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Abstract
As it is well known from the time-series literature, GARCH processes with non-nor-
mal shocks provide better descriptions of stock returns than GARCH processes with 
normal shocks. However, in the derivatives literature, American option pricing algo-
rithms under GARCH are typically designed to deal with normal shocks. We thus 
develop here an approach capable of pricing American options with non-normal 
shocks. The approach uses an equilibrium pricing model with shocks characterized 
by a Johnson S

u
 distribution and a simple algorithm inspired from the quadrature 

approaches recently proposed in the option pricing literature. Numerical experi-
ments calibrated to stock index return data show that this method provides accurate 
option prices under GARCH for non-normal and normal cases.

Keywords  American options · GARCH · Johnson distribution · Quadrature

JEL Classification  C63 · G13

1  Introduction

The variance clustering phenomenon observed in stock returns is a well-known 
empirical regularity. ARCH and GARCH processes introduced in Engle (1982) and 
Bollerslev (1986), have now become standard models capable of capturing this criti-
cal characteristic. Another salient feature of stock returns is the non-normality of the 
innovations filtered with these models. For example, as shown in Bollerslev (1987), 
Hsieh (1989) and Hansen (1994), the estimation of various GARCH specifications 
on stock returns with distributions allowing for skewness and kurtosis different 
from those of a normal distribution provide more adequate descriptions of the data 
dynamics. Building on these empirical observations, the option pricing literature has 
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recently examined models incorporating these two key characteristics.1 In this lit-
erature, most of the papers examine European-style options. However, the majority 
of exchange-traded options are of American-style and require numerical algorithms 
that can handle the early exercise features associated with these securities.

In the GARCH option pricing literature, Stentoft (2008) examines American 
option pricing with non-normal shocks. Using least-squares Monte Carlo simula-
tions, he computes American option values with shocks parameterized by a normal 
Inverse Gaussian distribution. Although the least-squares Monte Carlo approach 
represents a viable and flexible pricing tool, as outlined in Glasserman (2004), such 
an algorithm is not free of concerns. For example, the accuracy of the computed 
prices depends on the choice of the basis functions representing the independent 
variables in the regressions. Also, in finite samples, because these algorithms pro-
duce a suboptimal early exercise policy, they provide a lower bound of the correct 
option prices. A numerical method less prone to such caveats would be a welcomed 
addition to the financial analyst toolbox. With this objective in mind, we develop 
here a pricing algorithm for options under GARCH with non-normal shocks inspired 
by the recent literature on quadrature option pricing algorithms.

This literature, developed in the early 2000s, consists in a series of papers which 
sequentially solved the different problems associated with the application of quad-
rature techniques to option pricing. In a nutshell, these quadrature approaches com-
pute option values recursively from the maturity of the instrument on a grid of stock 
prices. At each time step, the early exercise and continuation values are computed 
and compared to obtain the option value for a stock price on the grid. A critical 
step in this recursive procedure is the computation of the continuation value. In this 
step, the integral associated with the expected value is computed using quadrature 
techniques such as the trapezoid, Simpson or Gauss–Legendre. In Sullivan (2000), 
a first attempt was put forward with Gaussian quadratures and function approxima-
tions using Chebyshev polynomials. In Andricopoulos et al. (2003), the quadrature 
approach is put on more solid grounds with a more widely applicable algorithm 
which bypassed the need of Chebyshev polynomials. For underlying securities pro-
cesses with transition densities available in closed form, their algorithm allows fast 
and accurate computations of option prices for path dependent cases on one under-
lying asset, together with American-style options. In Andricopoulos et  al. (2007), 
the method developed in their earlier paper is extended to cover more complex and 
challenging problems in option valuations involving one or more underlying. More 
recently, Chen et al. (2014) lift the requirement of underlying securities with closed-
form transition densities by using precise density approximations, which results in a 
genuinely universal method capable of pricing derivative securities in a wide vari-
ety of contexts. Other contributions to this literature include Chung et  al. (2010) 
who apply a fast quadrature engine to the algorithm of Andricopoulos et al. (2003). 
Finally, Cosma et al. (2016), Simonato (2016), and Su et al. (2017) show how the 
quadrature approaches can be used with a time-homogenous and equally spaced 

1  See, for example, the recent survey in Christoffersen et al. (2013).
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price grid to provide substantial savings in computational efforts without losses in 
precision.

Here, we contribute to the literature on American options in the GARCH con-
text by showing how a quadrature approach can be developed to handle GARCH 
processes with non-normal shocks. Such an extension is non-trivial as it requires a 
different pricing and distributional framework. For this purpose, we use the equi-
librium pricing model proposed in Duan (1999) coupled with random shocks char-
acterized by a Johnson Su distribution (Johnson 1949). As discussed in Simonato 
and Stentoft (2015), Johnson Su error terms fit the data well and offer a range of 
attainable skewness and kurtosis similar to that of commonly used alternatives such 
as the non-central t. Importantly, in the context of the equilibrium pricing model 
used here, they represent a natural choice for which it becomes possible to obtain 
the distribution of the random shocks under the risk-neutral measure. We also con-
tribute to the quadrature literature by extending the simplified quadrature approach 
examined in Simonato (2016) to the more complex GARCH case. While the typical 
quadrature scheme uses a time-varying grid, the procedure examined here uses an 
evenly spaced, time-homogenous price grid which results in a simple and efficient 
algorithm.

Compared to the other numerical techniques that have been developed to com-
pute American options under GARCH for the Normal case, the algorithm presented 
here shows important differences. A first difference is the use of the density func-
tion instead of the distribution function. For example, in Duan and Simonato (2001) 
and Ben-Ameur et  al. (2009), the repeated use of the Gaussian distribution func-
tion is a crucial requirement. Here, as in other quadrature schemes, the use of the 
density function leads to a more flexible algorithm since these are typically easier 
to compute than distribution functions which must be approximated numerically, 
even in the simplest case. Second, the algorithm we propose is also different from 
the lattice techniques developed in Ritchken and Trevor (1999), Cakici and Topyan 
(2000) and Lyuu and Wu (2005). Here the actual dynamics of the process is used 
directly while these lattices only provide an approximate GARCH dynamics. Third, 
the algorithm is also different from the quadrature algorithm of Chung et al. (2010) 
which can only handle the Gaussian GARCH case, and that must use interpolations 
in the variance dimension. Their procedure is also more complex and computation-
ally involved than the one we propose as it requires recomputing the densities at 
every time steps. Finally, we note that the algorithm we develop shows some simi-
larities to the quadrature based approaches independently developed in Cosma et al. 
(2016) and Simonato (2016). Although they do not tackle the GARCH case, their 
algorithms also use a time-homogenous grid of prices in the quadrature context. 
The algorithm we present extends these papers by developing a simple and effi-
cient implementation strategy designed explicitly for the GARCH case which brings 
numerous advantages regarding computing speed and memory requirements.

The remainder of the paper is as follows. The physical and risk-neutral processes 
are described in Sect. 2. Section 3 presents the quadrature algorithm developed here 
while Sect. 4 discuss some key implementation issues. Section 5 examines numeri-
cal results under the Gaussian and Johnson Su cases. In that section, we show the 
relevance of our non-normal time series model with a maximum likelihood analysis. 
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Using the parameter estimates from this analysis, we examine the performance of 
the pricing algorithm for the Gaussian and non-Gaussian case. We then compare the 
results of our algorithm with those from the Markov chain approach of Duan and 
Simonato (2001). Section 6 concludes.

2 � The physical and risk neutral processes

We assume the following dynamics for the stock price under the physical probability 
measure:

where t is the set containing all information up to and including time 
t, pt+1 = lnPt+1 is the log of the stock price at t + 1, and �2

t+1
 is the known condi-

tional variance of the continuously compounded return. Here, � is the expected 
return over the next period while �t+1 is mean correction factor defined as 
e�t+1 = Et(e

�t+1�t+1) which implies Et

[
Pt+1

]
= Pte

� . The conditional variance follows 
a standard NGARCH(1,1) process with the usual parameter interpretation (see for 
example Duan and Simonato 2001). This GARCH specification is used here as an 
example. Other GARCH specifications are possible with only minor changes. The 
non-normal random shocks �t+1||t are assumed to be distributed according to 
a Johnson Su distribution (introduced in Johnson 1949), with parameters a and b, 
denoted as JSu (a, b) . Formally, �t+1 is given by

where zt+1 is a standard normal random variable, and c and d are location and scale 
parameters that are functions of a and b. Computing these parameters can be done 
with

where M(⋅) and V(⋅) are simple functions described in “Appendix 1”. Such shocks 
have a mean of zero and a standard deviation of one. The skewness and kurtosis 
of these shocks are different from the normal case, and the values taken by a and b 
jointly determine the magnitude of these moments. A positive (negative) value of 
a induces a negative (positive) skewness while smaller (larger) values of b lead to 
larger (smaller) kurtosis values. However, these relationships are not independent 
since the skewness and kurtosis are simultaneous functions of a and b.

As shown in Simonato and Stentoft (2015), using the above physical process with 
the equilibrium pricing model of Duan (1999) and the assumption of a constant 

(1)pt+1 − pt = � − �t+1 + �t+1�t+1,

(2)�2
t+1

= �0 + �1�
2
t
+ �2�

2
t

(
�t − �

)2
,

(3)�t+1
||t ∼ Jsu (a, b)

(4)�t+1 = c + d × sinh
( zt+1 − a

b

)
,

c = −M(a, b)∕
√
V(a, b) and d = 1∕

√
V(a, b)
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pricing parameter � , we obtain the following risk-neutral system which can be used 
to compute the prices of derivative securities:

and

where p∗
t+1

 is the log of the stock price under the risk-neutral measure Q, �∗
t
 is the 

risk-neutral volatility, r is the periodic continuously compounded risk-free rate and 
z∗
t
 is a standard Gaussian random variable under measure Q. Here, � is a constant 

pricing parameter which can be estimated using a maximum likelihood approach 
as in Stentoft (2008) and Simonato and Stentoft (2015). Although this parameter 
can be time-varying as in Duan (1999), Simonato and Stentoft (2015) show that 
option pricing with a time-varying or constant pricing parameter obtain very simi-
lar prices.2 With this pricing parameter,  the risk-neutral random shock �∗

t
 becomes 

a four parameter Johnson Su random variable, with parameters a∗, b, c and d with 
moments �∗

i
= E

Q
t

[
�∗i
t+1

]
 and a∗ = a + �. These expected values are available in 

closed form and are described in “Appendix 1”. We note that the above risk-neu-
tral process uses an approximation which is required to compute some key expected 
values. The approximation uses a fourth order Taylor series which is, as shown in 
Simonato and Stentoft (2015), precise enough for all practical purposes.

3 � American option prices: a quadrature algorithm

For the purpose of pricing American options in the above context, we use the fol-
lowing well-known recursive dynamic programming formulation:

with

(5)p∗
t+1

− p∗
t
=�

(
�∗
t+1

)
+ �∗

t+1
�∗
t+1

,

(6)�∗2
t+1

=�0 + �1�
∗2
t

+ �2�
∗2
t

(
�∗
t
− �

)2
,

(7)�∗
t
=c + d × sinh

(
z∗
t
− a∗

b

)
,

(8)�
�
�∗
t+1

�
= r − ln

�
1 +

4∑
i=1

�∗i
t+1

�∗
i

�

(9)vt
(
p∗
t
, �2∗

t+1

)
= max

[
g
(
ep

∗
t ,K

)
, e−rE

Q
t

{
vt+1

(
p∗
t+1

, �2∗
t+2

)}]

g
(
ep

∗
t ,K

)
= max

[
�
(
ep

∗
t − K

)
, 0
]

2  Simonato and Stentoft (2015) also find that the equilibrium approach with a constant or time-varying 
pricing parameter obtains option prices very close to those obtained by the no-arbitrage pricing approach 
developed in Christoffersen et al. (2010).
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where vt
(
p∗
t
, �2∗

t+1

)
 is the option price at t, which is a function of the current log of 

stock price level, and the known variance level �2∗
t+1

. Inside the bracket of Eq. (9), the 
discounted expected value denotes the continuation value, while g

(
ep

∗
t ,K

)
 is the pay-

off function of the option with strike price K when t = T  , or the early exercise value 
when t < T  , with � = 1 for a call option and � = −1 for a put. Given the risk-neutral 
process specified in Sect. 2, the continuation value can be written more explicitly as:

where f
(
p∗
t+1

∣ p∗
t
, �2∗

t+1

)
 is the risk-neutral conditional density of the log of stock 

price next period, given the current price and volatility level. In the context of 
Johnson Su error terms, this density function is given by Eq. (20) in “Appendix 1”. 
The next subsection examines how a simple quadrature algorithm can be used to 
compute this dynamic programming problem on a grid of log of stock prices and 
variances.

3.1 � The quadrature algorithm

Denote the time-homogenous grid of m equally spaced log of stock prices as 
� =

[
p1, p2,… , pm

]� with m an odd number and the currently observed log of the 
stock price as pm+1

2

= p0 . The time-homogeneity will allow substantial computa-
tional savings since the transition densities required in the computations will be the 
same at all time steps, unlike the typical quadrature approaches. The prices on the 
grid must be equally spaced. As seen in a later section, substantial savings in mem-
ory will be achieved with such a spacing.

A time-homogenous grid of n values for the variance, denoted as 
�
2
=
[
�
2

1
, �

2

2
,… , �

2

n

]�
 , is also required. As for the stock price grid, one of the ele-

ments of the variance grid must be set equal to the known variance level prevailing 
at t = 0. Unlike the log of stock price, this grid need not be equally spaced. Details 
about how to build these grids are in the next section. Using the Cartesian product of 
sets � and �2 , we obtain a two-dimensional grid with m × n points, whose elements 
(i, j) represent the log of the stock price level in state i and the variance level in state 
j. A bar over a letter denotes a quantity associated with a point on this grid.

As noticed in Broadie and Detemple (1996), when performing numerical com-
putations, one period before maturity, the continuation value of an American option 
can be replaced by a European option value. For the GARCH case, the option has 
a constant variance at this time step. A quasi-analytical formula can be derived and 
used to compute the European option price at time T − 1 on a point (i, j) on the grid. 
More specifically, we compute

(10)
e−rE

Q
t

{
vt+1

(
p∗
t+1

, �2∗
t+2

)}

= e−r ∫
+∞

−∞

vt+1
(
p∗
t+1

, �2∗
t+2

)
× f

(
p∗
t+1

∣ p∗
t
, �2∗

t+1

)
× dp∗

t+1

(11)vi,j,T−1 = max
[
�
(
epi − K

)
, A

(
pi, �j, �,K, r

)]
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for i = 1 to m and j = 1 to n, where vi,j,T−1 is the option price in state (i, j) and time 
T − 1, A(⋅) is a generic function denoting the quasi-analytical formula, � = 1 is the 
maturity of the option in number of periods, with r and �j being periodic values. 
“Appendix 2” provides the quasi-analytical formula to compute the option value for 
the model presented in the above section. This formula is quasi-analytical since it 
involves an integral over a standard normal which cannot be computed analytically. 
As indicated in the appendix, a Gauss–Legendre approach can be used to compute 
this integral in a fraction of a second with high precision.

For time-steps T − 2 to 0, the discounted continuation value given by Eq. (10) is 
computed numerically using a trapezoid rule (see for example Judd (1998)).3 For the 
case of a GARCH process, when performing these computations, care must be taken 
to pick the prices in the appropriate variance state. “Appendix 3” shows that, given 
a stock price and variance in state (i,  j), the continuation values can be computed 
recursively with the following formula:

for i = 1 to m and j = 1 to n. Here li→k represents the index value of the variance on 
the k-th line of the grid which is the nearest to a quantity that we describe as the 
inherited variance level. We denote this quantity as �̂2 (notice the “hat”). We require 
this concept since, for GARCH processes, the variance next period is an inherited 
value, i.e., a function of the current shock to the stock price. This inherited variance 
is computed as

where

is the random shock that would induce a transition from state i to state k. The nota-
tion used to describe the index li→k , although a bit tedious, emphasizes that this 
value is a function of the prices transiting from state i to state k. This notation will 
prove useful in the next section where an efficient algorithm for the identification of 
these li→k indexes will be proposed. This algorithm will allow substantial savings in 
memory and computing efforts. The Johnson density value is denoted by 
f
(
pk ∣ pi, �

2

j

)
 and can be computed with Eq. (20) from “Appendix 1”, and wj is the 

weight associated to the trapezoid integration scheme. Denoting by Δp the 

(12)ci,j,t = e−r
m∑
k=1

vk,li→k ,t+1
× f

(
pk ∣ pi, �

2

j

)
× wk

(13)�̂2 = �0 + �1�
2

j
+ �2�

2

j

(
�̂i→k − � − �

)2

(14)�̂i→k =
pk − pi − �

(
�j

)

�j

3  Other quadrature rules could also be used with minimal changes. For the GARCH context examined 
here, it is found that the simple trapezoid rule works slightly better than the more sophisticated Simpson 
rule.
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difference between the equidistant points on the grid of log of stock prices, these 
weights are computed as w1 = wm = Δp∕2 and wj = Δp otherwise. With the above 
continuation values, we compute the option prices on the grid with

for i = 1 to m and j = 1 to n. At time t = 0, the American option price is vm+1

2
,j0,0

 
where j0 is the index value of the variance grid which was set equal to the known 
variance at t = 0.

3.2 � Computing the grid

In order to compute the grid of stock prices and variances, we require an interval 
of representative values at the maturity of the option. For example, in the Gauss-
ian GARCH case examined by Duan and Simonato (2001), these grids are obtained 
using the known standard deviations of the log of stock prices and variances at matu-
rity. In the case of non-Gaussian shocks, there are no available formulas for such 
quantities. We therefore rely on a Monte Carlo simulation to obtain the required val-
ues. More specifically, for the log of stock price, the minimum and maximum values 
are computed as

where std
({

p̃j,T
}M

j=1

)
 denotes the standard deviation of a sample of M simulated 

risk-neutral paths of log of stock prices at T, and q is a multiplication factor for the 
standard deviations. We compute the equally spaced grid in the log of stock price 
dimension with

for i = 1 to m and �p =
(
pm − p1

)
∕(m − 1). For the variance, we also rely on simu-

lated values to determine the interval computed as

where 
{
ln
(
�̃2
j,T

)}M

j=1
 denotes a sample of M simulated risk-neutral paths of log of 

variances at T. We use the maximum and minimum values since the distribution is 
much less symmetric than the one of the log from the stock price. We then compute 
the grid with

for i = 1 to n and �� =
(
ln
(
�
2

n

)
− ln

(
�
2

1

))
∕(n − 1). These log values are then con-

verted into levels, resulting in an unevenly spaced grid in the variance dimension. 

(15)vi,j,t = max
(
�
(
epi − K

)
, ci,j,t

)

(16)p1 = p0 − q × std
({

p̃j,T
}M

j=1

)
and pm = p0 + q × std

({
p̃j,T

}M

j=1

)

pi = p1 + (i − 1)�p

ln
(
�
2

1

)
= min

({
ln
(
�̃2
j,T

)}M

j=1

)
and ln

(
�
2

n

)
= max

({
ln
(
�̃2
j,T

)}M

j=1

)

ln
(
�
2

i

)
= ln

(
�
2

1

)
+ (i − 1)��



861

1 3

American option pricing under GARCH with non-normal…

For options under GARCH, the initial variance (the variance next period) is one of 
the parameters required to compute the price. Because this variance is most proba-
bly not a part of this grid, we fix the element of the grid which is the closest to the 
initial variance, equal to this initial variance.

As it is the case with many numerical algorithms, the design of an efficient imple-
mentation procedure is a crucial step. The next section provides the details about 
how the continuation values can be efficiently computed by exploiting some regu-
larities that are inherent to the above algorithm.

4 � Implementation

The time-homogeneous and equally spaced grid of stock prices can bring significant 
reductions in computing efforts by exploiting regularities associated with the density 
values. Using the simplified representation explained below, “Appendix 4” presents 
a compact and efficient algorithm for computing the m × 1 vector of continuation 
values in a variance state �2

j
 . The algorithm allows for the following advantages in 

computation and storage when compared to a naive implementation: (1) computa-
tion and storage of (2m − 1) × n density values instead of (m × m) × n values; (2) 
computation and storage of (2m − 1) × n index values of inherited variance level 
positions, instead of (m × m) × n index values; (3) avoids multiplications by negligi-
ble density values. The fundamental regularities leading to the above advantages are 
explained below in the rest of this section. Readers wishing to skip this section can 
jump directly to Sect. 5 which presents numerical results about the performance of 
the algorithm.

A first set of critical elements leading to significant simplification are the condi-
tional density values. Given a state of variance �2

j
, the conditional density values 

required to compute the continuation value in Eq.  (12) are the same for all time-
steps, unlike the typical quadrature scheme for which it will be time-varying. Hence, 
avoiding the repeated computation of this set of quantities results in substantial com-
putational savings. We can store these values in a m × m matrix written

It is important to notice that, because the points on the log of stock price grid are 
equally spaced, we can obtain all the elements of matrix �

(
�
2

j

)
 that are above the 

diagonal from the elements of the last line. Conversely, we can obtain all the ele-
ments below the diagonal from the elements of the last line. All the elements on the 
diagonal are equal to f

(
p1 ∣ p1, �

2

j

)
 . These regularities can be summarized more 

formally as:

�

�
�
2

j

�
=

⎡
⎢⎢⎢⎣

f
�
p1 ∣ p1, �

2

j

�
⋯ f

�
pm ∣ p1, �

2

j

�

⋮ ⋱ ⋮

f
�
p1 ∣ pm, �

2

j

�
⋯ f

�
pm ∣ pm, �

2

j

�
⎤
⎥⎥⎥⎦
.
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where Fi,k

(
�
2

j

)
 is element (i, k) of matrix �

(
�
2

j

)
. Given such a structure, we reduce 

the storage and computational costs from (m × m) × n elements, to (m × 2 − 1) × n 
elements. Another important point to notice is about the magnitude of the elements. 
The elements on the first line are monotonically decreasing towards zero, while the 
elements on the last line are monotonically increasing towards f

(
pm ∣ pm, �

2

j

)
. 

Using a threshold value below which the density value is considered too small to be 
relevant, we can easily predict which elements need to be multiplied when perform-
ing the expected value computations.

A second set of elements leading to important simplifications is the set of indexes 
of nearest variance values. These are required to pick the appropriate variance state 
when computing the continuation values. Similarly to the conditional density values, 
these index can be stored in a matrix depicted as

where li→j is the index value of the variance on line i of the grid which is the near-
est to �̂2 , the inherited variance level determined by the transition of the stock price 
from state i to j. We observe that all the elements of this matrix of indexes can also 
be obtained from the first and last line using the relations summarized as:

where Li,k
(
�
2

j

)
 is element i, k of matrix �

(
�
2

j

)
. Again, the storage and computa-

tional costs can be reduced from (m × m) × n elements, to (2m − 1) × n elements. All 
in all, these above compact representations for the transition densities and nearest 
variance indexes represent a reduction in storage and computation of (m × m) × 2n 
elements, to (2m − 1) × 2n elements.

The simple and compact algorithm presented in “Appendix 4” uses the above 
simplifications and monotonicity properties of density values to computes a m × 1 
vector of non-discounted continuation values for a given variance state j. Discount-
ing the continuation values given in output by this algorithm, a vector of option 
prices in variance state j at time t can then be computed with Eq. (15).

Fi,k

�
𝜎
2

j

�
=

⎧
⎪⎨⎪⎩

f
�
pk−i+1 ∣ p1, 𝜎

2

j

�
if k ≥ i,

f
�
pi−k+1 ∣ pm, 𝜎

2

j

�
if k < i,

�

�
�
2

j

�
=

⎡⎢⎢⎣

l1→1 ⋯ l1→m

⋮ ⋱ ⋮

lm→1 ⋯ lm→m

⎤⎥⎥⎦

Li,k

�
𝜎
2

j

�
=

⎧⎪⎨⎪⎩

l1→(k−i+1) if k ≥ i,

lm→(i−k+1) if k < i,
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5 � Numerical results

In this section, we first present some maximum likelihood analysis of the NGARCH 
model with the assumption of a constant pricing parameter under the Gaussian and 
Johnson distribution hypothesis. The numerical performance of the algorithm for 
computing the values of European and American style options is then examined 
using the estimated parameters.

5.1 � Parameter estimates

As in Stentoft (2008) and Simonato and Stentoft (2015), under the assumption of a 
constant pricing parameter, the inputs required to compute the option prices can be 
obtained from the following system:

where

For the Normal(0, 1) case, which corresponds to the model in Duan (1995), we 
obtain the likelihood function from the Gaussian density. For the Jsu(a, b) case, 
we use the Johnson Su density given by Eq.  (20). Table 1 presents the parameters 
obtained by maximizing the log-likelihood function for both cases with daily S&P 
500 value-weighted returns (including dividends) from CRSP for the beginning of 
1990 to the end of 2015. For both cases, the estimated parameters are all signifi-
cant and very close to each other. Such a result is anticipated since the maximum 
likelihood estimator of the Gaussian density can be seen as a quasi-maximum like-
lihood estimator capable of estimating the parameters of a GARCH process with 
non-Gaussian shocks. Although the two models are non-nested, it is interesting to 
notice that the likelihood value obtained with the Johnson Su density shows a much 
higher value with only two additional parameters, which are both statistically sig-
nificant. Since a Johnson Su random variable is built from an invertible function of 
a standard normal random variable, using the filtered �t from the MLE approach, 
it is possible to obtain the corresponding standard normal shocks. A normality test 
about these standard shocks can then be used to assess the relevance of the assumed 
distribution. The Jarque–Berra test shows that the hypothesis of the standard normal 
residual at the source of the Johnson shocks cannot be rejected. A visual inspection 
with a quantile-to-quantile plot also confirms this result.

(17)Rt+1 =g(�) + �t+1�t+1,

(18)�2
t+1

=�0 + �1�
2
t
+ �2�

2
t

(
�t − �

)2
,

g(�) =

⎧⎪⎨⎪⎩

r + ��t+1 −
1

2
�2
t+1

if �t+1 ∼ Normal(0, 1)

�
�
�∗
t+1

�
if �t+1 ∼ Jsu(a, b)

.
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5.2 � Option prices

In this section, we examine the performance of the algorithm for pricing European 
and American put options. For the European case, we benchmark our analysis with 
precise Monte Carlo simulated prices. For the American case, there are no bench-
marks for GARCH with non-normal shocks. Nevertheless, the convergence results 
obtained for European options should translate to the American case.

Although the goal of the paper is to examine American option pricing in the 
non-normal GARCH context, it is interesting to first examine the performance of 
the algorithm in the more straightforward Gaussian case. For this case, we use 
the quadrature algorithm of Sect. 3.1 implemented with the analytical formula at 
the penultimate time step given by a Black–Scholes price and the normal density. 
More specifically, we compute the analytical formula in Eq. (11) with

Table 1   Parameter estimates

This table presents the maximum likelihood parameter estimates 
for the physical NGARCH processes with Gaussian and Johnson Su 
shocks under the assumption of a constant pricing parameter. Data: 
S&P 500 daily log returns from January 1990 to December 2015 
and a constant risk-free rate set to 0.03 × 1∕252 . Standard errors 
are reported in parenthesis. “Loglik” is the log-likelihood value and 
“JB” is the Jarque–Bera normality test for the standard normal resid-
uals. Q(20) is the Ljung–Box portmanteau test for up to 20th-order 
serial correlation in the standardized residuals, whereas Q2(20) is the 
same test for the squared standardized residuals. The p-values for 
these tests are reported in square brackets

Gaussian Johnson S
u

�
0

1.9e−06
(1.5e−07)

1.6e−06
(1.8e−07)

�
1

0.8314
(0.0074)

0.8267
(0.0109)

�
2

0.0720
(0.0047)

0.0722
(0.0066)

� 1.0749
(0.0719)

1.1351
(0.0994)

� 0.0308
(0.0126)

0.0314
(0.0125)

a –
–

0.3783
(0.0801)

b –
–

2.1625
(0.1219)

Loglik 21,550 21,661
JB 662.6670

[0.0000]
0.2779
[0.8900]

Q(20) 32.0892
[0.0424]

31.6514
[0.0472]

Q
2(20) 23.4866

[0.2655]
21.7662
[0.3533]



865

1 3

American option pricing under GARCH with non-normal…

where BSput(⋅) is the Black and Scholes (1973) formula for a put option computed 
with a daily variance and interest rate.

For the subsequent computations with Eq. (12), we use the normal density

where �i,j = pi + r −
1

2
�
2

j
 . In these computations, it is important to notice that the 

weights that are applied to the value function in Eq. (12) are the product of a density 
and a trapezoid weight Δp. We use a target value for this product in order to deter-
mine the threshold value used in the algorithm presented in “Appendix 4” and below 
which the density value is considered negligible. More specifically, we compute the 
algorithm threshold with

For all the results presented in this paper, we use a target threshold of 1 × 10−7 . 
The use of a smaller threshold produces results that are virtually identical. Finally, 
to determine the minimum and maximum values of the log of stock prices, we set 
q = 20 in Eq. (16), i.e., an interval with 20 standard deviations for the log of stock 
prices.

Table 2 looks at European and American option prices replicating the examples 
found in Duan and Simonato (2001) and Ben-Ameur et al. (2009). The parameters 
from these examples present a low unconditional level and a low persistence level of 
the variance process. The persistence level indicates how close is the variance pro-
cess from being non-stationary (integrated). A persistence smaller (larger) than one 
indicates a stationary (non-stationary) variance process. A persistence level smaller 
but very close to one indicates a case with high persistence. In the GARCH con-
text, this is an important feature since such variance processes can generate larger 
variance levels, which in turn can affect the precision of the numerical approach. For 
this example, we obtain an unconditional variance and a persistence level of 0.200 
and 0.909 for the physical process, and 0.221 and 0.925 for the risk-neutral process.4 
For the European option case, the benchmarks are accurate Monte Carlo European 
put prices computed with 10 million sample paths and a Black–Scholes control vari-
ate. As shown by the numbers in the table, as we increase the values of m and n, the 
quadrature prices become remarkably close to the benchmarks, with differences at 
the fourth decimal place. Shorter maturities converge more quickly since the range 

A
(
pi, �j, �,K, r

)
= BSput(exp

(
pi
)
, �j, 1,K, r)

f
�
pk ∣ pi, �

2

j

�
=

1√
2��j

e
−

1

2

(pk−�i,j)
2

�2
j

algorithm threshold =
(
1∕Δp

)
× target threshold.

4  GARCH parameters are typically obtained with time series with 252 trading days. Hence, for the 
physical process, we compute the annual unconditional volatility as 

√
�
0
∕
(
1 − �

1
− �

2

(
1 + �2

))
× 252 . 

The persistence level is given by �
1
+ �

2

(
1 + �2

)
. The corresponding values for the risk-neutral case are 

obtained with the same formula but with � replaced by � + �.
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of possible values is smaller. We observe a similar behavior for the American put 
prices with only minimal differences from the benchmark values.

The second example presented in Table  3 also examines a Gaussian case. It 
uses the maximum likelihood parameters obtained for the normal case in Table 1 
with an initial variance equal to the unconditional level of the physical variance 
process. This case presents a higher unconditional level and a higher persistence 
of the variance process when compared to the one examined in the previous table. 
The annualized unconditional physical variance and the persistence level are 
computed as 0.237 and 0.991 for the risk-neutral process. Table 3 shows results 
which are qualitatively similar to those we find in the previous table, with a small 
loss in precision for larger maturities. We attribute these differences to the higher 
persistence level of the risk-neutral variance process.

The first panel of Table 4 presents the computing times (in seconds) for American 
options computed with the parameters from the second example and various grid 
sizes. These computing times for this example are typically larger than those of the 

Table 2   Option prices in the Gaussian GARCH context: a low variance persistence case

This table presents the computed prices for European and American put options in the Gaussian GARCH 
context for a a low variance persistence case. Parameters: P

0
= 50, �

1
= 0.0105, r = 1.3698 × 10−4 , 

�
0
= 1.0 × 10−5, �

1
= 0.80, �

2
= 0.10, � = 0.30, � = 0.20 . “Monte Carlo European put prices” are Monte 

Carlo option prices computed with 10 million sample paths and a Black–Scholes control variate. “Quad-
rature European put prices” and “Quadrature American put prices” are option prices computed with the 
quadrature approach implemented with the algorithm described in Sect. 4, and minimum and maximum 
values of the grids determined with a Monte Carlo simulation with 500,000 paths and q = 20 . “Bench-
mark American put prices” are prices taken from Ben-Ameur et al. (2009)

m, n T = 30 days T = 90 days T = 270 days

K = 45 K = 50 K = 55 K = 45 K = 50 K = 55 K = 45 K = 50 K = 55

Monte Carlo European put prices
0.0773 1.0879 4.8396 0.4152 1.8220 4.9543 1.1953 2.8430 5.4780

Quadrature European put prices
201, 201 0.0773 1.0877 4.8417 64.6811 6.06e+03 8.38e+04 8.71e+69 3.08e+76 1.01e+78
401, 401 0.0773 1.0876 4.8394 0.4155 1.8221 4.9545 9.19e+02 5.56e+03 2.24e+04
601, 601 0.0774 1.0880 4.8396 0.4154 1.8221 4.9541 1.2041 2.8683 5.5328
801, 801 0.0774 1.0880 4.8396 0.4154 1.8220 4.9540 1.1957 2.8437 5.4785
1001, 1001 0.0774 1.0878 4.8395 0.4155 1.8220 4.9541 1.1954 2.8433 5.4781
1501, 1501 0.0773 1.0878 4.8395 0.4155 1.8222 4.9541 1.1955 2.8434 5.4781
Benchmark American put prices

0.0779 1.0992 5.0000 0.4236 1.8727 5.1816 1.2613 3.0397 5.9627
Quadrature American put prices
201, 201 0.0776 1.0990 5.0000 64.8401 6.08e+03 8.40e+04 8.71e+69 3.08e+76 1.01e+78
401, 401 0.0776 1.0989 5.0000 0.4230 1.8727 5.1818 9.22e+02 5.57e+03 2.25e+04
601, 601 0.0777 1.0993 5.0000 0.4229 1.8727 5.1817 1.2660 3.0538 5.9875
801, 801 0.0777 1.0993 5.0000 0.4229 1.8726 5.1816 1.2604 3.0393 5.9631
1001, 1001 0.0777 1.0992 5.0000 0.4230 1.8726 5.1817 1.2601 3.0389 5.9627
1501, 1501 0.0777 1.0991 5.0000 0.4230 1.8728 5.1817 1.2602 3.0390 5.9628
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low persistence level example. The reported times do not include the time to com-
pute the Monte Carlo inputs (which is the same for all cases with similar maturities). 
The prices are computed with Matlab and compiled C coded functions automati-
cally generated with the Matlab Coder. For values of m smaller or equal to 1001, the 
computing times are quite low and range from a few seconds to a couple of minutes 
for longer maturities. These times grow quickly for larger values of m and n and 
can become excessive for long maturities and large values of m and n such as 2, 
001. Fortunately, these large computation times can be cut down by computing the 
prices with n < m . This is possible since the magnitude of daily variances are much 
smaller (and easier to cover with a smaller grid) than the magnitude of log of prices. 
Values of n that are smaller than m by a factor of three or four provide answers con-
verging to the benchmarks. Table 4 shows the computation times that are obtained 
with n ≈ m∕3, while Table 5 presents the option prices computed with this modifi-
cation. Significant gains are made in computing efforts, with few losses in terms of 
precision, as the computing times are (roughly) divided by three.

Table 3   Option prices in the Gaussian GARCH context: a high variance persistence case

This table presents the computed prices for European and American put options in the Gaussian GARCH 
context for a high variance persistence case with parameters obtained from the MLE estimates of 
Table 1. Parameters: P

0
= 50, �

1
= 0.0119, r = 0.03 × 1∕252 and GARCH parameters from the Gauss-

ian estimates of Table 1. “Monte Carlo European put prices” are Monte Carlo option prices computed 
with 10 million sample paths and a Black–Scholes control variate. “Quadrature European put prices” 
and “Quadrature American put prices” are option prices computed with the quadrature approach imple-
mented with the algorithm described in Sect. 4, and minimum and maximum values of the grids deter-
mined with a Monte Carlo simulation with 500,000 paths and q = 20

m, n T = 21 days T = 63 days T = 189 days

K = 45 K = 50 K = 55 K = 45 K = 50 K = 55 K = 45 K = 50 K = 55

Monte Carlo European put prices
0.0871 1.0018 4.8759 0.4620 1.6427 4.8190 1.2746 2.6613 5.2027

Quadrature European put prices
201, 201 0.0873 1.0057 4.8781 3.2842 5.91e+04 8.98e+06 2.75e+65 1.53e+79 6.72e+80
401, 401 0.0872 1.0032 4.8760 0.4563 1.6399 4.8347 1.07e+24 9.68e+28 1.63e+31
601, 601 0.0871 1.0012 4.8758 0.4595 1.6366 4.8159 34.8098 3.21e+02 1.15e+04
801, 801 0.0870 1.0023 4.8759 0.4620 1.6435 4.8191 1.2989 2.7247 5.4020
1001, 1001 0.0870 1.0013 4.8758 0.4612 1.6412 4.8181 1.2648 2.6496 5.1979
1501, 1501 0.0872 1.0021 4.8759 0.4619 1.6418 4.8183 1.2699 2.6557 5.1967
2001, 2001 0.0871 1.0018 4.8758 0.4618 1.6418 4.8181 1.2726 2.6598 5.2004
Quadrature American put prices
201, 201 0.0874 1.0104 5.0000 3.2874 5.91e+04 8.99e+06 2.77e+65 1.53e+79 6.73e+80
401, 401 0.0873 1.0079 5.0000 0.4588 1.6612 5.0206 1.07e+24 9.69e+28 1.63e+31
601, 601 0.0872 1.0059 5.0000 0.4620 1.6575 5.0167 34.9019 3.22e+02 1.16e+04
801, 801 0.0871 1.0070 5.0000 0.4645 1.6643 5.0179 1.3311 2.8145 5.6415
1001, 1001 0.0870 1.0060 5.0000 0.4637 1.6620 5.0175 1.2980 2.7500 5.5187
1501, 1501 0.0872 1.0068 5.0000 0.4644 1.6626 5.0175 1.3035 2.7569 5.5201
2001, 2001 0.0872 1.0065 5.0000 0.4643 1.6626 5.0174 1.3062 2.7609 5.5231



868	 J.-G. Simonato 

1 3

The third and fourth examples are presented in Tables 6 and 7. These tables 
examine the Johnson Su cases for the low and high variance persistence level. 
The computations are implemented with the algorithm described in Sect.  3. 
Table 6 uses the same parameters as those in Table 2 with the additional John-
son parameters set to a = 0.5 and b = 2.5. Such parameter values generate shocks 
with skewness and kurtosis of −0.27 and 3.93. The physical unconditional vari-
ance and persistence level for the physical variance process are thus identical to 
those of the example in Table 2.5 As in the Gaussian case, we see that the con-
vergence towards the Monte Carlo benchmark is very good with perhaps slightly 
larger pricing errors for deep in-the-money options. For the American case, 
there are no benchmark values, but as in the Gaussian case, the numbers sta-
bilize nicely at different values of m and n, depending on the maturity. Table 7 
examines the case where the parameters are obtained from the MLE analysis. 
For larger maturities, convergence is slower but the computed prices also reach 
the benchmark values with a good precision, again more quickly for smaller than 
longer maturities. 

For the Johnson case, computing times are typically much larger than the 
Gaussian case. These larger computing times are caused by the larger probabili-
ties of transiting to prices that are far away because of the negative skewness and 

Table 4   Computation times

This table presents the computing times (in seconds) for at-the-
money American put options in the Gaussian GARCH context for 
the high variance persistence case

T = 21 T = 63 T = 189

n = m

 m = 201 0.6 1.1 2.8
 m = 401 3 8 22
 m = 601 10 27 73
 m = 801 23 63 175
 m = 1001 45 125 344
 m = 1501 152 423 1173
 m = 2001 362 1008 2778
n ≈ m∕3

 m = 201 0.1 0.4 1.0
 m = 401 1 2 7
 m = 601 3 8 24
 m = 801 7 20 56
 m = 1001 13 38 107
 m = 1501 43 127 361
 m = 2001 101 300 852

5  Unlike for the Gaussian case, there are no available formulas to compute the unconditional variance 
and persistence level for the risk-neutral process.
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larger kurtosis values. Hence, for a same target threshold value, there are more 
computations to be performed by the algorithm in the Johnson case. The first 
panel of Table 8 reports the computing times that are achieved for at-the-money 
American put options using the parameters obtained from the MLE analysis pre-
sented above. As in the second Gaussian example, this case presents a higher 
unconditional level and a higher-persistence of the variance process. Again, 
it is possible to reduce the computing times to much lower levels by reducing 
the number of grid points in the variance dimension, as indicated in the second 
of the table. Table 9 presents the quadrature prices for this case with n ≈ m∕3 . 
Again, the convergence to the Monte Carlo benchmarks is very good, with some 
discrepancies for the larger maturity and deep in-the-money options.

5.3 � Markov‑chain option prices

As stated in the introduction, pricing algorithms for American options in the Gauss-
ian GARCH cases are available in the literature. In the GARCH model we consider, 
the Johnson Su error terms are continuous and monotone transformations of standard 

Table 5   Option prices in the Gaussian GARCH context: a high variance persistence case

This table presents the computed prices for European put options in the Gaussian GARCH context for a 
high variance  persistence case. Parameters: P

0
= 50, �

1
= 0.0105, r = 1.3698 × 10−4, �

0
= 1.0 × 10−5,

�
1
= 0.80, �

2
= 0.10, � = 0.30, � = 0.20 . “Monte Carlo European put prices” are Monte Carlo option prices 

computed with 10 million sample paths and a Black–Scholes control variate. “Quadrature European put prices” 
and “Quadrature American put prices” are option prices computed with the quadrature approach implemented 
with the algorithm described in Sect. 4, and minimum and maximum values of the grids determined with a 
Monte Carlo simulation with 500,000 paths and q = 20

m, n T = 21 days T = 63 days T = 189 days

K = 45 K = 50 K = 55 K = 45 K = 50 K = 55 K = 45 K = 50 K = 55

Monte Carlo European put prices
0.0871 1.0018 4.8759 0.4620 1.6427 4.8190 1.2746 2.6613 5.2027

Quadrature European put prices for n ≈ m∕3

201, 67 0.0734 0.9382 4.8775 0.5698 2.6520 10.7648 3.63e+23 1.82e+26 2.49e+27
401, 133 0.0829 0.9914 4.8754 0.4588 1.6007 4.8195 2.28e+13 2.07e+16 1.60e+18
601, 201 0.0865 1.0014 4.8759 0.4536 1.6085 4.8040 2.3395 6.5813 23.9652
801, 267 0.0870 1.0015 4.8758 0.4788 1.6858 4.8398 1.3307 2.7632 5.4021
1001, 333 0.0865 1.0001 4.8759 0.4636 1.6455 4.8204 1.2794 2.6904 5.2413
1501, 501 0.0870 1.0017 4.8758 0.4642 1.6475 4.8215 1.2669 2.6520 5.1936
2001, 667 0.0870 1.0015 4.8758 0.4603 1.6376 4.8158 1.2947 2.6907 5.2280
2501, 833 0.0871 1.0014 4.8758 0.4620 1.6429 4.8188 1.2838 2.6754 5.2140
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normal error terms, making it possible to adapt methods designed for the Gaussian 
case to this non-Gaussian framework. In this section, we examine how the Markov-
chain approach of Duan and Simonato (2001) can be adapted to price American 
options under the risk-neutral dynamics examined in the above sections.

The idea behind the construction of an approximating Markov chain to compute 
options under GARCH is as follows. The real line, the support of the log of the stock 
price distribution, is first partitioned into m distinct cells. We build a similar partition 
for the log of the variance with n cells. We then assign a numerical value to each cell. 
These values yield an m × n grid of log of stock prices and variances. Given the values 
on point i, j of this grid, the probability of reaching a pair of price and volatility cells 
can then be computed analytically, using the distribution function of the random shocks 
associated to the stock price. Since in our case the error term is a Johnson Su random 
variable, we can compute its distribution function with a standard normal distribution 
function. With these transition probabilities, it then becomes possible to compute the 
conditional expected values appearing in the Belman recursion.

Table 6   Option prices in the Johnson S
u
 GARCH context: a low variance persistence case

This table presents the computed prices for European and American put options in the Johnson Su 
GARCH context for a low variance persistence case. Parameters: P

0
= 50, �

1
= 0.0105, r = 0.05 × 1∕365 , 

�
0
= 1.0 × 10−5, �

1
= 0.80, �

2
= 0.10, � = 0.30, � = 0.20, a = 0.5 and b = 2.5 . “Monte Carlo European 

put prices” are Monte Carlo option prices computed with 10 million sample paths and a Black–Scholes 
control variate. “Quadrature European put prices” and “Quadrature American put prices” are option prices 
computed with the quadrature approach implemented with the algorithm described in Sect. 4, and mini-
mum and maximum values of the grids determined with a Monte Carlo simulation with 500,000 paths and 
q = 25

m, n T = 30 days T = 90 days T = 270 days

K = 45 K = 50 K = 55 K = 45 K = 50 K = 55 K = 45 K = 50 K = 55

Monte Carlo European put prices
0.1062 1.1132 4.8358 0.4893 1.8896 4.9735 1.3392 2.9916 5.5933

Quadrature European put prices
201, 201 0.1122 1.3347 6.3094 1.38e+12 1.75e+15 3.63e+16 9.34e+108 4.14e+113 1.32e+115
401, 401 0.1063 1.1132 4.8208 0.5611 2.2968 6.2805 1.20e+33 5.17e+35 5.82e+36
601, 601 0.1061 1.1121 4.8214 0.4894 1.8864 4.9654 1.05e+02 3.44e+02 8.53e+02
801, 801 0.1063 1.1130 4.8216 0.4898 1.8905 4.9834 1.4440 3.2307 6.0315
1001, 1001 0.1063 1.1129 4.8215 0.4898 1.8905 4.9840 1.3193 2.9405 5.4828
1501, 1501 0.1063 1.1130 4.8215 0.4897 1.8904 4.9838 1.3401 2.9930 5.5927
2001, 2001 0.1062 1.1128 4.8214 0.4898 1.8905 4.9839 1.3402 2.9935 5.5936
Quadrature American put prices
201, 201 0.1126 1.3424 6.3618 1.38e+12 1.76e+15 3.70e+16 9.34e+108 4.14e+113 1.35e+115
401, 401 0.1067 1.1249 5.0000 0.5662 2.3180 6.3313 1.20e+33 5.19e+35 5.89e+36
601, 601 0.1065 1.1238 5.0000 0.4984 1.9386 5.1889 1.05e+02 3.46e+02 8.58e+02
801, 801 0.1067 1.1247 5.0000 0.4986 1.9412 5.1965 1.4952 3.3642 6.3261
1001, 1001 0.1067 1.1246 5.0000 0.4986 1.9412 5.1967 1.3982 3.1625 6.0204
1501, 1501 0.1067 1.1247 5.0000 0.4986 1.9411 5.1966 1.4122 3.1932 6.0695
2001, 2001 0.1067 1.1245 5.0000 0.4986 1.9412 5.1967 1.4123 3.1935 6.0700
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As shown by this short description, the Markov chain and the simplified quadra-
ture approach share many similarities. They both use a grid of stock prices and vari-
ances, and the option prices are computed recursively on each point of the grid. The 
main difference between the Markov chain approach and the simplified quadrature 
scheme is about the computation of the conditional expected value in the Bellman 
recursion. While the quadrature approach uses a numerical integration scheme such 
as the trapeze or Simpson rule, the Markov chain approach computes the conditional 
expected values using the transition probabilities of the approximating Markov 
chain. More specifically, the continuation values given by Eq. (12) for the quadra-
ture case are computed as follows with the Markov chain approach:

ci,j,t = e−r
m∑
k=1

vk,li→k ,t+1
× Pr

(
pk ∣ pi, �

2

j

)

Table 7   Option prices in the Johnson S
u
 GARCH context: a high variance persistence case

This table presents the computed prices for European and American put options in the Johnson Su GARCH 
context for a high variance persistence case. Parameters: P

0
= 50, �

1
= 0.0141, r = 0.03 × 1∕252 , �

0
= 

1.60e−06, �
1
= 0.8267, �

2
= 0.0722, � = 1.1351, � = 0.0314, a = 0.3783 and b = 2.1625 . “Monte Carlo 

European put prices” are Monte Carlo option prices computed with 10 million sample paths and a Black–
Scholes control variate. “Quadrature European put prices” and “Quadrature American put prices” are 
option prices computed with the quadrature approach implemented with the algorithm described in Sect. 4, 
and minimum and maximum values of the grids determined with a Monte Carlo simulation with 500,000 
paths and q = 25

m, n T = 21 days T = 63 days T = 189 days

K = 45 K = 50 K = 55 K = 45 K = 50 K = 55 K = 45 K = 50 K = 55

Monte Carlo European put prices
0.1690 1.1703 4.8949 0.6764 1.8898 4.9156 1.6168 2.9755 5.3977

Quadrature European put prices
401, 401 0.1684 1.1713 4.9044 0.8674 17.2871 1.58e+04 1.08e+86 2.08e+92 1.04e+94
601, 601 0.1684 1.1695 4.9028 0.6883 1.9293 5.3756 6.62e+55 1.31e+61 1.44e+63
801, 801 0.1689 1.1699 4.9029 0.6757 1.8884 4.9375 2.22e+35 1.38e+39 1.26e+42
1001, 1001 0.1692 1.1711 4.9031 0.6742 1.8860 4.9115 2.19e+20 5.02e+22 1.17e+26
1501, 1501 0.1691 1.1707 4.9030 0.6753 1.8872 4.9100 16.1569 77.6308 9.25e+02
2001, 2001 0.1688 1.1699 4.9028 0.6753 1.8876 4.9101 1.6594 3.1226 5.9117
2501, 2501 0.1690 1.1703 4.9028 0.6755 1.8876 4.9099 1.6145 2.9824 5.4359
3001, 3001 0.1689 1.1703 4.9028 0.6755 1.8881 4.9104 1.6126 2.9733 5.3980
Quadrature American put prices
401, 401 0.1685 1.1754 5.0000 0.8706 17.3207 1.59e+04 1.08e+86 2.08e+92 1.06e+94
601, 601 0.1686 1.1735 5.0000 0.6915 1.9470 5.4555 6.62e+55 1.31e+61 1.47e+63
801, 801 0.1690 1.1740 5.0000 0.6788 1.9069 5.0814 2.22e+35 1.38e+39 1.26e+42
1001, 1001 0.1693 1.1752 5.0000 0.6773 1.9046 5.0720 2.19e+20 5.03e+22 1.17e+26
1501, 1501 0.1692 1.1748 5.0000 0.6784 1.9058 5.0716 16.2027 77.8807 9.30e+02
2001, 2001 0.1690 1.1740 5.0000 0.6784 1.9062 5.0717 1.6918 3.1922 6.0522
2501, 2501 0.1691 1.1744 5.0000 0.6787 1.9062 5.0716 1.6517 3.0781 5.7107
3001, 3001 0.1691 1.1743 5.0000 0.6787 1.9068 5.0719 1.6502 3.0718 5.6914
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where Pr
(
pk ∣ pi, �

2

j

)
 is the transition probability of going from state 

{
pi, �

2

j

}
 to the 

cells associated with state 
{
pk, �

2

li→k

}
.6 “Appendix 5” describes how these transition 

probabilities can be computed. Duan and Simonato (2001) store these probabilities 
into a square matrix of dimension mn × mn , and prices are computed backward with 
simple matrix multiplications. Sparse matrices techniques are then used to save on 
storage and computation time. To compare the Markov chain and simplified quadra-
ture approaches, we implement the Markov chain with the procedure outlined in 
Sect. 4. As in Simonato (2011), where the Markov chain approach is examined for 
the geometric Brownian motion and jump cases, we use a simple algorithm similar 
to the one presented in “Appendix 4” to save on computing effort and memory.

Table  10 presents the prices computed with the Markov chain algorithm for the 
Johnson Su case with a high variance persistence level. To enable valid comparisons, 
we implement the Markov chain with the same grid as the one used for the simpli-
fied quadrature approach. Overall, for the small and medium maturity cases, the prices 
computed with the Markov chain converge to the target prices, but more slowly, and 
with more oscillation than those obtained with the simplified quadrature scheme in 
Table 7. The algorithm also encounters difficulties for the long maturity case of 189 
days. While the quadrature algorithm was able to achieve accurate results with m and n 

Table 8   Computation times

This table presents the computing times (in seconds) for at-the-
money American put options in the Johnson GARCH context for the 
high variance persistence case

T = 21 T = 63 T = 189

n = m

 m = 201 3.6 2.6 5.8
 m = 401 9 19 43
 m = 601 25 61 140
 m = 801 56 135 327
 m = 1001 103 263 643
 m = 1501 316 839 2069
 m = 2001 738 1944 4818
n ≈ m∕3

 m = 201 0.4 0.9 1.9
 m = 401 2 6 14
 m = 601 7 19 45
 m = 801 17 42 104
 m = 1001 30 80 198
 m = 1501 94 260 653
 m = 2001 215 600 1513

6  As explained in Sect. 3.1 and “Appendix 3”, the “ i → k ” notation used here emphasizes that the next 
period variance is an inherited value which depends on pi, pk and �2

j
.
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around 2500, the Markov chain algorithm fails to converge to the benchmarks. Finally, 
we notice that computing times with the Markov chain are similar to those obtained for 
the quadrature.

6 � Conclusion

GARCH models with non-normal errors are now commonly used by analysts for mod-
eling financial returns. The choice of algorithms to compute American option prices 
in this context is however limited. We have proposed a simple quadrature approach to 
compute American and European option values in this context. The algorithm is shown 
to converge well to benchmark values obtained from accurate Monte Carlo simulations. 
Computing times can be long, but effective strategies are available to temper down this 
disadvantage with small impacts on the precision. Finally, we also show that, within 
the pricing context presented here, it is possible to adapt the Markov chain approach 
of Duan and Simonato (2001) which was explicitly designed to deal with Gaussian 

Table 9   Option prices in the Johnson S
u
 GARCH context: a high variance persistence case

This table presents the computed prices for European and American put options in the Johnson Su GARCH 
context for a high variance persistence case. Parameters: P

0
= 50, �

1
= 0.0141, r = 0.03 × 1∕252 , �

0
= 

1.60e−06, �
1
= 0.8267, �

2
= 0.0722, � = 1.1351, � = 0.0314, a = 0.3783 and b = 2.1625 . “Monte Carlo 

European put prices” are Monte Carlo option prices computed with 10 million sample paths and a Black–
Scholes control variate. “Quadrature European put prices” and “Quadrature American put prices” are 
option prices computed with the quadrature approach implemented with the algorithm described in Sect. 4, 
and minimum and maximum values of the grids determined with a Monte Carlo simulation with 500,000 
paths and q = 25

m, n T = 21 days T = 63 days T = 189 days

K = 45 K = 50 K = 55 K = 45 K = 50 K = 55 K = 45 K = 50 K = 55

Monte Carlo European put prices
0.1690 1.1703 4.8949 0.6764 1.8898 4.9156 1.6168 2.9755 5.3977

Quadrature European put prices n ≈ m∕3

201, 67 0.1233 1.1850 7.0099 1.05e+02 1.03e+03 5.72e+03 9.25e+78 2.86e+82 5.70e+83
401, 133 0.1739 1.1696 4.9037 0.9446 14.3651 6.89e+02 5.94e+69 3.66e+74 1.36e+76
601, 201 0.1658 1.1548 4.9006 0.7166 2.0200 5.1973 3.13e+46 6.99e+50 6.05e+52
801, 267 0.1706 1.1822 4.9045 0.6526 1.8613 4.9293 5.13e+28 5.08e+31 4.68e+34
1001, 333 0.1683 1.1677 4.9027 0.6846 1.8951 4.9126 3.94e+16 5.12e+18 4.06e+21
1501, 501 0.1694 1.1723 4.9033 0.6773 1.8966 4.9183 9.3642 38.8882 3.50e+02
2001, 667 0.1686 1.1685 4.9027 0.6773 1.8931 4.9137 1.6577 3.1159 5.9199
2501, 833 0.1691 1.1711 4.9030 0.6768 1.8895 4.9113 1.6274 2.9985 5.4497
3001, 1001 0.1688 1.1696 4.9027 0.6746 1.8860 4.9092 1.6164 2.9766 5.3985
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GARCH cases. Numerical results show that the quadrature approach we propose here 
is more efficient than this Markov chain approach.

Acknowledgements  This research was supported by the Social Sciences and Humanities Research Coun-
cil of Canada. I would like to thank Lynn Mailloux for helpful comments

Appendix 1: Moments of Johnson S
u
 random variables

This appendix describes in more details the Johnson Su random variables that have 
been introduced in Johnson (1949).

Table 10   Option prices in the Johnson S
u
 GARCH context with a Markov chain algorithm: a high vari-

ance persistence case

This table presents the computed prices for European and American put options in the Johnson Su GARCH 
context for a high variance persistence case. Parameters: P

0
= 50, �

1
= 0.0141, r = 0.03 × 1∕252 , �

0
= 

1.60e−06, �
1
= 0.8267, �

2
= 0.0722, � = 1.1351, � = 0.0314, a = 0.3783 and b = 2.1625 . “Monte Carlo 

European put prices” are Monte Carlo option prices computed with 10 million sample paths and a Black–
Scholes control variate. “Markov chain European put prices” and “Markov chain American put prices” 
are option prices computed with the Markov chain approach implemented with the algorithm described in 
Sect. 5.3, and minimum and maximum values of the grids determined with a Monte Carlo simulation with 
500,000 paths and q = 25

m, n T = 21 days T = 63 days T = 189 days

K = 45 K = 50 K = 55 K = 45 K = 50 K = 55 K = 45 K = 50 K = 55

Monte Carlo European put prices
0.1690 1.1703 4.8949 0.6764 1.8898 4.9156 1.6168 2.9755 5.3977

Markov chain European put prices
401, 401 0.1441 1.0849 4.8853 0.3649 1.5950 5.0346 3.9148 6.3824 9.5337
601, 601 0.1545 1.1188 4.8944 0.3907 1.4535 4.8141 2.1272 4.2684 7.3972
801, 801 0.1604 1.1397 4.8984 0.4546 1.4979 4.7572 1.3392 3.2131 6.3231
1001, 1001 0.1637 1.1514 4.9001 0.5134 1.5885 4.7622 0.9618 2.6199 5.6975
1501, 1501 0.1665 1.1617 4.9017 0.5930 1.7324 4.8175 0.6980 2.0040 4.9366
2001, 2001 0.1672 1.1643 4.9020 0.6268 1.7962 4.8526 0.7612 1.9213 4.6764
2501, 2501 0.1681 1.1670 4.9023 0.6433 1.8267 4.8709 0.8949 2.0243 4.6450
3001, 3001 0.1682 1.1679 4.9024 0.6530 1.8456 4.8829 1.0360 2.1880 4.7240
Markov chain American put prices
401, 401 0.1443 1.0899 5.0000 0.3679 1.6155 5.1179 3.9286 6.4038 9.5638
601, 601 0.1546 1.1233 5.0000 0.3935 1.4830 5.0152 2.1389 4.2904 7.4322
801, 801 0.1605 1.1439 5.0000 0.4572 1.5264 5.0082 1.3513 3.2406 6.3730
1001, 1001 0.1638 1.1556 5.0000 0.5160 1.6135 5.0122 0.9764 2.6613 5.7925
1501, 1501 0.1666 1.1658 5.0000 0.5956 1.7531 5.0293 0.7213 2.0941 5.2443
2001, 2001 0.1673 1.1684 5.0000 0.6294 1.8157 5.0430 0.7904 2.0397 5.1435
2501, 2501 0.1682 1.1710 5.0000 0.6458 1.8456 5.0512 0.9263 2.1474 5.1510
3001, 3001 0.1684 1.1719 5.0000 0.6555 1.8642 5.0570 1.0678 2.3056 5.2011
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A zero-mean, unit variance random variable following a two-parameter Johnson Su 
distribution with parameters a and b is written

where x = sinh
(

z−a

b

)
, z is a standard normal random variable and c = −M(a, b)∕√

V(a, b) , d = 1∕
√
V(a, b) with

and w = e
1

b2 and Ω =
a

b
. The parameters a and b control the skewness and kurto-

sis. The functions cosh (u) = (eu + e−u)∕2 and sinh (u) = (eu − e−u)∕2 are the hyper-
bolic cosine and sine functions. Here M(⋅) and V(⋅) are the mean and variance of xt, 
the unstandardized two-parameter Johnson Su random variable. The values c and d, 
which are functions of a and b, are used to change the location and scale of x in such 
a way that it becomes a standardized Johnson Su random variable.

The first four moments of the standardized Johnson Su random shock can be com-
puted with:

where the first four moments of x can be derived to be:

Because Johnson error terms are a monotone, continuous and invertible transforma-
tion of a standard normal, the conditional density of the stock price can be obtained 
from the standard normal density with a change of variable (see Simonato 2012). 
The conditional density of the risk-neutral price described by Eq. (5) can be written 
as:

(19)� = c + d × x

M(a, b) = − w
1

2 sinh (Ω),

V(a, b) =
1

2
(w − 1)(w cosh (2Ω) + 1),

E
[
�1
]
= c + dE[x],

E
[
�2
]
= c2 + 2cdE[x] + d2E

[
x2
]
,

E
[
�3
]
= c3 + 3c2dE[x] + 3cd2E

[
x2
]
+ d3E

[
x3
]
,

E
[
�4
]
= c4 + 4c3dE[x] + 6c2d2E

[
x2
]
+ 4cd3E

[
x3
]
+ d4E

[
x4
]
,

E
[
x1
]
= −w

1

2 sinh (Ω),

E
[
x2
]
=

1

2

[
w2 cosh (2Ω) − 1

]
,

E
[
x3
]
=

1

4

[
3w

1

2 sinh (Ω) − w
9

2 sinh (3Ω)
]
,

E
[
x4
]
=

1

8

[
w8 cosh (4Ω) − 4w2 cosh(2Ω) + 3

]
.

(20)f
�
p∗
t+1

∣ p∗
t
, �∗

t+1

�
= b

�
V(a, b)

2�

e
−

1

2

�
(a+�)+b sinh−1

�
M(a,b)+�t+1

√
V(a,b)

��2

��
M(a, b) + �∗

t+1

√
V(a, b)

�2

+ 1
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where

Appendix 2: Quasi‑analytical option price for the one period case

For a one-period to maturity case, pricing options in the GARCH context amounts 
to a constant variance case since the variance is a predictable process, i.e., the vari-
ance next period is a known quantity. In such a context, it is thus possible to obtain 
a quasi-analytical option pricing formula for the GARCH model outlined in Sect. 2. 
The solution is quasi-analytic since it involves an integral over a standard normal 
random variable that must be solved numerically This integral can be computed 
numerically in a fraction of a second using a precise Gauss–Legendre approach. 
This Appendix derives this quasi-analytical solution.

Denote the logarithm of the risk-neutral price for the next period of time as7

where the expressions for �, � and � are given in Sect. 2. The value of a put option 
with a one-period to maturity and a strike price K is

Using the change of variable ln (P) = � + �� , the above integral can be rewritten in 
terms of the Johnson Su random shock as

where k = lnK−�

�
. Using another change of variable given by � = c + d × sinh

(
z−a

b

)
, 

we rewrite the above expression as a function of standard normal random shock 
given by

where N(⋅) is the distribution function of a standard normal random variable, and 
q = a + b sinh−1

(
k−c

d

)
. The integral in this expression can be computed very effi-

ciently using a Gauss–Legendre numerical integration technique (see Judd 1998 for 
a detailed description). For example, using parameter values from the empirical 

�∗
t+1

=
p∗
t+1

− p∗
t
− �

(
�∗
t+1

)
�∗
t+1

.

p = � + ��

V = e−rE[max (K − P, 0)] = e−r ∫
K

0

(K − P) × f (P) × dP.

V = e−rK ∫
k

−∞

f (�) × d� − e−r ∫
k

−∞

e�+�� × f (�) × d�

V = e−rK × N(q) − e−r ∫
q

−∞

e
�+

(
c+d×sinh

(
z−a

b

))
�
× f (z) × dz

7  In this Appendix, without loss of generality, we drop the time subscript and the stars denoting risk 
neutral quantities.
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section, the Gauss–Legendre approach with 15 integration nodes obtains prices in 
0.0003 s on a standard laptop computer. These prices are identical, up to the fourth 
digit, to prices obtained with a precise Monte Carlo simulation with 100 million 
sample paths.

Appendix 3: Continuation values in the GARCH context

For time-steps T − 2 to 0, the discounted continuation value given by Eq. (10) is com-
puted numerically on a point (i,  j) of the grid using a trapezoid quadrature rule. For 
such computations, it is important to notice that, for GARCH processes, given that 
the stock price is presently in state i, a transition next period to a price in state k will 
automatically determine the variance level that will be inherited from the price move-
ment. Such an inherited variance level is caused by the nature of the GARCH variance 
dynamics which specifies that next period variance is a function of the current shock 
leading to the stock price. More specifically, given that the stock price and variance are 
currently in state (i, j), the shock that would be required to go next period to a price in 
state k can be computed from Eq. (5) with:

This shock implies that the inherited variance level associated with price pk will be

Recall that for the kth price on the grid, there are n different variance levels. The 
inherited variance will almost never be equal to one of these points. We therefore 
choose the kth price with the variance level which is the closest to the inherited vari-
ance. Denoting by li→k the index of the closest variance level, the computation for 
the continuation value at time t on a point (i, j) of the grid can thus be written as:

where wk is the trapezoid rule weight described in Sect. 3.

Appendix 4: Algorithm for continuation values computation

This appendix describes the pseudo-code which can be used to compute a vector of 
(non-discounted) continuation values in variance state j without the need to compute 
and store all the elements of matrix �

(
�j

)
. It also avoids multiplying densities that are 

too close to zero according to a pre-specified threshold value ( 1 × 10−10 for example). 

�̂i→k =
pk − pi − �

(
�j

)

�j

.

�̂2 = �0 + �1�
2

j
+ �2�

2

j

(
�̂i→k − � − �

)2
.

ci,j,t = e−r
m∑
k=1

vk,li→k ,t+1
× f

(
pk ∣ pi, �

2

j

)
× wk
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The following inputs, which can be computed using the equations described in the 
main text, are required by the pseudo-code:

•	 Ftop: an m × 1 vector =
[
f
(
p1 ∣ p1, �

2

j

)
,… , f

(
pm ∣ p1, �

2

j

)]�

•	 Fbot: an m × 1 vector =
[
f
(
p1 ∣ pm, �

2

j

)
,… , f

(
pm ∣ pm, �

2

j

)]�

•	 Ltop: an m × 1 vector =
[
l1→1,… , l1→m

]�
•	 Lbot: an m × 1 vector =

[
lm→1,… , lm→m

]�
•	 nzfirst and nzlast: the number of non-zero elements in Ftop and Fbot
•	 cbeg : an m × 1 vector with the ith element equal to max (i − nzlast + 1, 1)
•	 cend : an m × 1 vector with the ith element equal to min (i + nzfirst − 1,m)

•	 f11: a scalar equal to f
(
p1 ∣ p1, �

2

j

)

•	 w: an m × 1 vector of trapezoid rule weights

The pseudo-code below gives the output in the m × 1 vector of non-discounted continu-
ation values �∶

%first line
for k=cbeg(1):cend(1)

c(1)=c(1)+Ftop(k)*v(k,Ltop(k))*w(k)
end

%lines between first and last
for i=2:m-1

for k=cbeg(i):i-1
c(i)=c(i)+Fbot(m-i+k)*v(k,Lbot(m-i+k))*w(k)

end
c(i)=c(i)+f11*v(i,Ltop(1))*w(i)
for k=i+1:cend(i)

c(i)=c(i)+Ftop(k-i+1)*v(k,Ltop(k-i+1))*w(k)
end

end
%last line
for k=cbeg(m):cend(m)

c(m)=c(m)+Fbot(k)*v(k,Lbot(k))*w(k)
end

Appendix 5: Computing transition probabilities 
with the Markov‑chain approach

The Markov chain algorithm is implemented as follows. First, an m × n grid of 
log stock prices and variances is built using the procedure described in Sect. 3.2. 
Using these points, the m + 1 boundaries of the intervals partitioning the support 
of the log of prices are build with
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and B1 = −1.0 × 106 and Bm+1 = 1.0 × 106. With these, conditional on a point i, j on 
the grid, the probability of going from state 

{
pi, �

2

j

}
 to the cells around state {

pk, �
2

li→k

}
 is computed as

where N(⋅) is the distribution function of a standard normal random variable and
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