 
in node 0 form feasible connections.

For each used connection, a pipe diameter has to be selected from a finite set of 
possibilities. The chosen pipe diameters strongly influence energy losses due to fric-
tion. Furthermore, to overcome friction and geodetic height differences pumps of dif-
ferent types can be placed on used connections to increase the pressure. On each arc, a 
series connection of parallel pump groups of the same type can be placed. The pump’s 
optimal operating speed has to be determined in order to fulfill the water demand in 
each pressure zone, with the highest energy-efficiency possible. In the next section, we 
describe the physical behavior of pumps and pipes leading to the formulation of the 
presented MINLP.

Table 1   Variables in the models

Variable Domain Meaning

xa {0, 1} xa = 1 if connection a is used
xdia
a,d

{0, 1} xdia
a,d

= 1 if diameter d is used for connection a
ym
a,i

{0, 1} ym
a,i

= 1 if pump type i is used m times in parallel 
on connection a

�fa ℝ+ Pressure decrease caused by friction along pipe a
qa ℝ+ Volume flow in pipe a
�a,i ℝ+ Speed of the pumps of type i on pipe a
�ha,i ℝ+ Pressure increase of the pumps of type i on pipe a
pa,i ℝ+ Power intake of the pumps of type i on pipe a
hv ℝ+ Pressure in zone v
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3.1 � Modeling of pumps

Variable speed pumps are used to increase pressure to supply all zones in the building. 
They have the advantage that their rotating speeds can be adapted to partial loads dur-
ing operation, and it is possible to save energy in comparison to pumps with a fixed 
rotating speed, cf. Coelho and Andrade-Campos (2014). A pump with a variable rotat-
ing speed can be described by four variables. These are the volume flow in the pump q, 
the rotational speed � , the induced pressure head �h and the consumed power p. Fixing 

Table 2   Sets and parameters used in the models

Symbol Meaning

 = ( ,) Graph of possible pressure zone connections, with vertices  and arcs 
N Number of pressure zones
Dv Volume flow demand of pressure zone v
La Length of connection a
M Number of allowed parallel pumps
 Catalog of pump types
 Collection of pipe diameters

C
pi

a,d
Cost for pipe a with diameter d

C
pu

i
Cost for one pump of type i

Cen Term to weight the used power
Hmin Minimal pressure in each zone
Hin Pressure in the ground floor
Qdia

d
Upper bound on the volume flow for pipe diameter d

�i Feasible set of operation for a pump i, cf. Equation (1)
�Fa,d(q) Height difference due to friction on connection a with diameter d for volume flow q
QT

a
Volume flow on arc a for tree T

Q
T

a

Upper bound on volume flow on arc a for tree T

QT

a
Lower bound on volume flow on arc a for tree T

HT
v

Needed pressure increase between zone v and 0 for tree T due to geodetic height differences
�FT

a,d
Pressure decrease due to friction along connection a for diameter d and tree T

T
v

Path from 0 to node v in tree T

�H
T

a,i,m

Maximal possible pressure increase for pump type i on connection a built m times in paral-
lel in tree T

PT
a,i,m

Minimal power consumption for pump type i on connection a built m times in parallel in 
tree T

�H
T ,res Maximal possible pressure increase for pump type i on connection a built m times in paral-

lel in tree T for by �  reduced volume flow demand
�FT

a,d
Pressure decrease due to friction along connection a for diameter d and tree T for by �  

reduced volume flow demand
� Fraction of volume flow demand after component failures
 Set of failure scenarios
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any two of theses values determines the other two. Typically, pump manufactures pro-
vide so-called characteristic diagrams which describe the head and power as a function 
of the volume flow. An example is shown in Fig. 2. Here, contour lines mark different 
speed levels � . Note that the pressure head �h is measured in meters. This is done by 
rescaling the pressure with 1∕�g , where � is the density of water and g the assumed to 
be constant gravitational acceleration.

To describe the feasible set of values given by a pair of characteristic diagrams, we 
use, based on Ulanicki et al. (2008), the quadratic and cubic approximation

(a)

0

1

2

3

4

(b)

0

1

2

3

4

(c)

Fig. 1   Depiction of an exemplary design a with four pressure zones. Two pumps are installed in the 
ground floor and another pump is installed in the third pressure zone. This pipe layout is represented by 
the graph in b. c shows the graph  of all possible connections for N = 4 pressure zones
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to determine the pressure head and power for a given volume flow q and rotating 
speed � . From the q-�h diagram we furthermore derive a system of linear inequali-
ties, which describe the possible domain of the pump. It includes a lower and upper 
bound on the normalized rotational speed � , and also two inequalities for the left 
and right boundaries in Fig. 2. Altogether, we denote the feasible set of values for a 
pump by

In practice, a large selection of pumps are available to choose from. We denote this 
catalog of different pump types with  . Each pump type i ∈  leads to a different 
characteristic diagram and to a feasible set �i . On each connection of the graph  
different types may be placed in series. Furthermore, up to M ∈ ℕ pumps of the 
same type may be placed in parallel on each connection. For running pumps of the 
same type, built in parallel, the optimal operating speeds are identical and the vol-
ume flow is shared equally among the parallel pumps, see Pedersen and Yang (2008) 
and Groß et al. (2017).

3.2 � Scaling of pump characteristics

Since the available pump types in the catalog  strongly influence the energy-efficiency 
of the future system, it is essential that  consists of accurately modeled pumps. In 
order to include different pump sizes in an efficient way, we use a physically motivated 
method to scale pumps as shown in Gülich (2008). It is possible to describe the flow 
of multiple pumps with different sizes by a scaling law, if the flow conditions in the 
different pumps are comparable from a geometrical and dynamical point of view. Two 
pumps are geometrically similar, if all surfaces that conduct the flow are scaled by the 
same amount. Two pumps are dynamically similar, if they have the same Reynolds, 
Euler and Froude number. In this paper, we consider explicitly several series of similar 
pumps. Based on the characteristic diagrams of a model pump, as shown in Fig. 2, it is 
possible to derive the characteristic diagrams of multiple further pumps by varying the 
impeller size and the number of stages, which describes a series connection of multi-
ple equivalent pump stages in one housing. Assuming that the volumetric and hydrau-
lic efficiency, as well as the rotational speed and density of the fluid are equal for the 

�H(q,�) = �h q2 + �h q� + �h �2 and

P(q,�) = �p q3 + �p q2 �p + �p q�2 + �p �3

(1)

� ∶= {(q,�,�h, p) ∈ ℝ
4 ∶ � ≤ � ≤ �,

�q + ��h ≤ � ,

�q + ��h ≤ � ,

�h = �H(q,�),

p = P(q,�)}.
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reference pump and all derived pumps, it is possible to use the following scaling laws, 
as shown in Gülich (2008):

Here, d denotes the impeller diameter, � the hydraulic efficiency and zst the number 
of stages. The index M represents the reference pump, whereas the values without 
an index represent the derived values for pumps with different impeller diameter d 
and stage number zst.

An example for the q-�h relation of a model and a derived pump is shown in Fig. 3. 
The solid black curve represents the characteristic diagram of a reference pump. The 
dashed curve denotes the domain of a pump derived by using an impeller diameter 
ratio d∕dM . The dotted lines represent corner points for multiple scaled pumps, which 
use a diameter ratio d∕dM between the model and upscaled pump.

The scaling of the q-p relationship, which is not shown in Fig. 3, is performed simi-
larly. It requires the definition of the hydraulic efficiency � and depends on the Reynolds 

(2)

q(d) = qM

(
d

dM

)3

,

�h(d) = �hM

(
d

dM

)2
zst

zst,M
,

p(d, �) = pM

(
d

dM

)5
zst

zst,M

�M

�
.

Volume flow q

P
re
ss
ur

e
in
cr
ea

se
∆
h

Fig. 3   Example for the scaling of characteristic pump diagrams. The solid curve represents the working 
domain of the reference pump. The dashed lines depict the working domain of a scaled pump. The dotted 
lines depict the scaling of the corner points
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number and the relative roughness of the pump. In general, the efficiency of pumps 
increases with the diameter of the impeller. This increase is modeled with the help of a 
so-called majoration formula. In this example, we model the efficiency increase in the 
best point of different scaled pumps by using:

which is shown in Gülich (2008). If we include the Reynolds number Re = n�d2

�
 for 

pumps, we can simplify Eq. (3) to obtain

This equation only depends on the diameter ratio d∕dM and on the hydraulic effi-
ciency �M , which can be measured for each reference pump. Hereafter, �M is repre-
sented by the efficiency in the best operating point and the scaled efficiency value is 
then used in (2) to adapt the hydraulic power for an increased impeller diameter.

3.3 � Modeling of pipes

The fluid flow in pipes is a result of a pressure difference between both ends. On the 
one hand, the necessary pressure increase is usually created by pumps. On the other 
hand, pipe friction leads to a pressure loss. This decline depends on the length of 
the pipe L, the inner diameter d and the volume flow q. We use the Darcy-Weisbach 
equation

where � is the friction coefficient and g is the standard gravity acceleration.
The computations in this paper consider volume flows between 25 m3∕h and 

35 m3∕h as well as diameters between 0.01 m and 0.1 m . These values lead to Reyn-
olds numbers, cf. Spurk and Aksel (2008), that indicate a turbulent flow. Addition-
ally, all computations are based on the assumption that we have steady flow con-
ditions. We use the friction law of Nikuradse, Prandtl and von Kármán, cf. Brkić 
(2011), for a hydraulically rough pipe to estimate friction losses:

The pipe wall roughness parameter is set to K = 0.0015 mm , which represents 
stainless steel pipes, cf. DIN 1988-300 (2012). Equation  (5) is valid for hydraulic 
rough flows and it only depends on the relative wall roughness. As a result it can 

(3)� = �M + 0.4
(
1 − �M

)(
1 −

ReM

Re

0.2)
,

(4)� = �M + 0.4
(
1 − �M

)(
1 −

dM

d

0.4)
.

�F(d, q, L) = �
1

d5
8

�2

q2

g
L,

(5)
� =

1
(
2 log10

(
3.71

d

K

))2
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be integrated in the optimization program more easily than other models, like for 
example the Colebrook-White model, which depends on the Reynolds number and 
the relative wall roughness. To simplify this inclusion into our model, we define for 
each pipe a and diameter d a function �Fa,d ∶ ℝ → ℝ taking as argument a volume 
flow q to denote, based upon the above discussion, the friction in this pipe.

3.4 � Optimization model

The MINLP model (6) to compute optimal solutions to the water distribution net-
work problem is presented in Fig. 4. Variables are written in lower case letters, while 
parameters are written in capital letters. In the model indicator constraints are used, 

min
a∈A d∈D

Cpi
a,d xdiaa,d +

a∈A i∈C m∈[M]
Cpu
i m yma,i +

a∈A i∈C
Cen pa,i (6a)

s.t. yma,i = 1 ⇒
qa
m

, ωa,i ha,i ,
pa,i
m

∈ i , a ∈ A, i ∈ C,m ∈ [M], (6b)

m∈[M]
yma,i = 0 ⇒ ha,i ≤ 0, a ∈ A, i ∈ C, (6c)

xdiaa,d = 1 ⇒ fa ≥ Fa,d (qa), a ∈ A, d ∈ D, (6d)

xdiaa,d = 1 ⇒ qa ≤ Qdia
d , a ∈ A, d ∈ D, (6e)

xa = 1 ⇒ hv ≤ hu +
i∈C

ha,i − La − fa , a = (u, v) ∈ A, (6f)

h0 = Hin, (6g)

hv ≥ Hmin, v ∈ V \ {0}, (6h)

xa = 0 ⇒ qa ≤ 0, a ∈ A, (6i)

a∈δ−(v)

qa −
a∈δ+(v)

qa = Dv, v ∈ V, (6j)

a∈δ−(v)

xa = 1 v, ∈ V, (6k)

m∈[M]
yma,i ≤ xa , a ∈ A, i ∈ C, (6l)

xa =
d∈D

xdiaa,d , a ∈ A, (6m)

x ∈ {0, 1}A,

q f ∈ A
+ ,

y ∈ {0, 1}A×C×[M],

xdia ∈ {0, 1}A×D,

h, p ∈ A×C
+ ,

h ∈ V
+ .

Fig. 4   MINLP to compute the optimal solution of the water network problem
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see Bonami et al. (2015) for a general discussion. The notation y = 1 ⇒ g(x) ≤ 0 
for a binary variable y means that the constraint g(x) ≤ 0 has to hold if y = 1 . Sev-
eral mathematical programming solvers, like CPLEX or SCIP are able to express 
and benefit from indicator constraints involving linear constraints. An alternative 
formulation of the model would involve so-called big-M constraints, which would 
make the model less compact. The implementation of indicator constraints, espe-
cially those involving nonlinear functions is specified in Sect. 6.2.

In Model (6) we use the sum of investment costs for pumps and pipes as well as 
energy costs in the utilization phase as the objective (6a).

The constraints of the MINLP enforce the following logical and physical proper-
ties of the problem. Constraints of type  (6b) and (6c) are used to add the hydrau-
lic characteristics of the pumps to the model, cf. Section  3.1. The constraints of 
type (6d) and (6e) provide lower bounds on the friction by using the friction law of 
Nikuradse, Prandtl and von Kármán and upper bounds on the volume flow depend-
ing on the chosen pipe diameter. The latter bound, Qdia

d
 , is necessary due to the max-

imal volume speed in pipes according to DIN 1988-300 (2012). The pressure height 
in each zone is determined by Constraints  (6f): We consider the pressure increase 
of pumps, as well as pressure losses based on friction and height differences. Con-
straints (6g) and (6h) are used to define the inlet pressure at the water main and the 
desired pressure in each pressure zone of the building. The Constraints (6i) together 
with the Constraints (6j) determine the volume flow in the distribution network and 
enforce a volume flow balance for each pressure zone. To generate tree-shaped net-
works the Constraints (6k) restrict the number of connections to each pressure zone 
to one. Pumps may only be placed on used connections by  (6l). Finally, for each 
used connection a pipe diameter must be set by Constraints (6m).

3.5 � Computational complexity

Problem  (6) contains difficult decisions on the choice of pipes and also nonlin-
earities. In the following, we examine its computational complexity to determine 
the structure that makes the problem challenging.

Proposition 1  Problem (6) is weakly NP-hard for N = 1, M = 1 and || = 1 , omit-
ting friction and using fixed speed pumps.

Proof  We reduce the knapsack decision problem, see [MP0] in Garey and Johnson 
(1979), to the decision version of Problem  (6). Given ñ items it asks for a subset 
S̃ ⊆ [ñ] of the items, such that their weight does not exceed the knapsack capacity 
and the profits are at least a given value, i.e., 

∑
i∈S̃ ãi ≤ b̃ and 

∑
i∈S̃ c̃i ≥ d̃.

Given such a knapsack instance, we construct a corresponding water network 
instance, as follows. Each item is represented by a pump type, which has cost equal 
to the weight of the item and is able to increase the pressure by exactly the cost of 
the item. So, 𝛬i ∶= {(q,𝜔,𝛥h, p) ∈ ℝ

4 ∶ 𝛥h = c̃i, p = 0} and Cpu

i
= ãi for i ∈ [ñ] . 

Furthermore, the instance consists of N = 1 pressure zone of height d̃.
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Then a feasible solution to Problem (6) must fulfill the minimum pressure con-
straints (6f) to (6h), which correspond to the cost objective of the knapsack. More-
over, the capacity constraint of the knapsack instance corresponds to the question 
whether the objective of the water network solution is smaller or equal to b̃ . 	�  □

Note that neither the network structure nor the nonlinear pump characteristic nor 
the friction nor the diameter selection problem is taken into account in the previous 
reduction.

One can further show that not only the catalog of pump types but also the net-
work structure makes the problem intricate.

Proposition 2  Problem (6) is strongly NP-hard for || = 1 , M = 1 and || = 1 , omit-
ting friction and using fixed speed pumps.

Proof  We reduce the bin packing problem, see [SR1] in Garey and Johnson 
(1979), to Problem  (6). It is described by a collection of  Ñ items with positive 
weights ã1,… , ãÑ and seeks a partition of [Ñ] into K̃ bins B1,…BK̃ such that the the 
items in each bin do not exceed the capacity b̃ , i.e., 

∑
v∈Bi

av ≤ b̃ for i ∈ [K̃].
For such a bin packing instance, we construct the following water distribution 

network instance: We use for each item one pressure zone. Therefore N = Ñ . The 
demand Dv of each zone is given by the corresponding item weight ãv . The lengths 
of the connections La are set to 0 and we assume Hmin = 1 and Hin = 0 . The pump 
catalog  contains one fixed speed pump which is able to transport a flow of up to b̃ 
and build up a pressure of 1 without consuming power. Therefore, its feasible set can 
be written as

𝛬 ∶= {(q,𝜔,𝛥h, p) ∈ ℝ
4 ∶ 𝜔 = 1, 0 ≤ q ≤ b̃, 𝛥h = 1, p = 0}.
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(a) B1 = {1, 2}, B2 = {3, 4}, B3 = {5, 6}.
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(b) B1 = {1, 3, 4}, B2 = {2, 5, 6}.

Fig. 5   Illustration of the reduction used in Proposition 2. Two water distribution network solutions are 
shown for two solutions of a bin packing instance with Ñ = 6 , item weights 3, 3, 2, 2, 2, 2 and bin capac-
ity 7
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The instance also assumes non-existent friction and only one pipe diameter. Finally, 
investment cost are zero for built connections and 1 for the pump type, which can be 
built only one time in parallel.

It is easy to see that a solution for this instance consists of a topology which con-
nects each zone to at least one pump which processes a volume flow of at most b̃.

To deduce the reduction, we show that the network instance has a solution with 
objective value smaller  K̃ if and only if the bin packing instance has a solution. 
Let B1,…BK̃ be such a solution. A network solution topology is constructed as fol-
lows: For each bin i and pair of items u = min (Bi) and v ∈ Bi with v ≠ u we include 
a connection xa = 1 on arc a = (u, v) . Furthermore, the connection from 0 to min (Bi) 
is used with one pump. Since there are K̃ bins the objective value of this topology 
is also K̃ . Each pressure zone is connected to a pump by construction and the fact, 
that the bins form a partition of [N]. From the capacity restriction of the bins, one 
sees, that the volume flow on arcs with pumps does not exceed b̃ . Thus, all pumps 
work and are able to yield the needed pressure increase of one. This transformation 
is exemplified in Fig. 5.

The reverse direction is straightforward. Since one pump can increase the pres-
sure to the height of each zone, an optimal solution does not supply any zone by two 
pumps. 	�  □

4 � Branch‑and‑bound framework

Despite the negative complexity results, Model  (6) can be tackled using available 
MINLP solvers. The solving times nevertheless increase rapidly with the number of 
considered pumps and pressure zones. To solve the model more efficiently, we pre-
sent a branch-and-bound framework which utilizes the underlying network structure.

As mentioned before, the connections used in a solution can be represented as an 
arborescence of  , i.e., a directed spanning tree rooted in node 0. This is imposed by 
Constraint (6k). The idea behind the branch-and-bound framework is to enumerate 
such trees and to compute for each a best placement of pumps, operating speed and 
pipe diameter selection.

This separation in two stages has the advantage that the volume flow is deter-
mined for a tree in the second stage. Thus, the complexity of the nonlinear polyno-
mials �H(⋅, ⋅) and P(⋅, ⋅) is reduced. Furthermore, the friction for a given diameter is 
fixed.

The disadvantage lies in the exponentially in N many directed trees, which need 
to be enumerated in the scheme. To reduce the number of inspections, we present a 
relaxation which lower bounds the objective costs of trees having a common struc-
ture. This is done by enumerating subtrees, which are trees rooted in  0 spanning 
the first n zones for some n ∈ [N] . Using a given subtree, one can lower bound the 
objective value of each spanning tree containing the subtree.

To describe the algorithm, we denote by    and  the set of spanning trees 
and subtrees of  rooted in  0, respectively. The arcs and vertices of a tree  T are 
denoted T and T , respectively. Algorithm 1 gives an overview of the scheme.
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In the following, we will describe the model to compute the value for a given 
spanning tree. Building upon this model, a relaxation is derived and shown to be 
valid. Finally, some implementation details are explained.

4.1 � Optimization model for a fixed spanning tree

In this section we use that fact that each tree T determines for each zone v ∈ T a 
unique 0–v path denoted T

v
⊆ T . To compute the optimal pump configurations 

on T ∈   we calculate the volume flow QT
a
 on each used connection a ∈ T . It is 

given by the sum of demands of those zones, which are supplied using a. So

(7)QT
a
=

∑

v∈ ∶ a∈T
v

Dv, a ∈ T .

min
a∈AT

Cpi
a,d xdiaa,d +

a∈AT i∈C m∈[M]
Cpu
i m yma,i +

a∈AT i∈C
Cen pa,i

s.t. yma,i = 1 ⇒
QT
a
m

, ωa,i ha,i ,
pa,i
m

∈ i , a ∈ AT , i ∈ C,m ∈ [M], (8a)

m∈[M]
yma,i = 0 ⇒ ha,i ≤ 0, a ∈ AT , i ∈ C, (8b)

QT
a xdiaa,d ≤ Qdia

d , a ∈ AT , d ∈ D, (8c)

a∈PT
v
i∈C

ha,i −
a∈PT

v
d∈D

FT
a,d xdiaa,d ≥ HT

v , v ∈ V \ {0}, (8d)

a∈D
xdiaa,d = 1, a ∈ AT , (8e)

m∈[M]
yma,i ≤ 1, a ∈ AT , i ∈ C, (8f)

xdia ∈ {0, 1}AT×D,

y ∈ {0, 1}AT×C×[M],

h, p ∈ AT×C
+ .

Fig. 6   MINLP to compute the optimal solution of the water network problem for a fixed spanning 
tree T ∈ 
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Since the flow is fixed, we are able to compute for each pipe diameter  d ∈  
and connection  a ∈ T the resulting pressure losses along  a due to friction 
by �FT

a,d
∶= �Fa,d(Q

T
a
) . We also see that the constraints to determine the pressure in 

the zones, given by (6f), (6g) and (6h), can be simplified using

to denote the needed pressure head in zone v due to differences in height.
Model  (8) in Figure 6 combines these considerations to compute the optimal 

pump placement and operation as well as diameter selection for the tree T ∈  .
This model is bounded. If it is feasible, we denote its optimal solution value 

by opt(T) . If it is infeasible opt(T) = ∞ . The correctness of the formulation is 
shown in the following lemma.

Lemma 1  Model (6) and

compute the same optimal solution values.

Proof  Every vector in

leads to a tree T ∈   with arcs T = {a ∈  ∶ Xa = 1} and vice versa. It remains 
to show that for such a pair X and T, the optimal solution value of Model (6) with 
variables x fixed to X agrees with opt(T) , which is the optimal solution value of (8).

By comparing the constraints of both formulations, one can see that Problem (8) 
arises from  (6) after setting  xa = 1 for  a ∈ T , projecting out variables as well 
as leaving out constraints belonging to arcs a ∈ ⧵T and replacing the volume 
flow QT and the friction loss �FT . Finally, the constraints which determine the pres-
sure distribution between the pressure zones, (6f) to (6h) simplify to a telescoping 
sum, leading to Constraint (8d). 	�  □

4.2 � Relaxation built from subtrees

The idea behind the relaxation is to build the trees from the bottom up, zone by 
zone. For each such subtree one can solve an approximated optimal placement 
of pumps to supply the zones only in this subtree. For spanning trees containing 
this subtree we thus obtain a lower bound on the objective value. To achieve fast 
solving times of these relaxations, the nonlinearities of the pumps are disregarded 
using upper and lower bounds computed using the information of the subtree.

HT
v
∶= Hmin +

∑

a∈T
v

La − Hin, v ∈ ⧵{0},

min opt(T)

s.t. T ∈ 

{
X ∈ {0, 1} ∶

∑

a∈�−(v)

Xa = 1, v ∈ 

}
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Given a subtree S ∈  , the goal is to compute a lower bound for the objective 
costs for all spanning trees T ∈   which contain S, i.e., S ⊆ T . As a first step, 
we determine tight bounds on the volume flow in the subtree which hold for all 
trees containing the subtree. These bounds are defined and shown to be correct in 
the following Lemma.

Lemma 2  Let S ∈  be a subtree and T ∈   be a spanning tree with S ⊆ T . Then

and

for all connections in the subtree a ∈ S.

Proof  Since S ⊆ T , we observe, that  S
v
= T

v
 holds for zones in the sub-

tree v ∈ S . This implies

which together with the volume flow definition (7) implies the first inequality. For 
the second inequality we write

QS

a
∶=

∑

v∈ ∶ a∈S
v

Dv ≤ QT
a

Q
S

a
∶= QS

a
+

∑

v∈⧵S

Dv ≥ QT
a

{
v ∈ S ∶ a ∈ S

v

}
⊆
{
v ∈  ∶ a ∈ T

v

}
,
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Q
S1
(0,1) = 4

QS1
(0,1)

= 1

AS1 = {(0, 1)}

VS1 = {0, 1}
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Q
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(0,1) = 3

QS2
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= 1
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Fig. 7   Visualization of the evolution of volume flow bounds for three subtrees S
1
, S

2
, S

3
 and a spanning 

tree T for N = 4 pressure zones and demand Dv = 1 for v ∈ ⧵{0}
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The first sum is equal to QS

a
 , by the first part of the proof. The second sum is not 

greater than the sum in the definition of Q
S

a
.	�  □

An example for the Lemma and the evolution of tightened volume flow bounds 
is given in Fig.  7. Note that for spanning trees the lower bounds QT and upper 
bounds Q

T
 agree with QT.

The computation of the relaxation should be fast since it is applied often. Thus, 
we ignore the nonlinearities of the hydraulics laws and derive simple bounds on 
the possible pressure increase and minimal power consumption as well as the 
friction loss in the pipes. To bound the former two, we drop their linkage through 
the operation speed to obtain the maximal pressure increase and minimal power 
consumption as follows:

The possible pressure head for a pump i built m times in parallel and volume 
flow bounds Q and Q can be overestimated by maximizing � and q over the feasi-
ble space of the characteristic diagram leading to

The total power intake of all m pumps is similarly underestimated

QT
a
=

∑

v∈S ∶ a∈
T
v

Dv +
∑

v∈⧵S ∶ a∈
T
v

Dv.

�Hi,m(Q,Q) ∶= max �h

s.t. (q,�,�h, p) ∈ �i,

q ∈ [Q∕m, Q∕m], �, �h, p ∈ ℝ+.

P
i,m
(Q,Q) ∶= min mp

s.t. (q,�,�h, p) ∈ �i,

q ∈ [Q∕m, Q∕m], �, �h, p ∈ ℝ+.

min
a∈AS d∈D

Cpi
a,d xdiaa,d +

a∈AS i∈C m∈[M]
Cpu
i m + CenPS

a,i,m yma,i

s.t. QS
a xdiaa,d ≤ Qdia

d , a ∈ AS , d ∈ D, (9a)

a∈PS
v

i∈C m∈[M]
Ha,i,m yma,i −

d∈D
FS
a,d xdiaa,d ≥ HT

v , v ∈ VS \ {0}, (9b)

a∈D
xdiaa,d = 1, a ∈ AS , (9c)

m∈[M]
yma,i ≤ 1, a ∈ AS , i ∈ C, (9d)

xdia ∈ {0, 1}AS×D,

y ∈ {0, 1}AS×C×[M].

Fig. 8   Relaxation model for a subtrees S ∈ 
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In case of infeasibility, we set �Hi,m(Q,Q) = 0 and P
i,m
(Q,Q) = 0 . For a fixed sub-

tree  S with the proven bounds on the pipe volume flow, we define 
�H

S

a,i,m
∶= �Hi,m(Q

S

a
,Q

S

a
) as well as PS

a,i,m
∶= P

i,m
(QS

a
,Q

S

a
).

The friction in a pipe grows for increasing volume flow. Thus, 
�FS

a,d
∶= �Fa,d(Q

S

a
) yields a lower bound on the friction along a connection a and 

diameter d for each spanning tree containing S.
Combining these bounds we obtain Relaxation (9), see Fig. 8, which contains 

only linear constraints.
We conclude this section by showing the validity of this relaxation.

Lemma 3  For  S ∈  and T ∈   with S ⊆ T Model  (9) yields a lower bound 
on opt(T).

Proof  Let (xdia, y,w,�h, p) be an optimal solution of Problem (8) solved for tree T. 
Then by Lemma 2 and the construction of P and �H

holds. Lemma 2 and the definition of the friction term further imply

Thus, the pump placement y and diameter selection xdia form also a feasible solution 
for Relaxation (9) (taking only the variable entries belonging to S). Comparing the 
terms in the objective, we further see that fewer terms and only the lower bound on 
the pressure consumption are used in the relaxation. Therefore, its objective values 
does not exceed opt(T) . 	�  □

4.3 � Branch‑and‑bound details

In this section, we provide implementation details of Algorithm 1. In our implemen-
tation, the first inspected tree, which is thus the first node of the branch-and-bound 
tree, contains the lowest pressure zone and the pipe connecting the building to the 
water provider. If a branch-and-bound node, representing a subtree S ∈  , can not 
be pruned using the relaxation, we add to S the next higher unconsidered zone and 
create a node for each possible connection of this node and S. This is depicted in 
Fig. 9. As in all branch-and-bound schemes, one has to specify the order of inspec-
tion of the branch-and-bound nodes. In our implementation we use a depth-first 

P
i,m
(QT

a
,Q

T

a
) ≤ pa,i, a ∈ T , i ∈ , m ∈ [M],

�Hi,m(Q
T

a
,Q

T

a
) ≥ �ha,i a ∈ T , i ∈ , m ∈ [M]

QS

a
≤ QT

a
≤ Qdia

d
a ∈ T , i ∈ , m ∈ [M],

�Fa,d(Q
S

a
) ≤ �Fa,d(Q

T
a
) a ∈ T , d ∈ .
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order, hopefully finding feasible solutions early in the scheme and allowing the early 
pruning of branch-and-bound nodes due to their dual bound.

5 � Finding resilient topologies

In this section, we include the possibility of pump failures in our model. The goal 
is to design resilient networks, which are able to adapt to structural changes, in this 
case to the outage of pumps. To quantify different solutions according to their resil-
ience we refer to their buffering capacity, which according to Altherr et al. (2018a) 
measures the amount of structural change for which a given performance of the sys-
tem can still be guaranteed.

In the following, we measure the buffering capacity of a high-rise water dis-
tribution system by counting the maximum number of pumps which may fail 
such that the system’s worst case performance is still above a predefined mini-
mum level. A high-rise water distribution network has a buffering capacity of 
K for some natural number  K, if it is able to transport a predefined percent-
age � ∈ (0, 1] of the volume flow demand Dv to each pressure zone despite the 
failure of any combination of up to K pumps. In this case, we also call the water 
distribution network K-resilient.

One approach to generate networks with a high buffering capacity given the 
conventional basement layout is to install redundant pumps. The decentralized 
approach with more topological degrees of freedom regarding pipe layout and 
pump placement, may allow to reduce the number of redundant pumps, since in 
case of failure some pumps may be able to partially fulfill the function of others 
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Fig. 9   Visualization of the branch-and-bound node generation in Algorithm 1 for N = 4 . The node cor-
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in different places in the network. Thus, compared to the state-of-the-art design 
of water distribution networks in buildings, in which additional parallel pumps 
are added to all used booster stations, c.f. DIN 1988-500 (2011), the decentral-
ized approach may lead to less pumps while guaranteeing the same buffering 
capacity.

Note that a resilient network transports the volume flow demand Dv in regular 
operation and during the emergency the fraction �  to still enable a predefined 
minimum demand. In our approach, we do not consider the operation cost dur-
ing an outage, but we ensure that there exists a feasible control of the pumps by 
operating them to yield the highest possible pressure increase. This includes the 
possibility of not operating intact pumps, which could be necessary, e.g., if a 
pump is not not designed to transport the reduced volume flow. Furthermore, we 
assume pipes and valves which allow to bypass failed pumps such that they do 
not block flow. Otherwise, a resilient solution would always need to place either 
zero or at least K + 1 pumps in parallel on each connection.

5.1 � Mathematical characterization of resilience

The goal of this section is to construct a scheme which computes a cost optimal 
solution which is K-resilient.

We will modify our branch-and-bound algorithm by adding a class of linear 
constraints which allow only a K-resilient pump placement, operation and diam-
eter selection for a spanning tree T ∈   to the subproblems. Using a polynomial 
time separation scheme, we avoid the disadvantage of the exponential cardinality 
of this class in K.

For the derivation of this characterization of resilience by linear inequalities 
let T ∈   be a spanning tree of  rooted in zone  0. The tree  T determines the 
volume flow QT according to the previous section. The volume flow in case of a 
pump failure is given by �QT

a
 for each connection a ∈ T in the tree.

We follow the notation of Relaxation  (9) to define the maximal pressure 
increase of pump i built m times in parallel for the decreased volume flow

and the friction loss

Note that the maximum operation is needed since it may be favorable to disable 
some pumps in a group of parallel pumps. Also, by the definition of QT and since �F 
is strictly increasing, �FT ,res

a,d
 gives the exact friction loss for spanning trees T ∈   

and  �FS,res

a,d
≤ �F

T ,res

a,d
 holds for S ∈  with S ⊆ T.

To formulate the constraints which enforce K-resilience, we use the set of fail-
ure scenarios

�H
T ,res

a,i,m
∶= max

{
�Hi,�(�QT

a
,�Q

T

a
) ∶ � ∈ [m]

}

�F
T ,res

a,d
∶= �Fa,d(�QT

a
).
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where the value of za,i gives the number of failed pumps of type i on pipe a.
A K-resilient solution topology (X,Xdia, Y) , i.e., the solution values of the vari-

ables (x, xdia, y) , must ensure for each failure scenario a sufficient pressure in each 
zone using the pumps of Y unaffected from the scenario. Therefore, we obtain a 
class of constraints, specified in the following lemma, which are necessary and 
sufficient to ensure a resilience of K.

Lemma 4  Let  (X,Xdia, Y) be a feasible system topology of (8) for a spanning 
tree T ∈   . It is K-resilient if and only if

holds for each pressure zone v ∈ ⧵{0} and failure scenario z ∈ .

Proof  Without occurring failures, the system can transport the reduced volume 
flow �D if and only if

holds for each pressure zone v ∈ ⧵{0} . This can be seen by inspection of Prob-
lem  (8), the definition of �FT ,res and the definition of �H

T ,res which implies that 
there exists an operating speed � and power consumption p such that

for a ∈ T , i ∈  and m ∈ [M] with 𝛥H
T ,res

a,i,m
> 0.

The latter definition also implies that for a failure scenario  z ∈  the maximal 
pressure increase of the pumps of type  i built  m times in parallel is  �H

T ,res

a,i,m−za,i
 

if m > za,i and zero otherwise.
Then, by combining this with (11), inequalities (10) follow as necessary and suf-

ficient conditions that the system can transport the volume flow in case of failures. 	
� □

The theorem and the definition of �H
T ,res and �FS,res implies that if  S ∈  is not 

resilient then also T ∈   with S ⊆ T can not be resilient. This is used latter in an 
adaption of our branch-and-bound algorithm.

 ∶=

{
z ∈ [M]×

0
∶

∑

a∈

∑

i∈

za,i ≤ K

}
,

(10)
∑

a∈T
v

∑

i∈

∑

m∈[M] ∶m>za,i

𝛥H
T ,res

a,i,m−za,i
Ym
a,i
−

∑

a∈T
v

∑

d∈

𝛥F
T ,res

a,d
Xdia
a,d

≥ HT
v

(11)
∑

a∈T
v

∑

i∈

∑

m∈[M]

�H
T ,res

a,i,m
Ym
a,i
−

∑

a∈T
v

∑

d∈

�F
T ,res

a,d
Xdia
a,d

≥ HT
v

(
�QT

a

m
,�a,i,�H

T ,res

a,i,m
,
pa,i

m

)
∈ �i
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5.2 � Separation of failure scenarios

To obtain a cost-optimal K-resilient system for a tree T one can solve a modified ver-
sion of Problem (8), which also involves the inequalities of type (10). This, however, 
is not advisable since  grows exponentially in K.

We show in this section a way to dynamically generate violated constraints of 
type (10) in polynomial time. This makes it possible to compute trial solutions using 
Problem (8) and check whether such a solution is K-resilient. If this is not the case, a 
violated constraint is found and added to Problem (8). This is performed iteratively 
until the solution is K-resilient (which happens, since there are only finitely many 
cases).

In the following let a spanning tree T ∈   , a diameter selection Xdia ∈ {0, 1}T× 
and a pump placement Y ∈ {0, 1}T××M be fixed. The goal is to check whether 
Inequality  (10) is violated for some zone  v ∈ ⧵{0} and failure scenario  z ∈  . 
We consider each pressure zone separately. The only part of the inequality which 
is affected by pump failures is the left-hand sum. Thus, to check the constraint, we 
minimize this sum over  , i.e., solve

and compare its optimal value to the remaining components of the inequality.
Program (12) can be solved using Dynamic Programming. Let

be the indices which denote the  J ∈ ℕ pump groups placed on the way to  v in  T 
according to Y, i.e., J =

∑
a∈T

v

∑
i∈

∑
m∈[M] Y

m
a,i

 . Let Hmax
j,�

 denote the maximal pres-
sure provided by the first j pump groups if a worst-case failure of � pumps occurs. 
Then the optimal value of Program (12) is given by Hmax

J,K
.

The idea is to compute the states Hmax
j,�

 sequentially. For the first group of pumps 
we get for � ∈ [K]0

For the remaining groups we have the Bellman equation for j ∈ [J − 1] , � ∈ [K]0:

Computing Hmax
J,K

 requires (JK2) ⊆ (N||MK2) steps, if �H
T ,res is given. A factor 

of N is additionally needed if one computes Hmax
J,K

 for each pressure zone separately. 
However, this factor can be eliminated by observing that the states Hmax

j,�
 are valid for 

(12)
min

∑

a∈T
v

∑

i∈

∑

m∈[M] ∶m>za,i

𝛥H
T ,res

a,i,m−za,i
Ym
a,i

s.t. z ∈ 

(a1, i1,m1),… , (aJ , iJ ,mJ) ∈ T ×  × [M]

Hmax
1,�

=

{
�H

T ,res

a1,i1,m1−�
if � ∈ [min{K,m1 − 1}]0,

0 otherwise.

Hmax
j+1,�

= min
{
Hmax

j,�−�
+ �H

T ,res

aj,ij,mj−�
∶ � ∈ [min{�,mj − 1}]0}

∪ {Hmax
j,�−�

∶ � ∈ {mj,… , �}
}
.
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different pressure zones, if the pumps supply both zones. Similar to other dynamic 
programming algorithms a worst-case failure scenario z̃ ∈  (and thus a solution to 
Program 12) can be computed by storing the decisions leading to the value of Hmax

J,K
.

5.3 � Adapted algorithm to compute resilient solutions

To obtain K-resilient solutions it is sufficient to change the branch-and-bound 
method (Algorithm 1), to include the separation of Inequality (10), when the opti-
mal value of a tree is computed.

However, Relaxation (9) does not include the failure scenarios and thus suppos-
edly leads to weak lower bounds for resilient solutions. To resolve this, we can again 
use the underestimation on the volume flow in the pipes QT . These lower and upper 
bounds are already regarded in the definition of the maximal pressure head �H

T ,res . 
Therefore a tighter relaxation is obtained by adding Inequality (10) to the original 
Relaxation (9).

To avoid the separation of potentially unnecessary failure scenarios, we do not 
separate Inequalities  (10) for partial trees, but keep track of the failure scenarios, 
which are separated for the full spanning trees. Only for these encountered scenar-
ios we add the resiliency constraints to the relaxation. These constraints are also 
included when solving spanning trees, in the hope to reduce the number of separated 
redundant scenarios.

The modified scheme is outlined in Algorithm 2, where ′ stores the separated 
scenarios.

6 � Application examples

In this section, we first present the creation of a large set of realistic test instances. 
Afterwards we compare the performance of our proposed algorithm on this set to 
state-of-the-art MINLP software. The large number of instances, allows to assess 
the potential of the decentralized planning approach on the solution designs. We 
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conclude with an evaluation of resilient solutions and derive characteristics of 
resilience.

6.1 � Test instances

We first describe the design of multiple instances to evaluate the presented algo-
rithm and to assess the impact of resilience. For all instances the input pressure Hin 
is equal to the minimal pressure in the zone Hmin , i.e., both are set to zero without 
loss of generality. This assumption implies the fulfillment of an arbitrary minimum 
net positive suction head to avoid cavitation. Therefore, we do not explicitly model 
the NPSH value. We also always allow three pumps built in parallel, i.e., M = 3.

To generate distinct instances, we vary the number of pressure zones N and assume 
their even distribution in the building. Furthermore, we consider different possibili-
ties for the total volume flow demand of the house and the height of the house, which 
divided by N determines the volume flow demand of one zone Dv and the height of one 
zone, respectively. The energy cost parameter Cen is also varied assuming energy cost 
of 0.3 €/kWh and different operating periods. Effects on the power consumption based 
on the behavior of the electric drive in pumps are neglected in all test instances.

Our test set contains 144 instances obtained by combining N ∈ {4, 5, 6, 7} with 
three possible building heights 100 m, 150 m or 200 m, a total volume flow demand of 
the building of 25 m3∕h , 30 m3∕h or 35 m3∕h as well as four different weights for the 
energy cost Cen given by an electricity price of 0.3 €/kWh and different operating times 
of 10, 15, 20 and 25,000 h.

Catalog of pumps Five different pump types are used, cf. Fig. 10. Their different 
characteristics are derived from a reference pump for high-rise water distribution net-
works by using the scaling technique described in Sect. 3.2. Based on this catalog, mul-
tiple pumps can be chosen and placed on a subset of the chosen pipes. The smallest 
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Fig. 10   Characteristic q − �h diagrams of the pump catalog
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pump type of our catalog, which is depicted in Fig. 10 by solid lines, is our reference 
pump. It was modeled by using the approach of Ulanicki et al. (2008), leading to the 
feasible set

Using the scaling laws and the majoration formula explained in Sect. 3.2, two bigger 
pump types are derived from the reference pump, which has a maximum hydrau-
lic efficiency of �M = 0.6639 . The two scaled pump types have an impeller diam-
eter difference d∕dM = 1.575 and d∕dM = 2.15 and are shown in Fig. 10 with dotted 
lines. Furthermore, we use the reference pump, which already consists of 5 stages, 
and the first scaled pump type with a diameter difference of d∕dM = 1.575 to derive 
two additional pump types by doubling the number of stages. These two additional 
pump types are shown as dashed lines in Fig. 10. Increasing the number of stages 
allows to increase the possible maximum pressure height, but to leave the maximum 
volume flow unchanged. The biggest pump type in the catalog is chosen to fulfill 
all possible demand settings with only one pump. The other pump types are cho-
sen manually to cover volume flow and pressure ranges between the reference pump 
and the biggest pump type. Additionally, multiple parallel pumps in the optimization 
program can increase the total volume flow at fixed maximum pressure height. With 
these five different pump types and the possibility to use up to three parallel pumps 
of one type, a high variation of possible combinations is available to supply the con-
sidered example buildings.

Pump cost model To determine the cost of a pump we use for each derived pump 
type i ∈  its maximal possible volume flow Qi and maximal possible height �Hi . With 
these two features all derived pumps are distinguishable, since if more stages are used, 
the maximum height increases, but the maximum volume flow does not; by scaling 
both features increase. As the data basis of our cost model we used 33 available pumps 
designed for the water supply in buildings, that are members of the same product fam-
ily, as the used reference pump. Our derived model for the estimation of cost is

We used a quadratic cost estimation, because of its high adjusted R-squared value of 
0.988 which shows a high accuracy between the quadratic model function and the 
underlying data, cf. Chatterjee and Simonoff (2013).

Pipe cost model To compute the optimal selection of different pipe diameters 
in the MINLP in Fig. 4, it is essential to have a cost model which describes the 
different pipe costs based on their diameter and length. Savic and Walters (1997) 
and Bieupoude et al. (2012) describe the following nonlinear cost model:

� = {(q,�,�h, p) ∈ ℝ
4 ∶ 0.6 ≤ � ≤ 1,

14q − 3�h ≤ 43,

− 96q + �h ≤ −22,

�h = −0.35 q2 + 0.37 q� + 47.97�2,

p = −0.66 q3 + 1.15 q2� + 125.73 q�2 + 276.78�3}.

C
pu

i
= −0.952Q

2

i
− 0.00853�H

2

i
+ 1.135Qi�Hi

+ 84.699Qi + 5.542�Hi + 225.387.
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Savic and Walters (1997) use the coefficients  � = 1.1 and  � = 1.5 for pipes 
with diameters between 12 and 14 inches in water distribution networks. For the 
smaller pipes in buildings and for being able to measure the diameter in SI-units, 
we derive the parameters � = 3593 €/m and � = 1.6975 . The possible pipe diam-
eters are selected according to the standard DIN 1988-300 (2012), leading to the 
set    = {10, 13, 16, 19.6, 25.6, 32, 39, 51, 60, 72.1, 84.9, 104} measured in mm. 
Note that these values and the pipe as well as the pump cost model are exemplary to 
derive realistic scenarios and can be easily changed to other cost models if desired.

6.2 � Branch‑and‑bound performance

We implemented our branch-and-bound approach in C. To solve the MINLP (sub)
systems we used SCIP 5.0.1, see Gleixner et al. (2018), compiled with IPOPT 3.12, 
see Wächter and Biegler (2006), and CPLEX  12.8. The computations were per-
formed on a Linux cluster with Intel Xeon E5 CPUs with 3.50GHz, 10MB cache, 
and 32GB memory using a 2 h time limit.

Indicator constraints are implemented in SCIP and were used in our implemented 
model for linear inequalities which do not possess trivial big-M values. Easy big-M 
values are mostly obtained from the bounds on the volume flow, like (N − v − 1)D 
for the volume flow on arcs leading to node v. For the nonlinear constraints, we use 

C
pi

a,d
= � La d

� .

Table 3   Shifted geometric mean of solving time in seconds, number of nodes and number of enumerated 
spanning trees as well as number of solved instances clustered by the number of pressure zones N. Each 
cluster contains 36 instances

N MINLP B-and-B

Time Nodes Solved Time Time relax Nodes Trees Solved

4 136.53 57,891.44 36 32.29 0.31 1,734.22 30.00 36
5 1534.37 605,440.87 29 167.20 1.94 8,000.91 149.00 36
6 6358.58 1,839,543.12 8 1055.48 10.93 63,801.45 755.60 34
7 7200.00 1,290,093.15 0 5095.53 41.01 264,256.75 2121.85 17

Table 4   Shifted geometric mean of solving time in seconds, number of nodes and number of enumerated 
spanning trees as well as number of solved instances clustered by different operating times in 1000 h. 
Each cluster contains 36 instances

Op. time MINLP B-and-B

Time Nodes Solved Time Time relax Nodes Trees Solved

10 825.14 217,688.86 24 212.36 13.44 3,062.06 558.67 36
15 1555.49 468,140.99 19 390.32 12.13 14,214.41 525.14 33
20 2475.63 794,884.14 16 552.32 7.33 45,071.27 349.69 29
25 3187.38 1,027,992.26 14 804.37 4.63 122,666.69 232.33 25



634	 L. C. Altherr et al.

1 3

the maximal feasible values for �H(q,�), P(q,�) and �F(q) as big-M values. The 
dimension of the model is further reduced by using pump variables in each node 
instead of each arc. This is possible because of Inequality (6k), which allows only 
one pipe leading into a zone.

To test Algorithm  1, we first compare its performance against SCIP solving 
Model  (6), i.e., the model without resilience. In our experiments, the two main 
influences on the running time are the number of pressure zones as well as the 
magnitude of energy cost. Naturally, more pressure zones increase the number 
of feasible topologies, whereas an emphasis on operating costs also increases the 
importance of the difficult nonlinear pump constraints. Tables 3 and 4 show the 
shifted geometric mean, 

�∏n

i=1
(ti + s)

�1∕n
− s with shift  s = 10 over the solving 

times ti clustered by number of zones and operating times, respectively. Further-
more, the shifted geometric mean with a shift of 100 is shown for the number 
of encountered branch-and-bound nodes. The nodes of the branch-and-bound 
scheme comprise all nodes of the computations of Relaxation (9) and Problem 
(8). For the new approach also the number of visited spanning trees and the solv-
ing time of the relaxation in the subtrees is shown. 

The branch-and-bound scheme solves all instances the MINLP approach can 
solve. Overall, 123 instances can be solved by branch-and-bound compared to 73 
instances solvable with the MINLP solver. With the exception of four instances 
with small numbers of pressure zones, the branch-and-bound scheme is faster. 
From the tables we presume a solving time growth exponential in the number of 
pressure zones N and a growth nearly linear in the operating costs for both solv-
ing methods.

Since the maximum number of subtrees for a given  N is given by 
∑N

i=1
i! and 

we start the enumeration in our implementation directly in the first spanning tree, 
the total numbers of considerable trees of the algorithm are given by 30, 149, 868 
and 5907 for N from 4 to 7. Comparing these numbers to the number of enumer-
ated spanning trees, we see that the relaxation is actually too weak to cut off any 
node. Thus, the superior performance of the branch-and-bound algorithm over the 
MINLP solver seems to stem from the reduced complexity of the MINLP for fixed 
topologies and is not based on the relaxation. This is also supported by the at least 
one order of magnitude greater number of branch-and-bound nodes for the MINLP 
solver. In consideration of the negligible computing time of the current relaxations, 
we see the potential to further improve the performance of the branch-and-bound 
scheme using stronger but harder to solve relaxations. Further test runs on the 
instances with N = 4 showed that the MINLP solver BARON 18.5.8 (Tawarmalani 
and Sahinidis 2005) is slower than SCIP and we therefore do not present detailed 
results for BARON.

We also computed with our code the K-resilient solution of the instances pre-
sented above for K = 1,… , 3 . Table 5 gives an overview of the solution process for 
these four different settings clustered according to the number of pressure zones. 
Again time and solved denote the shifted geometric mean of the solving time and the 
number of solved instances, respectively. Additionally, for instances which could be 
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solved in 7200 s, the arithmetic mean over the number of scenarios for which Con-
straint (10) was added during the solving process, i.e., |′| , is shown. Furthermore, 
the arithmetic mean over the ratio of enumerated spanning trees and the total num-
ber of spanning trees in  is given for those solved instances.

Taking failure scenarios into account influences the solving time, making the 
instances more difficult for increasing  K. There exists only one combination of 
parameters for which the corresponding instance can be solved for K but not for 

K − 1 . The size of  can be estimated by 
(
||||M

K

)
 . Thus, our separation 

approach outperforms a naïve approach that solves for each z ∈  the K = 0 case 
together with the appropriate resilience constraint by a wide margin.

As observed before, all spanning trees of  need to be enumerated to compute 
a 0-resilient solution. However, to find resilient solutions fewer spanning trees are 
inspected and the stronger relaxation is able to cut off nodes. For larger N, it is possi-
ble that only instances for which the relaxation produces strong bounds are solvable, 
leading to this low percentage of enumerated spanning trees.

6.3 � Potential of decentralized layouts

Considering new layouts for water distribution networks may open up a significant 
potential for energy savings, cf. Coelho and Andrade-Campos (2014). In this section 

Table 5   Shifted geometric mean 
of solving time in seconds and 
number of solved instances. 
Furthermore, for solved 
instances, arithmetic means of 
encountered failure scenarios 
and the fraction of enumerated 
spanning trees. Clustered by 
number of pressure zones and 
K. Each cluster contains 36 
instances

N K

0 1 2 3

4 Time 32.19 55.16 137.63 173.38
Solved 36 36 35 35
|′| – 8.28 22.51 43.43
Enumerated trees 1.00 0.99 0.94 0.80

5 Time 165.74 536.15 835.35 928.02
Solved 36 31 29 29
|′| – 14.68 46.52 77.83
Enumerated trees 1.00 0.98 0.88 0.68

6 Time 1049.17 2837.24 3695.77 3545.90
Solved 34 22 19 20
|′| – 17.82 71.37 121.50
Enumerated trees 1.00 0.96 0.79 0.56

7 Time 5090.66 7113.24 7152.38 7137.16
Solved 17 3 1 1
|′| – 24.67 47.00 100.00
Enumerated trees 1.00 0.83 0.62 0.41
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we analyze the energy saving potential of Problem (6). This analytic consideration is 
based on the hydraulic power of a pump, which is defined by

where � is the density of the fluid, g the gravitational acceleration, q the volume 
flow, h the pressure increase, �h the hydraulic efficiency and �v the volumetric effi-
ciency, cf. Gülich (2008).

The hydraulic power requirements of the complete building can be estimated by 
simplifying Eq.  (13). We assume that the product of the volumetric efficiency �v 
and hydraulic efficiency �h is constant for all used pumps and abbreviate it with �p . 
The parameter �p depends on the volume flow q and the height h, which we simplify 
within this assumption. Thus, �p represents a scaling factor, which we can set to an 
arbitrary value. If we set this factor to the best possible efficiency, we underestimate 
the power consumption in partial load settings. We assume that each installed pump 
will be operated near its best point, since this reduces the power consumption the 
most for given investment costs.

Next to this major assumption, we neglect pipe friction, assume equivalent vol-
ume flow demands Dv in each pressure zone, set the pressure at the water main to 
the same value as the minimum pressure in each pressure zone, assume constant 

(13)ph = � g
q h
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Fig. 11   Examples for pipe layouts considered in the analysis of energy saving potentials for four pressure 
zones
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density  � and gravitational acceleration  g as well as equidistant distances  �Hv 
between the different pressure zones.

Considering these assumptions, it is possible to analytically estimate the increase 
in energy efficiency of decentralized systems compared to a conventional layout, 
where one booster station in the basement supplies all pressure zones. We consider 
four different layouts with different degrees of freedom regarding pipe layout and 
pump placement. As the baseline, we consider the basement layout with only one 
rising pipe that connects all pressure zones consecutively and one booster station in 
the basement, cf. Figure 11a. By still allowing only one rising pipe, but a decentral-
ized placement of pumps, see Figure 11b, we derive what we call the one-branch 
layout. Another option is to keep all pumps in the basement, but to supply each pres-
sure zone by individual pipes, which we call the multi-branch layout, cf. Figure 11c. 
As a fourth option, we consider a decentralized layout with an arbitrary tree-shaped 
pipe network structure and an arbitrary placement of pumps which is depicted in 
Fig. 11d.

For the basement layout, the required hydraulic power is

where D =
∑N

v=1
Dv is the sum of all partial volume flow demands in each pressure 

zone and the sum of the heights �H =
∑N

v=1
�Hv . Based on the assumptions men-

tioned earlier, �H is equal to the height of the highest pressure zone, which can be 
estimated by the building height. Figure 12a illustrates the hydraulic power of the 
basement layout for a building with four equidistant pressure zones and uses there-
fore a dimensionless axis scaling. The volume flow q is normalized with the volume 
flow demand of one pressure zone Dv , the pressure height is normalized with the 
height of one pressure zone �Hv . The power consumption of the basement layout is 
given by the area of the rectangle.

For the one-branch layout, the lowest power consumption can be achieved using 
a booster station between every pair of adjacent pressure zones. For this layout, each 
booster station has to pump a share of the complete volume flow demand up to the next 
pressure zone. This share gets smaller with increasing height of the installed booster 

ph = � g
D�H

�p
,

(a) (b) (c)

Fig. 12   Visualization of the required hydraulic power for different layouts as the area of rectangles
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station, while the required pressure height stays constant for all booster stations. Over-
all, this yields the hydraulic power

The power consumption of the one-branch layout in a building with four equidistant 
pressure zones is illustrated in Fig. 12b. The areas of the single rectangles represent 
the power needed to supply the respective pressure zones. Power savings compared 
to the basement layout are given by the hatched area.

Equivalent power savings can also be derived for the multi-branch layout. In this 
layout each pressure zone is supplied by its own booster station. The hydraulic power 
needed by each pressure zone is then computed by multiplying the zone’s volume flow 
demand Dv by its respective height. The total hydraulic power is computed by summing 
over all pressure zones

This is illustrated in Fig. 12c, where the power savings compared to the conventional 
basement layout are again given by the hatched area.

From inspection of the formulas and Fig.  12 we conclude that increasing the 
number of pressure zones in a building enhances the potential energy savings. In 
the limit, if we use infinitely many pressure zones, the maximum possible savings in 
comparison to the basement layout are 50%.

To verify the cost saving potential implied by the shown discussion and the con-
ceptualized savings in Fig.  12, we compare the optimal solutions which are con-
strained to have only pumps in the basement with the optimal solutions which are 
constrained to allow only one-branch, multi-branch or decentralized topologies. Fur-
thermore, we omit the time limit on the computation for the decentralized system 
to obtain optimal solutions for all instances with up to six pressure zones. Table 6 
summarizes the results, showing the arithmetic means of total and operational cost 
for the basement solution as well as the quotient of theses values of the one-branch, 
multi-branch and decentralized solutions compared to the basement solutions. The 
one-branch, multi-branch and decentralized solutions have almost equal energy sav-
ings and the power usage decreases with an increasing number of pressure zones N. 

ph = � g
∑

v∈⧵{0}

(Dv +⋯ + DN)�Hv

�p
.

ph = � g
∑

v∈⧵{0}

Dv (�H1 +⋯ + �Hv)

�p
.

Table 6   Average of total costs (operating costs) and relative total (operating) costs, respectively, of the 
optimal solutions for the different layouts

N Basement One-branch Multi-branch Decentralized

4 125,379.71€ (100,096.91€) 0.74 (0.68) 0.81 (0.67) 0.69 (0.64)
5 125,198.36€ (100,091.22€) 0.73 (0.67) 0.78 (0.64) 0.66 (0.61)
6 125,076.33€ (100,067.93€) 0.72 (0.65) 0.80 (0.62) 0.66 (0.60)



639

1 3

Resilient and efficient layout of water distribution networks

The completely decentralized approach, in which any pipe layout implied by Fig. 1 
can be chosen, yields the highest energy savings of up to 40% and total cost sav-
ings of nearly 35% when considering the underlying parameter sets. The one-branch 
and multi-branch approaches do not yield energy savings as high as the completely 
decentralized solution. Nevertheless, the differences between the approaches should 
vanish with more pumps in the construction catalog, as shown by the analytic con-
sideration. The completely decentralized system, on the other hand, has the highest 
degree of freedom and therefore exploits the pump catalog the most. The computa-
tional results substantiate the aforementioned analytic assumptions and advocate the 
consideration of multi-branch, one-branch or decentralized layouts and designs to 
reduce the overall energy consumption.
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Fig. 13   K-resilient solutions for five pressure zones, a building height of 100m, a total demand of 
25 m3∕h and an operating time of 10.000 h. Pump type a corresponds to the reference pump, type b is a 
two-stage version of type a, type c corresponds to the reference pump scaled by d∕dM = 1.575 and type d 
is a two-stage version of type c 
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6.4 � Analysis of resilience properties

We introduced the principles and benefits of a resilient water distribution network 
layout and design in Sect.  5. In Fig.  13 the solutions for an exemplary chosen 
instance are shown for different levels of K-resilience. Based on the pump catalog 
in Fig. 10, multiple pumps were installed in the network for all different levels of 
K-resilience.

The resilience of a specific solution against arbitrary pump failures is determined 
by its pipe layout, the number of pumps, as well as by the operation range of the 
pumps installed, i.e., by their ability to cover failures of other installed pumps. Fur-
ther, it is important to note that adequate valves and pipes must be installed to enable 
an immediate resilient pump rescheduling in the case of a component failure.

For the K = 0 solution the failure of only one arbitrary pump is critical. If for 
example the pump in the ground floor fails, the first pressure zone cannot be sup-
plied anymore. The layout of the K = 1 solution can, however, withstand the failure 
of one arbitrary pump. All pressure zones except the highest one are connected to 
the source via pipes with at least two installed pumps. If the single pump installed in 
pressure zone 4 fails, pressure zone 5 can still be supplied by the pumps installed in 
pressure zone 3 using a bypass.

For K = 2 , a pipe layout similar to the one-branch layout is chosen. Three pumps 
of the same type are installed in parallel in the basement. Additionally, two pumps 
of different type are installed to supply the 4th and 5th pressure zone. In case of 
failure of these two additional pumps, the operation range of the pumps of type c 
still allows to supply all pressure zones with an reduced amount of water, i.e., for the 
reduced volume flow the operation range of pump type c is sufficient to overcome 
the friction losses and the geodetic height difference from the basement to the 5th 
pressure zone. If on the other hand two pumps of type c fail, one working pump of 
type c is sufficient to guarantee the supply of pressure zones 1, 2, and 3, as well as 
of pressure zones 4 and 5, for which the pressure has to be further increased by the 
pumps of type a.

Compared to the layout for K = 2 , one additional big pump of type d is installed 
in the basement to achieve K = 3 . The failure of all three pumps of type c may be 
covered by one pump of type d. Note that the layout which installs a fourth pump of 
type c instead of type d is also 3-resilient, but is not included in our setting which 
only allows three parallel pumps.

In general, the proposed solutions allow for an energy-efficient operation during 
the normal utilization phase. At the same time they guarantee a reduced supply in 
case of arbitrary pump failures, entailing a possibly increased power consumption in 
this emergency situation. The proposed algorithm moreover leads to resilient and yet 
cost efficient designs: To achieve K-resiliency, the installed booster stations are not 
only supplemented by redundant pumps as suggested by DIN 1988-500 (2011), but 
the network topology as well as the operation range of other pumps installed in the 
system are taken into consideration. This may reduce the overall number of pumps 
needed to guarantee a specific resilience.

It is important to mention that system layouts as shown in Fig. 13 should only be 
considered by engineers in the early design stages of very high buildings, since they 
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require additional components to be realized, which are not considered in the objec-
tive. For systems with pumps between different pressure zones, as shown in Fig. 13, 
additional check valves with relevant pressure losses and adjusted control strategies 
have to be considered. Additionally, it is important to ensure the net positive suction 
head for each used pump. This is only considered implicitly in the shown MINLP. 
Observe that we can interpret the different pumps in the pump catalog  as building 
blocks for the finally used booster stations. Thus, groups of series-parallel pumps, as 
shown between node 0 and 1 in Fig. 13d, can also be replaced by a booster station 
with parallel pumps with adjusted characteristics to reduce the complexity generated 
by the MINLP and enable a faster realization in real buildings.

To further investigate the characteristics of resilience, we present in Table 7 the 
fraction of optimal solutions, which consist of the one-branch topology. Recall that 
in this topology all pressure zones are supplied by a single-stranded rising pipe 
layout. For an increasing resilience, the fraction of one-branch solutions increases, 
regardless of the operating time considered. The higher connectivity, cf. Meng et al. 
(2018), between pumps in lower areas of the building and pumps in higher pressure 
zones is the main factor to tend towards the one-branch solution. In case of failures 
in higher levels, the pumps in lower areas can still supply the respective pressure 
zones. Overall, a greater rate of redundancy can be achieved, since each booster sta-
tion may supply not only one, but several zones. In contrast, the multi-branch layout 
may yield the same energy efficiency, but it is not ideal to achieve resiliency. In 
the multi-branch layout, each pressure zone is supplied by its own rising pipe and 
booster station. If a booster station fails, no other booster station of the system may 
cover for it.

If we increase the weight of the energy costs, e.g., by considering longer operat-
ing times, the fraction of one-branch solution decreases, cf. Table 7. In this case, a 

Table 7   Fraction of optimal 
solution with one-branch 
topology for each operating time 
in 1000 h and level of resilience 
for the instances with N = 4

Time K

0 1 2 3

10 0.00 0.43 0.75 0.75
15 0.00 0.24 0.71 0.68
20 0.00 0.16 0.50 0.56
25 0.00 0.11 0.29 0.35

Table 8   Arithmetic mean 
over the relative costs of the 
solutions as well as the relative 
total power intake compared 
to the K = 0 solutions for the 
instances with N = 4

Time K

1 2 3

Rel. total costs 10 1.12 1.26 1.50
15 1.10 1.20 1.39
20 1.08 1.17 1.32
25 1.07 1.14 1.27

Rel. power intake 1.00 1.02 1.02
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more decentralized layout than the one-branch solution leads to lower energy cost 
given the pump catalog   , and compensates the higher investment costs due to the 
higher number of pumps necessary to ensure resilience.

Table 8 provides an investigation of the costs of resilience. For N = 4 , it shows 
the relative total costs of the resilient solution compared to the non-resilient one 
for K = 0 . Resilient solutions are up to  50% more expensive for short operating 
times, but only up to around  25% for the longest operating time. Their increased 
total cost compared to non-resilient layouts is mainly due to increased investment 
costs, since resilient layouts consume only around 2% more power than their non-
resilient counterparts. To achieve resilience the number of pumps installed and/or 
their size increases, leading to higher investment costs compared to the non-resilient 
layouts.

7 � Conclusion

We presented a MINLP to derive resilient and energy-efficient systems with an opti-
mized topology layout and pipe sizing for tree-shaped water distribution networks in 
high-rise buildings. Great attention has been paid to the trade-off between the accu-
rate modeling of the underlying flow conditions and the solvability of the model. 
The structure of the model was then exploited in a branch-and-bound algorithm to 
reduce the complexity of the underlying MINLP and therefore decrease the solving 
time substantially compared to a state-of-the-art MINLP solver. Using a characteri-
zation of resilience for a fixed layout, we are able to expand the algorithm to find 
optimal resilient solutions.

Several computational results showed that additional energy savings as well as a 
resilient design of decentralized water distribution networks can be achieved by this 
method. They further indicate that a decentralized placement of pumps with variable 
rotating speeds can lead to major energy savings, especially in tall buildings.

It was shown that the most efficient layouts use a decentralized pump placement 
and pipe layout, however, the most resilient structures are given by a single-stranded 
layout. The decentralized placement of pumps between different pressure zones is 
still used in these solutions, which leads to an only slightly increased energy con-
sumption compared to structures with multiple possibilities for pipe connections 
between the pressure zones. Based on the shown results, it could be estimated that 
a simpler pipe layout can still derive near global optimal solutions with respect to 
energy-efficiency and still prevent restrictions in the supply in the case of arbitrary 
failures.

The presented model can further be used by engineers and mathematicians in the 
early design stage of new buildings, as well as to support the energy-efficient ret-
rofitting of existing buildings. The explicit consideration of pump failures leads to 
topologies with additional pumps. In comparison to state-of-the-art standard proce-
dures to design booster stations, we are able to reduce the total number of redundant 
pumps and therefore minimize investment costs and still assure the operation in case 
of arbitrary pump failures.
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The shown approach can be adapted in future work to new parameter settings as 
well as new water distribution networks besides the supply of high buildings with 
drinking water. For example, it is transferable to generate more resilient and yet cost 
and energy-efficient tree-shaped urban water distribution networks.
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