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Abstract
A nonlinear MPC framework is presented that is suitable for dynamical systems 
with sampling times in the (sub)millisecond range and that allows for an efficient 
implementation on embedded hardware. The algorithm is based on an augmented 
Lagrangian formulation with a tailored gradient method for the inner minimiza-
tion problem. The algorithm is implemented in the software framework GRAMPC 
and is a fundamental revision of an earlier version. Detailed performance results 
are presented for a test set of benchmark problems and in comparison to other non-
linear MPC packages. In addition, runtime results and memory requirements for 
GRAMPC on ECU level demonstrate its applicability on embedded hardware.
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1  Introduction

Model predictive control (MPC) is one of the most popular advanced control meth-
ods due to its ability to handle linear and nonlinear systems with constraints and 
multiple inputs. The well-known challenge of MPC is the numerical effort that is 
required to solve the underlying optimal control problem (OCP) online. In the recent 
past, however, the methodological as well as algorithmic development of MPC for 
linear and nonlinear systems has matured to a point that MPC nowadays can be 
applied to highly dynamical problems in real-time. Most approaches of real-time 
MPC either rely on suboptimal solution strategies (Scokaert et al. 1999; Diehl et al. 
2004; Graichen and Kugi 2010) and/or use tailored optimization algorithms to opti-
mize the computational efficiency.

Particularly for linear systems, the MPC problem can be reduced to a quadratic 
problem, for which the optimal control over the admissible polyhedral set can be 
precomputed. This results in an explicit MPC strategy with minimal computational 
effort for the online implementation (Bemporad et al. 2002a, b), though this approach 
is typically limited to a small number of state and control variables. An alternative to 
explicit MPC is the online active set method (Ferreau et al. 2008) that takes advan-
tage of the receding horizon property of MPC in the sense that typically only a small 
number of constraints becomes active or inactive from one MPC step to the next.

In contrast to active set strategies, interior point methods relax the complemen-
tary conditions for the constraints and therefore solve a relaxed set of optimality 
conditions in the interior of the admissable constraint set. The MPC software pack-
ages FORCES (PRO) (Domahidi et al. 2012) and fast_mpc (Wang and Boyd 2010) 
employ interior point methods for linear MPC problems. An alternative to active set 
and interior point methods are accelerated gradient methods (Richter et al. 2012) that 
originally go back to Nesterov’s fast gradient method for convex problems (Nesterov 
2003). A corresponding software package for linear MPC is FiOrdOs (Jones et  al. 
2012). An augmented Lagrangian framework for convex quadratic problems as they 
arise in linear MPC is implemented in the toolbox DuQuad (Necoara and Kvamme 
2015) with an analysis of the computational complexity in Nedelcu et al. (2014).

For nonlinear systems, one of the first real-time MPC algorithms was the con-
tinuation/GMRES method (Ohtsuka 2004) that solves the optimality conditions of 
the underlying optimal control problem based on a continuation strategy. The well-
known ACADO Toolkit (Houska et al. 2011) uses the above-mentioned active set 
strategy in combination with a real-time iteration scheme to efficiently solve nonlin-
ear MPC problems. Another recently presented MPC toolkit is VIATOC (Kalmari 
et al. 2015) that employs a projected gradient method to solve the time-discretized, 
linearized MPC problem.

Besides the real-time aspect of MPC, a current focus of research is on embed-
ded MPC, i.e. the neat integration of MPC on embedded hardware with limited res-
sources. This might be field programmable gate arrays (FPGA) (Ling et  al. 2008; 
Käpernick et  al. 2014; Hartley and Maciejowski 2015), programmable logic con-
trollers (PLC) in standard automation systems (Kufoalor et  al. 2014; Käpernick 
and Graichen 2014b) or electronic control units (ECU) in automotive applications 
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(Mesmer et al. 2018). For embedded MPC, several challenges arise in addition to 
the real-time demand. For instance, numerical robustness even at low computational 
accuracy and tolerance against infeasibility are important aspects as well as the abil-
ity to provide fast, possibly suboptimal iterates with minimal computational demand. 
In this regard, it is also desirable to satisfy the system dynamics in the single MPC 
iterations in order to maintain dynamically consistent iterates. Low code complexity 
for portability and a small memory footprint are further important aspects to allow 
for an efficient implementation of MPC on embedded hardware. The latter aspects, 
in particular, require the usage of streamlined, self-contained code rather than highly 
complex MPC algorithms. To meet these challenges, gradient-based algorithms 
become popular choices due to their general simplicity and low computational com-
plexity (Giselsson 2014; Kouzoupis et al. 2015; Necoara 2015). A comprehensive 
overview on literature on first-order methods for embedded optimization can be 
found in the survey papers (Ferreau et al. 2017; Findeisen et al. 2018) as well as in 
the aforementioned references (Nedelcu et al. 2014; Necoara and Kvamme 2015).

Following this motivation, this paper presents a software framework for nonlin-
ear MPC that can be efficiently used for embedded control of nonlinear and highly 
dynamical systems with sampling times in the (sub)millisecond range. The pre-
sented framework is a fundamental revision of the MPC toolbox GRAMPC (Käper-
nick and Graichen 2014a) (Gradient-Based MPC – [græmp′si:]) that was originally 
developed for nonlinear systems with control constraints. The revised algorithm 
of GRAMPC presented in this paper significantly extends the applicability of the 
initial GRAMPC version by accounting for general nonlinear equality and inequal-
ity constraints as well as terminal constraints. Beside “classical” MPC, GRAMPC 
can now be used for MPC on shrinking horizon, general optimal control problems, 
moving horizon estimation and parameter optimization problems including free end 
time problems. The new algorithm employs an augmented Lagrangian formulation 
in connection with a real-time gradient method and tailored line search and mul-
tiplier update strategies that are optimized for a time and memory efficient imple-
mentation on embedded hardware. The performance and effectiveness of augmented 
Lagrangian methods for embedded nonlinear MPC was recently demonstrated for 
various application examples on rapid prototyping and ECU hardware level (Harder 
et al. 2017; Mesmer et al. 2018; Englert and Graichen 2018). Beside the presenta-
tion of the augmented Lagrangian algorithm and the general usage of GRAMPC, 
the paper compares its performance to the nonlinear MPC toolkits ACADO and 
VIATOC for different benchmark problems. Moreover, runtime results are presented 
for GRAMPC on dSPACE and ECU level including its memory footprint to demon-
strate its applicability on embedded hardware.

The paper is organized as follows. Section  2 presents the general problem for-
mulation and exemplarily illustrates its application to model predictive control and 
moving horizon estimation. Section 3 describes the augmented Lagrangian frame-
work in combination with a gradient method for the inner minimization problem. 
Section  4 gives an overview on the structure and usage of GRAMPC. Section  5 
evaluates the performance of GRAMPC for different benchmark problems and in 
comparison to ACADO and VIATOC, before Sect. 6 closes the paper.
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Some norms are used inside the paper, in particular in Sect.  3. The Euclid-
ean norm of a vector x ∈ ℝ

n is denoted by ‖x‖2 , the weighted quadratic norm by 
‖x‖Q = (x�Qx)1∕2 for some positive definite matrix Q , and the scalar product of 
two vectors x, y ∈ ℝ

n is defined as ⟨x, y⟩ = x�y . For a time function x(t) , t ∈ [0, T] 
with T < ∞ , the vector-valued L2-norm is defined by ‖x‖L2 =

�∑n

i=1
‖xi‖L2

�1∕2 
with ‖xi‖L2 =

� ∫ T

0
x2
i
(t) dt

�1∕2 . The supremum-norm is defined componentwise in 
the sense of ‖x‖L∞ =

�‖x1‖L∞ … ‖xn‖L∞
�� with ‖xi‖L∞ = supt∈[0,T] �xi(t)� . The inner 

product is denoted by ⟨x, y⟩ = ∫ T

0
x�(t)y(t) dt using the same (overloaded) ⟨ ⟩-nota-

tion as in the vector case. Moreover, function arguments (such as time t) might be 
omitted in the text for the sake of enhancing readability.

2 � Problem formulation

This section describes the class of optimal control problems that can be solved by 
GRAMPC. The framework is especially suitable for model predictive control and 
moving horizon estimation, as the numerical solution method is tailored to embed-
ded applications. Nevertheless, GRAMPC can be used to solve general optimal con-
trol problems or parameter optimization problems as well.

2.1 � Optimal control problem

GRAMPC solves nonlinear constrained optimal control problems with fixed or free 
end time and potentially unknown parameters. Consequently, the most generic prob-
lem formulation that can be adressed by GRAMPC is given by 

with state x ∈ ℝ
Nx , control u ∈ ℝ

Nu , parameters p ∈ ℝ
Np and end time T ∈ ℝ . 

The cost to be minimized (1a) consists of the terminal and integral cost functions 
V ∶ ℝ

Nx ×ℝ
Np ×ℝ → ℝ and l ∶ ℝ

Nx ×ℝ
Nu ×ℝ

Np ×ℝ → ℝ , respectively. The 
dynamics  (1b) are given in semi-implicit form with the (constant) mass matrix 
M , the nonlinear system function f ∶ ℝ

Nx ×ℝ
Nu ×ℝ

Np ×ℝ → ℝ
Nx , and the ini-

tial state x0 . The system class  (1b) includes standard ordinary differential equa-
tions for M = I as well as (index-1) differential-algebraic equations with singular 

(1a)min
u,p,T

J(u, p, T;x0) = V(x(T), p, T) + ∫
T

0

l(x(t), u(t), p, t) dt

(1b)s.t. Mẋ(t) = f (x(t), u(t), p, t) , x(0) = x0

(1c)g(x(t), u(t), p, t) = 0 , gT (x(T), p,T) = 0

(1d)h(x(t), u(t), p, t) ≤ 0 , hT (x(T), p, T) ≤ 0

(1e)u(t) ∈
[
umin, umax

]

(1f)p ∈
[
pmin, pmax

]
, T ∈

[
Tmin, Tmax

]
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mass matrix M . In addition, (1c) and (1d) account for equality and inequality con-
straints g ∶ ℝ

Nx ×ℝ
Nu ×ℝ

Np ×ℝ → ℝ
Ng and h ∶ ℝ

Nx ×ℝ
Nu ×ℝ

Np ×ℝ → ℝ
Nh as 

well as for the corresponding terminal constraints gT ∶ ℝ
Nx ×ℝ

Np ×ℝ → ℝ
NgT and 

hT ∶ ℝ
Nx ×ℝ

Np ×ℝ → ℝ
NhT , respectively. Finally, (1e) and (1f) represent box con-

straints for the optimization variables u = u(t) , p and T (if applicable).
In comparison to the previous version of the GRAMPC toolbox (Käpernick and 

Graichen 2014a), the problem formulation  (1) supports optimization with respect 
to parameters, a free end time, general state-dependent equality and inequality con-
straints, as well as terminal constraints. While the original GRAMPC version was 
based on a real-time gradient method, the new algorithm presented in this paper 
employs an augmented Lagrangian framework to account for the aforementioned gen-
eral constraints. Furthermore, semi-implicit dynamics with a constant mass matrix 
M can be handled using the Rosenbrock solver RODAS (Hairer and Wanner 1996) 
as numerical integrator. This extends the range of possible applications besides MPC 
to general optimal control, parameter optimization, and moving horizon estimation. 
However, the primary target is embedded model predictive control of nonlinear sys-
tems, as the numerical solution algorithm is optimized for time and memory efficiency.

2.2 � Application to model predictive control

Model predictive control relies on the iterative solution of an optimal control prob-
lem of the form 

with the MPC-internal time coordinate � ∈ [0, T] over the prediction horizon T. 
The initial state value xk is the measured or estimated system state at the current 
sampling instant tk = t0 + k�t , k ∈ ℕ with sampling time 0 < 𝛥t ≤ T  . The first part 
of the computed control trajectory u(�) , � ∈ [0,�t) is used as control input for the 
actual plant over the time interval t ∈ [tk, tk+1) , before OCP (2) is solved again with 
the new initial state xk+1.

A popular choice of the cost functional (2b) is the quadratic form

with the desired setpoint (xdes, udes) and the positive (semi-)definite matrices P , Q , 
R . Stability is often ensured in MPC by imposing a terminal constraint x(T) ∈ �� , 
where the set �� = {x ∈ ℝ

Nx |V(x) ≤ �} for some 𝛽 > 0 is defined in terms of the 

(2a)min
u

J(u; xk) = V(x(T)) + ∫
T

0

l(x(�), u(�), �) d�

(2b)s.t. Mẋ(�) = f (x(�), u(�), t
k
+ �) , x(0) = x

k

(2c)x(�) ∈
[
xmin, xmax

]
, x(T) ∈ ��

(2d)u(�) ∈
[
umin, umax

]

(3)V(x) = ‖x − xdes‖2P , l(x, u) = ‖x − xdes‖2Q + ‖u − udes‖2R
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terminal cost V(x) that can be computed from solving a Lyapunov or Riccati equa-
tion that renders the set �� invariant under a local feedback law (Chen and Allgöwer 
1998; Mayne et al. 2000). In view of the OCP formulation (1), the terminal region as 
well as general box constraints on the state as given in (2c) can be expressed as

Note, however, that terminal constraints are often omitted in embedded or real-time 
MPC in order to minimize the computational effort (Limon et  al. 2006; Graichen 
et al. 2010; Grüne 2013). In particular, real-time feasibility is typically achieved by 
limiting the number of iterations per sampling step and using the current solution 
for warm starting in the next MPC step, in order to incrementally reduce the sub-
optimality over the runtime of the MPC (Diehl et  al. 2004; Graichen et  al. 2010; 
Graichen 2012).

An alternative to the “classical” MPC formulation (2) is shrinking horizon MPC, 
see e.g. Diehl et al. (2005), Skaf et al. (2010) and Grüne and Palma (2014), where 
the horizon length T is shortened over the MPC steps. This can be achieved by for-
mulating the underlying OCP (2) as a free end time problem with a terminal con-
straint gT (x(T)) = x(T) − xdes = 0 to ensure that a desired setpoint xdes is reached in 
finite time instead of the asymptotic behavior of fixed-horizon MPC.

2.3 � Application to moving horizon estimation

Moving horizon estimation (MHE) can be seen as the dual of MPC for state estima-
tion problems. Similar to MPC, MHE relies on the online solution of a dynamic 
optimization problem of the form 

that depends on the history of the control u(t) and measured output y(t) over the past 
time window [tk − T , tk] . The solution of (5) yields the estimate x̂k of the current 
state xk such that the estimated output function (5c) best matches the measured out-
put y(t) over the past horizon T. Further constraints can be added to the formulation 
of (5) to incorporate a priori knowledge.

GRAMPC can be used for moving horizon estimation by handling the sys-
tem state at the beginning of the estimation horizon as optimization variables, i.e. 
p = x̂(tk − T) . In addition, a time transformation is required to map t ∈ [tk − T , tk] 
to the new time coordinate � ∈ [0, T] along with the corresponding coordinate 
transformation

(4)h(x) =

[
x − xmax

xmin − x

]
≤ 0, hT (x) = V(x) − � ≤ 0.

(5a)min
x̂k

J(x̂k;u, y) = ∫
tk

tk−T

‖ŷ(t) − y(t)‖2 dt

(5b)s.t. M ̇̂x(t) = f (x̂(t), u(t), t) , x̂(t
k
) = x̂

k

(5c)ŷ(t) = 𝝈(x̂(t))

(6)x̃(�) = x̂(tk − T + �) − p , ũ(�) = u(tk − T + �) , ỹ(�) = y(tk − T + �)
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with the initial condition x̃(0) = 0 . The optimization problem (5) then becomes 

 The solution p = x̂(tk − T) of (7) and the coordinate transformation (6) are used to 
compute the current state estimate with

where x̃(T) is the end point of the state trajectory returned by GRAMPC. In the 
next sampling step, the parameters can be re-initialized with the predicted estimate 
x̂(tk − T + �t) = p + x̃(�t).

Note that the above time transformation can alternatively be reversed in order to 
directly estimate the current state p = x̂(tk) . This, however, requires the reverse time 
integration of the dynamics, which is numerically unstable if the system is stable in 
forward time. Vice versa, a reverse time transformation is to be preferred for MHE 
of an unstable process.

3 � Optimization algorithm

The optimization algorithm underlying GRAMPC uses an augmented Lagrangian 
formulation in combination with a real-time projected gradient method. Though 
SQP or interior point methods are typically superior in terms of convergence speed 
and accuracy, the augmented Lagrangian framework is able to rapidly provide a sub-
optimal solution at low computational costs, which is important in view of real-time 
applications and embedded optimization. In the following, the augmented Lagran-
gian formulation and the corresponding optimization algorithm are described for 
solving OCP (1). The algorithm follows a first-optimize-then-discretize approach in 
order to maintain the dynamical system structure in the optimality conditions, before 
numerical integration is applied.

3.1 � Augmented Lagrangian formulation

The basic idea of augmented Lagrangian methods is to replace the original optimi-
zation problem by its dual problem, see for example Bertsekas (1996), Nocedal and 
Wright (2006) and Boyd and Vandenberghe (2004) as well as Fortin and Glowinski 
(1983), Ito and Kunisch (1990), Bergounioux (1997), de Aguiar et al. (2016) for cor-
responding approaches in optimal control and function space settings.

The augmented Lagrangian formulation adjoins the constraints (1c), (1d) to the 
cost functional  (1a) by means of multipliers 𝝁̄ = (𝝁g,𝝁h,𝝁gT

,𝝁hT
) and additional 

quadratic penalty terms with the penalty parameters c̄ = (cg, ch, cgT , chT ) . A standard 

(7a)min
p

J(p;ũ, ỹ) = ∫
T

0

‖ŷ(�) − ỹ(�)‖2 d�

(7b)s.t. M ̇̃x(�) = f (x̃(�) + p, ũ(�), t
k
− T + �) , x̃(0) = 0

(7c)ŷ(�) = 𝝈(x̃(�) + p) .

(8)x̂k = p + x̃(T) ,
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approach in augmented Lagrangian theory is to transform the inequalities (1d) into 
equality constraints by means of slack variables, which can be analytically solved for 
(Bertsekas 1996). This leads to the overall set of equality constraints (see Appen-
dix 1 for details) 

 with the transformed inequalities 

and the diagonal matrix syntax C = diag(c) . The vector-valued max-function is to be 
understood component-wise. The equalities (9a) are adjoined to the cost functional

with the augmented terminal and integral cost terms 

and the stacked penalty and multiplier vectors �T = [��

gT
,��

hT
]� , cT = [c�

gT
, c�

hT
]� , 

and � = [��

g
,��

h
]� , c = [c�

g
, c�

h
]� , respectively.

The augmented cost functional (11) allows one to formulate the max–min-problem 

(9a)ḡ(x, u, p, t,𝝁h, ch) =

[
g(x, u, p, t)

h̄(x, u, p, t,𝝁h, ch)

]
= 0

(9b)ḡT (x, p, T ,𝝁hT
, chT ) =

[
gT (x, p, T)

h̄T (x, p, T ,𝝁hT
, chT )

]
= 0

(10a)h̄(x, u, p, t,𝝁h, ch) =max
{
h(x, u, p, t),−C−1

h
𝝁h

}

(10b)h̄T (x, p, T ,𝝁hT
, chT ) =max

{
hT (x, p, T),−C

−1
hT
𝝁hT

}

(11)J̄(u, p, T , 𝝁̄, c̄;x0) = V̄(x, p, T ,𝝁T , cT ) + ∫
T

0

l̄(x, u, p, t,𝝁, c) dt

(12a)
V̄(x, p, T ,𝝁T , cT )

= V(x, p, T) + 𝝁
�

T
ḡT (x, p, T ,𝝁hT

, chT ) +
1

2
‖ḡT (x, p, T ,𝝁hT

, chT )‖2CT

(12b)
l̄(x, u, p, t,𝝁, c)

= l(x, u, p, t) + 𝝁
�ḡ(x, u, p, t,𝝁h, ch) +

1

2
‖ḡ(x, u, p, t,𝝁h, ch)‖2C

(13a)max
𝝁̄

min
u,p,T

J̄(u, p, T , 𝝁̄, c̄;x0)

(13b)s.t. Mẋ(t) = f (x, u, p, t) , x(0) = x0

(13c)u(t) ∈ [umin, umax] , t ∈ [0, T]

(13d)p ∈ [pmin, pmax] , T ∈ [Tmin, Tmax] .
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 Note that the multipliers � = [��

g
,��

h
]� corresponding to the constraints (1d), 

respectively (10), are functions of time t. In the implementation of GRAMPC, the 
corresponding penalties cg and ch are handled time-dependently as well.

If strong duality holds and (u∗, p∗, T∗) and 𝝁̄∗ are primal and dual optimal points, 
they form a saddle-point in the sense of

On the other hand, if (14) is satisfied, then (u∗, p∗, T∗) and 𝝁̄∗ are primal and dual 
optimal and strong duality holds (Boyd and Vandenberghe 2004; Allaire 2007). 
Moreover, if the saddle-point condition is satisfied for the unaugmented Lagrangian, 
i.e. for c̄ = 0 , then it holds for all c̄ > 0 and vice versa (Fortin and Glowinski 1983).

Strong duality typically relies on convexity, which is difficult to investigate for 
general constrained nonlinear optimization problems. However, the augmented 
Lagrangian formulation is favorable in this regard, as the duality gap that may occur 
for unpenalized, nonconvex Lagrangian formulations can potentially be closed by 
the augmented Lagrangian formulation (Rockafellar 1974).

The motivation behind the algorithm presented in the following lines is to solve 
the dual problem  (13) instead of the original one  (1) by approaching the saddle-
point  (14) from both sides. In essence, the max–min-problem (13) is solved in an 
alternating manner by performing the inner minimization with a projected gradient 
method and the outer maximization via a steepest ascent approach. Note that the 
dynamics (13b) are captured inside the minimization problem instead of treating the 
dynamics as equality constraints of the form Mẋ − f (x, u, p, t) = 0 in the augmented 
Lagrangian (Hager 1990). This ensures the dynamical consistency of the computed 
trajectories in each iteration of the algorithm, which is important for an embedded, 
possibly suboptimal implementation.

3.2 � Structure of the augmented Lagrangian algorithm

The basic iteration structure of the augmented Lagrangian algorithm is summarized 
in Algorithm 1 and will be detailed in Sects. 3.3–3.5. The initialization of the algo-
rithm concerns the multipliers 𝝁̄1 and penalties c̄1 as well as the definition of several 
tolerance values that are used for the convergence check (Sect. 3.4) and the update 
of the multipliers and penalties in (17) and (18), respectively.

In the current augmented Lagrangian iteration i, the inner minimization is car-
ried out by solving the OCP  (15) for the current set of multipliers 𝝁̄i and penal-
ties c̄i . Since the only remaining constraints within (15) are box constraints on the 
optimization variables (15c) and (15d), the problem can be efficiently solved by the 
projected gradient method described in Sect. 3.3. The solution of the minimization 
step consists of the control vector ui and of the parameters pi and free end time Ti , 
if these are specified in the problem at hand. The subsequent convergence check in 

(14)J̄(u∗, p∗, T∗, 𝝁̄, c̄; x0) ≤ J̄(u∗, p∗, T∗, 𝝁̄∗, c̄; x0) ≤ J̄(u, p, T , 𝝁̄∗, c̄; x0) .
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Algorithm  1 rates the constraint violation as well as convergence behavior of the 
previous minimization step and is detailed in Sect. 3.4.

If convergence is not reached yet, the multipliers and penalties are updated for 
the next iteration of the algorithm, as detailed in Sect.  3.5. Note that the penalty 
update in (18) relies on the last two iterates of the constraint functions (16). In the 
initial iteration i = 1 and if GRAMPC is used within an MPC setting, the constraint 
functions g0 , h0 , g0

T
 , h0

T
 are warm-started by the corresponding last iterations of the 

previous MPC run. Otherwise, the penalty update is started in iteration i = 2.
Note that if the OCP or MPC problem to be solved is defined without the nonlin-

ear constraints (1c) and (1d), the overall augmented Lagrangian algorithm reduces to 
the projected gradient method for solving the minimization problem (15), for which 
linear convergence results exist under the assumption of convexity (Dunn 1996).

Algorithm 1   Augmented Lagrangian algorithm
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If the end time T is treated as optimization variable as shown in Algorithm 1, the 
evaluation of (18) would formally require to redefine the constraint functions gi−1(t) 
and hi−1(t) , t ∈ [0, Ti−1] from the previous iterations to the new horizon length Ti 
by either shrinkage or extension. This redefinition is not explicitly stated in Algo-
rithm 1, since the actual implementation of GRAMPC stores the trajectories in dis-
cretized form, which implies that only the discretized time vector must be recom-
puted, once the end time Ti is updated.

3.3 � Gradient algorithm for inner minimization problem

The OCP (15) inside the augmented Lagrangian algorithm corresponds to the inner 
minimization problem of the max–min-formulation  (13) for the current iterates of 
the multipliers 𝝁̄i and c̄i . A projected gradient method is used to solve OCP (15) to a 
desired accuracy or for a fixed number of iterations.

The gradient algorithm relies on the solution of the first-order optimality condi-
tions defined in terms of the Hamiltonian

with the adjoint states � ∈ ℝ
Nx . In particular, the gradient algorithm iteratively 

solves the canonical equations, see e.g. Cao et al. (2003), 

consisting of the original dynamics  (20a) and the adjoint dynamics  (20b) in for-
ward and backward time and computes a gradient update for the control in order to 
minimize the Hamiltonian in correspondence with Pontryagin’s Maximum Principle 
(Kirk 1970; Berkovitz 1974), i.e.

If parameters p and/or the end time T are additional optimization variables, the cor-
responding gradients have to be computed as well. Algorithm  2 lists the overall 
projected gradient algorithm for the full optimization case, i.e. for the optimization 
variables (u, p, T) , for the sake of completeness.

(19)H(x, u, p,�, t,�, c) = l̄(x, u, p, t,�, c) + �
�f (x, u, p, t)

(20a)Mẋ = f (x, u, p, t) , x(0) = x0,

(20b)M�
𝝀̇ = −Hx(x, u, p,𝝀, t,𝝁, c) , M�

𝝀(T) = V̄x(x(T), p, T ,𝝁T , cT )

(21)min
u∈[umin,umax]

H
(
x(t), u, p,�(t), t,�(t), c(t)

)
, t ∈ [0, T] .
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The gradient algorithm is initialized with an initial control ui|1(t) and initial 
parameters pi|1 and time length Ti|1 . In case of MPC, these initial values are taken 
from the last sampling step using a warmstart strategy with an optional time shift in 
order to compensate for the horizon shift by the sampling time �t.

Algorithm 2   Augmented Lagrangian algorithm
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The algorithm starts in iteration j = 1 with computing the corresponding state 
trajectory xi|j(t) as well as the adjoint state trajectory �i|j(t) by integrating the 
adjoint dynamics  (22) in reverse time. More detailed information on the integra-
tion schemes can be found in the GRAMPC manual. In the next step, the gradients 
(23) are computed and the step size 𝛼i|j > 0 is determined from the line search prob-
lem (24). The projection functions �u(u) , �p(p) , and �T (T) project the inputs, the 
parameters, and the end time onto the feasible sets (15c) and (15d). For instance, 
�u(u) = [�u,1(u1)…�u,Nu

(uNu
)]� is defined by

The next steps in Algorithm 2 are the updates (25) of the control ui|j+1 , parameters 
pi|j+1 , and end time Ti|j+1 as well as the update of the state trajectory xi|j+1 in (26).

The convergence measure �i|j+1 in (27) rates the relative gradient changes of u , p , 
and T. If the gradient scheme converges in the sense of �i|j+1 ≤ �rel,c with threshold 
𝜀rel,c > 0 or if the maximum number of iterations jmax is reached, the algorithm ter-
minates and returns the last solution to Algorithm 1. Otherwise, j is incremented and 
the gradient iteration continues.

An important component of Algorithm 2 is the line search problem (24), which is per-
formed in all search directions simultaneously. The scaling factors �p and �T can be used to 
scale the step sizes relative to each other, if they are not of the same order of magnitude or 
if the parameter or end time optimization is highly sensitive. GRAMPC implements two 
different line search strategies, an adaptive and an explicit one, in order to solve (24) in an 
accurate and robust manner without involving too much computational load.

The adaptive strategy evaluates the cost functional  (24) for three different step 
sizes, i.e. (𝛼i, J̄i) , i = 1, 2, 3 with 𝛼1 < 𝛼2 < 𝛼3 , in order to compute a polynomial fit-
ting function Φ(�) of the form

where the constants pi are computed from the test points (𝛼i, J̄i) , i = 1, 2, 3 . The 
approximate step size can then be analytically derived by solving

The interval [�1, �3] is adapted in the next gradient iteration, if the step size �j is 
close to the interval’s borders, see Käpernick and Graichen (2014a) for more details.

Depending on the OCP or MPC problem at hand, the adaptive line search 
method may not be suited for time-critical applications, since the approximation of 
the cost function (29) requires to integrate the system dynamics (15b) and the cost 
integral  (15a) three times. This computational load can be further reduced by an 
explicit line search strategy, originally discussed in Barzilai and Borwein (1988) and 
adapted to the optimal control case in Käpernick and Graichen (2013). Motivated 
by the secant equation in quasi-Newton methods (Barzilai and Borwein 1988), this 
strategy minimizes the difference between two updates of the optimization variables 

(28)�u,i(ui) =

⎧
⎪⎨⎪⎩

ui if ui ∈ (umin,i, umax,i)

umin,i if ui ≤ umin,i ,

umax,i if ui ≥ umax,i

i = 1,… ,Nu .

(29)Φ(�) = p0 + p1� + p2�
2 ,

(30)�i|j = argmin
�∈[�1,�3]

Φ(�) .
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(u, p, T) for the same step size and without considering the corresponding box con-
straints (15c) and (15d). The explicit method solves the problem

where � denotes the difference between the last and current iterate, e.g. 
�ui|j = ui|j − ui|j−1 . The analytic solution is given by

Alternatively, the minimization

can be carried out, similar to (31), leading to the corresponding solution

Both explicit formulas (32) and (33) are implemented in GRAMPC as an alternative 
to the adaptive line search strategy.

3.4 � Convergence criterion

The gradient scheme in Algorithm 2 solves the inner minimization problem (15) of 
the augmented Lagrangian algorithm and returns the solution (ui, pi, Ti) as well as the 
maximum relative gradient �i that is computed in (27) and used to check convergence 
inside the gradient algorithm. The outer augmented Lagrangian iteration in Algo-
rithm 1 also uses this criterion along with the convergence check of the constraints, i.e.

The thresholds �g, �gT , �h, �hT are vector-valued to rate each constraint individually. 
If the maximum number of augmented Lagrangian iterations is reached, i.e. i = imax , 
the algorithm terminates in order to ensure real-time feasibility. Otherwise, i is 
incremented and the next minimization of problem (15) is carried out.

Note that the convergence criterion is typically deactivated in MPC applications and a 
fixed iteration count is used to ensure real-time feasibility. The last solution is then used 
as warm-start in the next MPC step. The incremental improvement of this suboptimal 
solution strategy in a real-time MPC setting is investigated e.g. in Diehl et al. (2004) and 

(31)
min
𝛼>0

‖‖ui|j+1 − ui|j‖‖2L2 + ‖‖pi|j+1 − pi|j‖‖22 +
(
Ti|j+1 − Ti|j)2

= min
𝛼>0

‖‖𝛥ui|j − 𝛼𝛥di|j
u
‖‖2L2 + ‖‖𝛥pi|j − 𝛾p𝛼𝛥d

i|j
p
‖‖22 + ‖‖𝛥Ti|j − 𝛾T𝛼𝛥d

i|j
T
‖‖22 .

(32)�i�j =
⟨�ui�j,�di�j

u
⟩ + �p⟨�pi�j,�di�jp ⟩ + �T�T

i�j�di�j
T

⟨�di�j
u
,�di�j

u
⟩ + �2

p
⟨�di�j

p
,�di�j

p
⟩ + �2

T

�
�d

i�j
T

�2 .

min
𝛼>0

‖‖𝛼𝛥ui|j − 𝛥di|j
u
‖‖2L2 + ‖‖𝛾p𝛼𝛥pi|j − 𝛥di|j

p
‖‖22 +

(
𝛾T𝛼𝛥T

i|j − 𝛥d
i|j
T

)2

(33)�i�j =
⟨�ui�j,�ui�j⟩ + �p⟨�pi�j,�pi�j⟩ + �T

�
�Ti�j�2

⟨�ui�j,�di�j
u
⟩ + �2

p
⟨�pi�j,�di�j

p
⟩ + �2

T
�Ti�j�di�j

T

.

(34)
[ |gi

T
|

max{h̄
i

T
, 0}

]
≤
[
𝜺gT

𝜺hT

]
∧ max

t∈[0,T]

[ |gi(t)|
max{h̄

i
(t), 0}

]
≤
[
𝜺g

𝜺h

]
∧ 𝜂i ≤ 𝜀rel,c .
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Graichen and Kugi (2010). In particular, it is shown in Graichen and Kugi (2010) that 
incremental improvement and asymtptotic stability is ensured for a sufficient number of 
iterations provided that the underlying optimization is linearly convergent.

If the convergence criterion is replaced by a fixed number of iterations, conver-
gence of the augmented Lagrangian algorithm cannot be guaranteed in general, 
since the saddle-point condition (14) is based on the optimal solution of the inner 
problem. To remedy this issue, the multiplier update is adapted accordingly, which 
is explained in detail in the next section.

3.5 � Update of multipliers and penalties

The multiplier update  (17) in Algorithm  1 is carried out via a steepest ascent 
approach, whereas the penalty update (18) uses an adaptation strategy that rates the 
progress of the last two iterates. In more detail, the multiplier update function for a 
single equality constraint gi ∶= g(xi, ui, pi, t) is defined by

The steepest ascent direction is the residual of the constraint gi with the penalty ci
g
 

serving as step size parameter. The additional damping factor 0 ≤ � ≤ 1 is intro-
duced to increase the robustness of the multiplier update in the augmented Lagran-
gian scheme. In the GRAMPC implementation, the multipliers are additionally 
limited by an upper bound �max , in order to avoid unlimited growth and numerical 
stability issues. The update (35) is skipped if the constraint is satisfied within the 
tolerance �g or if the gradient method is not sufficiently converged, which is checked 
by the maximum relative gradient �i , cf. (27), and the update threshold 𝜀rel,u > 0 . 
GRAMPC uses a larger value for �rel,u than the convergence threshold �rel,c of the 
gradient scheme in Algorithm 2. This accounts for the case that the gradient algo-
rithm might not have converged to the desired tolerance before the maximum num-
ber of iterations jmax is reached, e.g. in real-time MPC applications, where only one 
or two gradient iterations might be applied. In this case, 𝜀rel,u ≫ 𝜀rel,c ensures that 
the multiplier update is still performed provided that at least “some” convergence 
was reached by the inner minimization.

The penalty ci
g
 corresponding to the equality constraint gi is updated according to 

the heuristic update function

that is basically motivated by the LANCELOT package (Conn et  al. 1992; Nocedal 
and Wright 2006). The penalty ci

g
 is increased by the factor �in ≥ 1 , if the last gradi-

ent scheme converged, i.e. �i ≤ �rel,u , but insufficient progress (rated by 𝛾in > 0 ) was 
made by the constraint violation compared to the previous iteration i − 1 . The penalty 
is decreased by the factor �de ≤ 1 if the constraint gi is sufficiently satisfied within its 

(35)𝜁g(𝜇
i
g
, ci

g
, gi, 𝜀g) =

{
𝜇i
g
+ (1 − 𝜌)ci

g
gi if ||gi|| > 𝜀g ∧ 𝜂i ≤ 𝜀rel,u

𝜇i
g

else .

(36)�g(c
i
g
, gi, gi−1, �g) =

⎧
⎪⎨⎪⎩

�inc
i
g

if ��gi�� ≥ max
�
�in

��gi−1��, �g
�
∧ �i ≤ �rel,u

�de c
i
g
else if ��gi�� ≤ �de �g

ci
g

else
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tolerance with 0 < 𝛾de < 1 . The setting �de = �in = 1 can be used to keep ci
g
 constant. 

Similar to the multiplier update (35), GRAMPC restricts the penalty to upper and lower 
bounds cmin ≤ ci

g
≤ cmax , in order to avoid negligible values as well as unlimited growth 

of ci
g
 . The lower penalty bound cmin is particularly relevant in case of MPC applications, 

where typically only a few iterations are performed in each MPC step. GRAMPC pro-
vides a support function that computes an estimate of cmin for the MPC problem at hand.

The updates (35) and (36) define the vector functions �g , �gT and �g , �gT in (17a) 
and (18a) with Ng and NgT

 components, corresponding to the number of equality and 
terminal equality constraints. Note that the multipliers for the equality and inequal-
ity constraints are time-dependent, i.e. �g(t) and �h(t) , which implies that the func-
tions �g and �g , resp. (35) and (36), are evaluated pointwise in time.

The inequality constrained case is handled in a similar spirit. For a single inequal-
ity constraint h̄i ∶= h̄(xi, ui, pi, t,𝜇h, ch) , cf. (10a), the multiplier and penalty updates 
are defined by

and

and constitute the vector functions �h , �hT and �h , �hT in (17b) and (18b) with Nh and 
NhT

 components. The condition h̄i < 0 in (37) ensures that the Lagrangian multiplier 
�i
h
 is reduced for inactive constraints, which corresponds to either hi < 0 or −�h

ch
 in 

view of the transformation (10).

4 � Structure and usage of GRAMPC

This section describes the framework of GRAMPC and illustrates its general usage. 
GRAMPC is designed to be portable and executable on different operating systems and 
hardware without the use of external libraries. The code is implemented in plain C with 
a user-friendly interface to C++, Matlab/Simulink, and dSpace. The following lines give 
an overview of GRAMPC and demonstrate how to implement and solve a problem.

4.1 � General structure

Figure 1 shows the general structure of GRAMPC and the steps that are necessary to 
compile an executable GRAMPC project. The first step in creating a new project is 
to define the problem using the provided C function templates, which will be detailed 
more in Sec 4.2. The user has the possibility to set problem specific parameters and 
algorithmic options concerning the numerical integrations in the gradient algorithm, 
the line search strategy as well as further preferences, also see Sec 4.3.

(37)𝜁h(𝜇
i
h
, ci

h
, h̄i, 𝜀h) =

{
𝜇i
h
+ (1 − 𝜌)ci

h
h̄i if

(
h̄i > 𝜀h ∧ 𝜂i ≤ 𝜀rel,u

)
∨ h̄i < 0

𝜇i
h

else

(38)𝜉h(c
i
h
, h̄i, h̄i−1, 𝜀h) =

⎧
⎪⎨⎪⎩

𝛽in c
i
h
if h̄i ≥ max

�
𝛾inh̄

i−1, 𝜀h
�
∧ 𝜂i ≤ 𝜀rel,u

𝛽de c
i
h
else if h̄i ≤ 𝛾de 𝜀h

ci
h

else
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A specific problem can be parameterized and numerically solved using C/C++, 
Matlab/Simulink, or dSpace. A closer look on this functionality is given in Fig. 2. 
The workspace of a GRAMPC project as well as algorithmic options and parameters 
are stored by the structure variable grampc. Several parameter settings are prob-
lem-specific and need to be provided, whereas other values are set to default values. 
A generic interface allows one to manipulate the grampc structure in order to set 
algorithmic options or parameters for the problem at hand. The functionalities of 
GRAMPC can be manipulated from Matlab/Simulink by means of mex routines that 
are wrappers for the corresponding C functions. This allows one to run a GRAMPC 
project with different parameters and options without recompilation.

4.2 � Problem definition

The problem formulation in GRAMPC follows a generic structure. The essential 
steps for a problem definition are illustrated for the following MPC example 

Fig. 1   General structure of GRAMPC (grey: C code, white: Matlab level)

Fig. 2   Interfacing of GRAMPC to C (grey) and Matlab (white). Each GRAMPC function written in plain 
C has a corresponding Cmex function
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with �x = x − xdes , �u = u − udes , and the weights

 The dynamics (39b) are a simplified linear model of a single axis of a ball-on-plate sys-
tem (Richter 2012) that is also included in the testbench of GRAMPC (see Sect. 5). The 
horizon length and the sampling time are set to T = 0.3 s and �t = 10ms, respectively.

The problem formulation (39) is provided in the user template probfct.c. 
The following listing gives an expression of the function structure and the problem 
implementation for the ball-on-plate example (39).

ctypeRNum *xdes , typeUSERPARAM *userparam)
{

typeRNum* param = (typeRNum *) userparam;
out [0] = 0.5*( param [3]*(x[0]-xdes [0])*(x[0]-xdes [0]) + \

param [4]*(x[1]-xdes [1])*(x[1]-xdes [1]) );
}

/* Inequality constraints h(t,x(t),u(t),p,uperparam) <= 0 */
void hfct(typeRNum *out , ctypeRNum t, ctypeRNum *x, ctypeRNum *u,

ctypeRNum *p, typeUSERPARAM *userparam)
{

typeRNum* param = (typeRNum *) userparam;
out [0] = param [5] - x[0];
out [1] = -param [6] + x[0];
out [2] = param [7] - x[1];
out [3] = -param [8] + x[1];

}

(39a)min
u(⋅)

J(u; xk) =
1

2
�x�(T)P�x(T) +

1

2 ∫
T

0

�x�(T)Q�x + R�u2 d�

(39b)s.t.

[
ẋ1

ẋ2

]
=

[
0 1

0 0

] [
x1

x2

]
+

[
−0.04

−7.01

]
u ,

[
x1(0)

x2(0)

]
=

[
x
k,1

x
k,2

]

(39c)
[
−0.2

−0.1

]
≤
[
x1
x2

]
≤
[
0.01

0.1

]
, |u| ≤ 0.0524

(39d)P = Q =

[
100 0

0 10

]
, R = 1 .
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The naming of the functions follows the nomenclature of the general OCP for-
mulation  (1), except for the function ocp_dim, which defines the dimensions of 
the optimization problem. Problem specific parameters can be used inside the sin-
gle functions via the pointer userparam. For convenience, the desired setpoint 
(xdes,udes) to be stabilized by the MPC is provided to the cost functions sepa-
rately and therefore does not need to be passed via userparam.

In addition to the single OCP functions, GRAMPC requires the derivatives w.r.t. 
state x , control u , and if applicable w.r.t. the optimization parameters p and end time 
T, in order to evaluate the optimality conditions in Algorithm 2. Jacobians that occur 
in multiplied form, see e.g. ( �f

�x

)�
� in the adjoint dynamics (22), have to be provided 

in this representation. This helps to avoid unnecessary zero multiplications in case 
of sparse Jacobians. The following listing shows an excerpt of the corresponding 
gradient functions.

/* Multiplied Jacobian (df/dx)^T * mult */
void dfdx_mult(typeRNum *out , ctypeRNum t, ctypeRNum *x, ctypeRNum *mult ,

ctypeRNum *u, ctypeRNum *p, typeUSERPARAM *userparam)
{

out [0] = 0;
out [1] = mult [0];

}
...
/* Jacobian dl/dx */
void dldx(typeRNum *out , ctypeRNum t, ctypeRNum *x, ctypeRNum *u, ctypeRNum

*p, ctypeRNum *xdes , ctypeRNum *udes , typeUSERPARAM *userparam)
{

typeRNum* param = (typeRNum *) userparam;
out [0] = param [0]*(x[0]-xdes [0]);
out [1] = param [1]*(x[1]-xdes [1]);

}
...
/* Multiplied Jacobian (dh/dx)^T * mult */
void dhdx_mult(typeRNum *out , ctypeRNum t, ctypeRNum *x, ctypeRNum *u,

ctypeRNum *p, ctypeRNum *mult , typeUSERPARAM *userparam)
{

out [0] = -mult [0]+ mult [1];
out [1] = -mult [2]+ mult [3];

}
...

4.3 � Calling procedure and options

GRAMPC provides several key functions that are required for initializing and call-
ing the MPC solver. As shown in Fig.  2, there exist mex wrapper functions that 
ensure that the interface for interacting with GRAMPC is largely the same under C/
C++ and Matlab.

The following listing gives an idea on how to initialize GRAMPC and how to run 
a simple MPC loop for the ball-on-plate example under Matlab.
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% user parameters
userparam = [100 ,10 ,1 ,100 ,10 , -0.2 ,0.01 , -0.1 ,0.1]

% initialization
grampc = grampc_init_Cmex(userparam );

% set parameters
grampc = grampc_setparam_Cmex (grampc ,’x0 ’ ,[0.1;0.01]);
grampc = grampc_setparam_Cmex (grampc ,’xdes ’ ,[ -0.2;0]);
grampc = grampc_setparam_Cmex (grampc ,’u0 ’,0);
grampc = grampc_setparam_Cmex (grampc ,’udes ’,0);
grampc = grampc_setparam_Cmex (grampc ,’Thor ’ ,0.3);
grampc = grampc_setparam_Cmex (grampc ,’dt ’ ,0.01);
grampc = grampc_setparam_Cmex (grampc ,’t0 ’,0);
grampc = grampc_setparam_Cmex (grampc ,’umin ’ ,0.0524);
grampc = grampc_setparam_Cmex (grampc ,’umax ’ , -0.0524);

% set options
grampc = grampc_setopt_Cmex(grampc ,’Nhor ’,20);
grampc = grampc_setopt_Cmex(grampc ,’MaxGradIter ’,2);
grampc = grampc_setopt_Cmex(grampc ,’MaxMultIter ’,3);
grampc = grampc_setopt_Cmex(grampc ,’InequalityConstraints ’,’on ’);
grampc = grampc_setopt_Cmex(grampc ,’Integrator ’,’heun ’);

% MPC loop
for i = 1:iMPC
% run GRAMPC
grampc = grampc_run_Cmex(grampc );
...
% set new initial state
grampc = grampc_setparam_Cmex (grampc ,’x0 ’,grampc.sol.xnext);
...
end
...

The listing also shows some of the algorithmic settings, e.g. the number of dis-
cretization points Nhor for the horizon [0, T], the maximum number of iterations 
(imax, jmax) for Algorithm 1 and 2, or the choice of integration scheme for solving 
the canonical equations (22), (26). Currently implemented integration methods are 
(modified) Euler, Heun, 4th order Runge–Kutta as well as the solver RODAS (Hairer 
and Wanner 1996) that implements a 4th order Rosenbrock method for solving 
semi-implicit differential-algebraic equations with possibly singular and sparse mass 
matrix M , cf. the problem definition in (1). The Euler and Heun methods use a fixed 
step size depending on the number of discretization points (Nhor), whereas RODAS 
and Runge–Kutta use adaptive step size control. The choice of integrator therefore 
has significant impact on the computation time and allows one to optimize the algo-
rithm in terms of accuracy and computational efficiency. Further options not shown 
in the listing are e.g. the settings (xScale,xOffset) and (uScale,uOffset) in 
order to scale the input and state variables of the optimization problem.

The initialization and calling procedure for GRAMPC is largely the same under 
C/C++ and Matlab. One exception is the handling of user parameters in user-
param. Under C, userparam can be an arbitrary structure, whereas the Matlab 
interface restricts userparam to be of type array (of arbitrary length). Moreover, 
the Matlab call of grampc_run_Cmex returns an updated copy of the grampc 
structure as output argument in order to comply with the Matlab policy to not 
manipulate input arguments.
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5 � Performance evaluation

The intention of this section is to evaluate the performance of GRAMPC under real-
istic conditions and for meaningful problem settings. To this end, an MPC testbench 
suite is defined to evaluate the computational performance in comparison to other 
state-of-the-art MPC solvers and to demonstrate the portability of GRAMPC to real-
time and embedded hardware. The remainder of this section demonstrates the han-
dling of typical problems from the field of MPC, moving horizon estimation and 
optimal control.

5.1 � General MPC evaluation

The MPC performance of GRAMPC is evaluated for a testbench that covers a wide 
range of meaningful MPC applications. For the sake of comparison, the two MPC 
toolboxes ACADO and VIATOC are included in the evaluation, although it is not 
the intention of this section to rigorously rate the performance against other solv-
ers, as such a comparison is difficult to carry out objectively. The evaluation should 
rather give a general impression about the performance and properties of GRAMPC. 
In addition, implementation details are presented for running the MPC testbench 
examples with GRAMPC on dSpace and ECU level.

5.1.1 � Benchmarks

Table 1 gives an overview of the considered MPC benchmark problems in terms of 
the system dimension, the type of constraints (control/state/general nonlinear con-
straints), the dynamics (linear/nonlinear and explicit/semi-implicit) as well as the 
respective references. The MPC examples are evaluated with GRAMPC as well as 
with ACADO Toolkit (Houska et al. 2011) and VIATOC (Kalmari et al. 2015).

The testbench includes three linear problems (mass-spring-damper, helicopter, 
ball-on-plate) and one semi-implicit reactor example, where the mass matrix M in 
the semi-implicit form (1b) is computed from the original partial differential equa-
tion (PDE) using finite elements, also see Sect. 5.2.3. The nonlinear chain problem 
is a scalable MPC benchmark with m masses. Three further MPC examples are 
defined with nonlinear constraints. The permanent magnet synchronous machine 
(PMSM) possesses spherical voltage and current constraints in dq-coordinates, 
whereas the crane example with three degrees of freedom (DOF) and the vehi-
cle problem include a nonlinear constraint to simulate a geometric restriction that 
must be bypassed (also see Sect. 5.2.1 for the crane example). Three of the prob-
lems (PMSM, 2D-crane, vehicle) are not evaluated with VIATOC, as nonlinear con-
straints cannot be handled by VIATOC at this stage.

For the GRAMPC implementation, most options are set to their default values. 
The only adapted parameters concern the horizon length T, the number of support-
ing points for the integration scheme and the integrator itself as well as the number 
of augmented Lagrangian and gradient iterations, imax and jmax , respectively. Default 
settings are used for the multiplier and penalty updates for the sake of consistency, 
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see Algorithm  1 as well as Sect.  3.5. Note, however, that the performance and 
computation time of GRAMPC can be further optimized by tuning the parameters 
related to the penalty update to a specific problem. All benchmark problems listed in 
Table 1 are available as example implementations in GRAMPC.

ACADO and VIATOC are individually tuned for each MPC problem by varying 
the number of shooting intervals and iterations in order to either achieve minimum 
computation time (setting “speed”) or optimal performance in terms of minimal cost 
at reasonable computational load (setting “optimal”). The solution of the quadratic 
programs of ACADO was done with qpOASES (Ferreau et al. 2014).

The single MPC projects are integrated in a closed-loop simulation environment 
with a fourth-order Runge–Kutta integrator with adaptive step size to ensure an 
accurate system integration regardless of the integration schemes used internally by 
the MPC toolboxes. The MPC is initialized with the stationary solution at the start of 
the simulation scenario. The evaluation was carried out on a Windows 10 machine 
with Intel(R) Core(TM) i5-5300U CPU running at 2.3GHz using the Microsoft Vis-
ual C++ 2013 Professional (C) compiler. Each simulation was run multiple times to 
obtain a reliable average computation time.

Table 1   Overview of MPC benchmark problems

Problem Dimensions Constraints Dynamics References

Nx Nu u x nonl. semi-impl. Linear

Mass-spring-damper 10 2 Yes No No No Yes Käpernick (2016)
Motor (PMSM) 4 2 Yes Yes Yes No No Englert and Grai-

chen (2018)
Nonl. chain ( m = 4) 21 3 Yes No No No No Kirches et al. (2012)

Nonl. chain ( m = 6) 33 3 Yes No No No No Kirches et al. (2012)

Nonl. chain ( m = 8) 45 3 Yes No No No No Kirches et al. (2012)

Nonl. chain ( m = 10) 57 3 Yes No No No No Kirches et al. (2012)
2D-Crane 6 2 Yes Yes Yes No No Käpernick and Grai-

chen (2013)
3D-Crane 10 3 Yes No No No No Graichen et al. 

(2010)
Helicopter 6 2 Yes Yes No No Yes Tøndel and Johansen 

(2002)
Quadrotor 9 4 Yes No No No No Käpernick and Grai-

chen (2014a)
VTOL 6 2 Yes No No No No Sastry (2013)
Ball-on-plate 2 1 Yes Yes No No Yes Richter (2012)
Vehicle 5 2 Yes No Yes No No Werling et al. (2012)
CSTR reactor 4 2 Yes No No No No Rothfuss et al. 

(1996)
PDE reactor 11 1 Yes No No Yes No Utz et al. (2010)
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5.1.2 � Evaluation results

Table 2 shows the evaluation results for the benchmark problems in terms of com-
putation time and cost value integrated over the whole time interval of the simula-
tion scenario. The cost values are normalized to the best one of each benchmark 
problem. The results for ACADO and VIATOC are listed for the settings “speed” 
and “optimal”, as mentioned above. The depicted computation times are the mean 
computation times, averaged over the complete time horizon of the simulation sce-
nario. The best values for computation time and performance (minimal cost) for 
each benchmark problem are highlighted in bold font.

The linear MPC problems (mass-spring-damper, helicopter, ball-on-plate) with 
quadratic cost functions can be tackled well by VIATOC and ACADO due to their 
underlying linearization techniques. The PDE reactor problem contains a stiff sys-
tem dynamics in semi-implicit form. ACADO can handle such problems well using 
its efficient integration schemes, whereas VIATOC relies on fixed step size integra-
tors and therefore requires a relatively large amount of discretization points. While 
GRAMPC achieves the fastest computation time, the cost value of both ACADO 
settings as well as the VIATOC optimal setting is lower. A similar cost function, 
however, can be achieved by GRAMPC when deviating from the default parameters.

In case of the state constrained 2D-crane problem, the computation time is higher 
for ACADO than for GRAMPC. This appears to be due to the fact that almost over 
the complete simulation time a nonlinear constraint of a geometric object to be 
bypassed is active. A closer look at this problem is taken in Sect. 5.2.1.

The CSTR reactor example possesses state and control variables in different orders 
of magnitude and therefore benefits from scaling. Since GRAMPC supports scaling 
natively, the computation time is faster than for VIATOC, where the scaling would 
have to be done manually. Due to the Hessian approximation used by ACADO, it is far 
less affected by the different scales in the states and controls. Figure 3 shows the state 
and control trajectories of the three different solvers for the CSTR example. As indi-
cated by the values of the cost function in Table 2, the computed trajectories are quite 
similar. Only for the first hour, small differences can be observed for the speed settings 
of ACADO and VIATOC. This can also be seen in Fig. 4, where the cost function 
value in each MPC step is shown. Slightly different values can be observed, but after 
about 0.4 h all solvers reach the same stationary value.

A large difference in the cost values occurs for the VTOL example (Vertical Take-
Off and Landing Aircraft). Due to the nonlinear dynamics and the corresponding cou-
pling of the control variables, it seems that the gradient method underlying the minimi-
zation steps of GRAMPC is more accurate and robust when starting in an equilibrium 
position than the iterative linearization steps undertaken by ACADO and VIATOC.

The scaling behavior of the MPC schemes w.r.t. the problem dimension is inves-
tigated for the nonlinear chain in Table 2. Four different numbers of masses are con-
sidered, corresponding to 21–57 state variables and three controls. Although the 
algorithmic complexity of the augmented Lagrangian/gradient projection algorithm 
of GRAMPC grows linearly with the state dimension, this is not exactly the case for 
the nonlinear chain, as the stiffness of the dynamics increases for a larger number 
of masses, which leads to smaller step sizes of the adaptive Runge–Kutta integrator 
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that was used in GRAMPC for this problem. ACADO shows a more significant 
increase in computation time for larger values of m, which was to be expected in 
view of the SQP algorithm underlying ACADO. The computation time for VIATOC 
is worse for this example, since only fixed step size integrators are available in the 
current release, which requires to increase the number of discretization points manu-
ally. Figure 5 shows a logarithmic plot of the computation time for all three MPC 
solvers plotted over the number of masses of the nonlinear chain.

The computation times shown in Table 2 are average values and therefore give 
no direct insight into the real-time feasibility of the MPC solvers and the varia-
tion of the computational load over the single sampling steps. To this end, Fig. 6 
shows accumulation plots of the computation time per MPC step for three selected 
problems of the testbench. The computation times were evaluated after 30 succes-
sive runs to obtain reliable results. The plots show that the computation time of 
GRAMPC is almost constant for each MPC iteration, which is important for embed-
ded control applications and to give tight upper bounds on the computation time for 

4 6 8 1010−1

100

101

102

Number of masses m

t C
P
U

[m
s]

GRAMPC ACADO (speed) ACADO (optimal)
VIATOC (speed) VIATOC (optimal)

Fig. 5   Computation time for the nonlinear chain example (also see Table 2)
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real-time guarantees. ACADO and VIATOC show a larger variation of the computa-
tion time over the iterations, which is mainly due to the active set strategy that both 
solvers follow and the varying number of QP iterations in each real-time iteration of 
ACADO, c.f. Houska et al. (2011).

In conclusion, it can be said that GRAMPC has overall fast and real-time feasible 
computation times for all benchmark problems, in particular for nonlinear systems 
and in connection with (nonlinear) constraints. Furthermore, GRAMPC scales well 
with increasing system dimension.

5.1.3 � Embedded realization

In addition to the general MPC evaluation, this section evaluates the computation 
time and memory requirements of GRAMPC for the benchmark problems on real-
time and embedded hardware. GRAMPC was implemented on a dSpace MicroLab-
box (DS1202) with a 2GHz Freescale QolQ processor as well as on the micron-
troller RH850/P1M from Renesas with a CPU frequency of 160MHz , 2MB program 
flash and 128 kB RAM. This processor is typically used in electronic control units 
(ECU) in the automotive industry. The GRAMPC implementation on this microcon-
troller therefore can be seen as a prototypical ECU realization. As it is commonly 
done in embedded systems, GRAMPC was implemented using single floating point 
precision on both systems due to the floating point units of the processors.

Table 3 lists the computation time and RAM memory footprint of GRAMPC on 
both hardware platforms for the testbench problems in Tables 1 and 2. The settings 
of GRAMPC are the same as in the previous section, except for the floating point 
precision. Due to the compilation size limit of the ECU compiler ( < 10  kB), the 
nonlinear chain examples as well as the PDE reactor could not be compiled on the 
ECU.

The computation times on the dSpace hardware are below the sampling time for 
all example problems. The same holds for the ECU implementation, except for the 
2D-crane, the PMSM, and the VTOL example. However, as mentioned before, tun-
ing of the algorithm can further reduce the runtime, as most of the multiplier and 
penalty update parameters are taken as default. Note that there is no constant scaling 
factor between the computation times on dSpace and ECU level, which is probably 
due to the different realization of the math functions by the respective floating point 
unit/compiler1 on the different hardware.

The required memory is below 9 kB for all examples, except for the nonlinear 
chain and the PDE reactor, which is less than 7% of the available RAM on the con-
sidered ECU. Although the nonlinear chain and the PDE reactor could not be com-
piled on the ECU as mentioned above, the memory usage as well as the computation 
time increase only linearly with the size of the system (using the same GRAMPC 
settings). Overall, the computational speed and the small memory footprint demon-
strate the applicability of GRAMPC for embedded systems.

1  For example software or hardware realization of sine or cosine functions.
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5.2 � Application examples

This section discusses some application examples, including a more detailed view 
on two selected problems from the testbench collection (state constrained and semi-
implicit problem), a shrinking horizon MPC application, an equality constrained 
OCP as well as a moving horizon estimation problem.

5.2.1 � Nonlinear constrained model predictive control

The 2D-crane example in Tables 1 and 2 is a particularly challenging one, as it is 
subject to a nonlinear constraint that models the collision avoidance of an object or 
obstacle. A schematic representation of the overhead crane is given in Fig. 7. The 
crane has three degrees-of-freedom and the nonlinear dynamics read as (Käpernick 
and Graichen 2013)

Table 3   Computation time and memory usage for the embedded realization of GRAMPC on dSpace 
hardware (DS1202) and ECU level (Renesas RH850/P1M) with single floating point precision

Problem t
DSpace (ms) t

ECU
 (ms) Memory (kB)

Mass-spring-damper 0.24 4.00 6.5
Motor (PMSM) 0.13 2.10 2.4
Nonl. chain ( m = 4) 4.79 – 12.9
Nonl. chain ( m = 6) 9.62 – 18.5
Nonl. chain ( m = 8) 17.50 – 24.1
Nonl. chain ( m = 10) 24.20 – 29.8
2D-Crane 0.18 1.65 4.5
3D-Crane 0.31 3.05 7.3
Helicopter 0.11 1.88 5.8
Quadrotor 0.21 1.60 4.4
VTOL 0.37 2.80 6.2
Ball-on-plate 0.05 0.92 2.0
Vehicle 0.25 2.69 3.6
CSTR reactor 0.43 6.81 5.1
PDE reactor 6.48 – 15.0
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Fig. 7   Schematic representation of the overhead crane (left) and simulated crane movement from the ini-
tial state to the desired setpoint (right)
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with the gravitational constant g. The system state x = [sC, ṡC, sR, ṡR,𝜙, 𝜙̇]
� ∈ ℝ

6 
comprises the cart position sC , the rope length sR , the angular deflection � and the 
corresponding velocities. The two controls u ∈ ℝ

2 are the cart acceleration u1 and 
the rope acceleration u2 , respectively.

The cost functional (2b) consists of the integral part

which penalizes the deviation from the desired setpoints xdes ∈ ℝ
6 and udes ∈ ℝ

2 
respectively. The weight matrices are set to Q = diag(1, 2, 2, 1, 1, 4) and 
R = diag(0.05, 0.05) (omitting units). The controls and angular velocity are subject 
to the box constraints |ui| ≤ 2ms−2, i ∈ 1, 2 and |𝜙̇| ≤ 0.3 rad s−1, i ∈ 1, 2 . In addi-
tion, the nonlinear inequality constraint

is imposed, which represents a geometric security constraint, e.g. for trucks, over 
which the load has to be lifted, see Fig. 8 (right).

The prediction horizon and sampling time for the crane problem are set to T = 2 s 
and �t = 2ms , respectively. The number of augmented Lagrangian steps and inner 
gradient iterations of GRAMPC are set to (imax, jmax) = (1, 2) . These settings corre-
spond to the computational results in Tables 2 and 3.

The right part of Fig.  7 illustrates the movement of the overhead crane 
from the initial state x0 = [−2m, 0, 2m, 0, 0, 0]� to the desired setpoint 
xdes = [2m, 0, 2m, 0, 0, 0]� . Figure  8 shows the corresponding trajectories of the 
states x(t) and controls u(t) as well as the nonlinear constraint (41) plotted as time 
function h(x(t)) . This transition problem is quite challenging, since the nonlinear 
constraint (41) is active for more than half of the simulation time. One can slightly 
see an initial violation of the constraint h(x) , which should be negligible in practi-
cal applications. Nevertheless, one can satisfy the constraint to a higher accuracy 
by increasing the number of iterations (imax, jmax) , in particular of the augmented 
Lagrangian iterations. This behaviour is pictured in Fig. 9, where the cost function as 
well as the necessary computation time are shown with regard to the corresponding 
iteration count. It can be observed that the gradient algorithm quickly converges to 
a good solution and with increasing computation time (meaning increased iteration 
count, cf. the middle plot) the optimality of the solution improves further. The right 
plot of Fig. 9 shows the relative deviation from the optimal cost, i.e. (J − Jopt)∕Jopt , 
in relation to the necessary computation time. For each computation time there 
exists an optimal iteration combination, shown by the Pareto front (dashed black 
line) in the right plot of Fig. 9.

s̈C = u1, s̈R = u2, 𝜙̈ = −
1

sR

(
g sin(𝜙) + s̈C cos(𝜙) + 2ṡR𝜙̇

)

(40)l(x, u) = (x − xdes)
�Q(x − xdes) + (u − udes)

�R(u − udes) ,

(41)h(x) = cos(�)sR − 0.2m−1
(
sC + sin(�)sR

)2
+ 1.25m ≤ 0
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5.2.2 � MPC on shrinking horizon

“Classical” MPC with a constant horizon length typically acts as an asymptotic con-
troller in the sense that a desired setpoint is only reached asymptotically. MPC on a 
shrinking horizon instead reduces the horizon time T in each sampling step in order 
to reach the desired setpoint in finite time. In particular, if the desired setpoint is 
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Fig. 8   MPC trajectories for the 3DOF crane
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incorporated into a terminal constraint and the prediction horizon T is optimized 
in each MPC step, then T will be automatically reduced over the runtime due to the 
principle of optimality.

Shrinking horizon MPC with GRAMPC is illustrated for the following double 
integrator problem 

with the state x = [x1, x2]
� and control u subject to the box constraint (42d). The 

weight r > 0 in the cost functional (42a) allows a trade-off between energy optimal-
ity and time optimality of the MPC. The desired setpoint xdes is added as terminal 
constraint (42e), i.e. gT (x(T)) ∶= x(T) − xdes = 0 in view of  (1c), and the predic-
tion horizon T is treated as optimization variable in addition to the control u(�) , 
� ∈ [0, T].

For the simulations, the weight in the cost functional is set to r = 0.01 and the 
initial value of the horizon length is chosen as T = 6 . The iteration numbers for 
GRAMPC are set to (imax, jmax) = (1, 2) in conjunction with a sampling time of 
�t = 0.001 in order to resemble a real-time implementation. Figure  10 shows the 
simulation results for the double integrator problem with the desired setpoint 

(42a)min
u,T

J(u, T;xk) = T +
1

2 ∫
T

0

ru2(�) d�

(42b)s.t. ẋ1(𝜏) = x2(𝜏) , x1(0) = x1,k = x1(tk)

(42c)ẋ2(𝜏) = u(𝜏) , x2(0) = x2,k = x2(tk)

(42d)|u(�)| ≤ 1 � ∈ [0, T]

(42e)x(T) = xdes
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Fig. 10   MPC trajectories with shrinking horizon for the double integrator problem (42)
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xdes = 0 and the initial state x(0) = [−1,−1]� . Obviously, the state trajectories reach 
the origin in finite time corresponding to the anticipated behavior of the shrinking 
horizon MPC scheme. The lower right plot of Fig. 10 shows the temporal evolution 
of the horizon length T over the runtime t. The initial end time of T = 6 is marked as 
a red circle. In the first MPC steps, the optimization quickly decreases the end time 
to approximately T = 3.5 . In this short time interval, GRAMPC produces a subop-
timal solution due to the strict limitation of the iterations (imax, jmax) . Afterwards, 
however, the prediction horizon declines linearly, which concurs with the principle 
of optimality and shows the optimality of the computed trajectories after the initiali-
zation phase. In the simulated example, this knowledge is incorporated in the MPC 
implementation by substracting the sampling time �t from the last solution of T for 
warm-starting the next MPC step. The simulation is stopped as soon as the horizon 
length reaches its minimum value Tmin = �t = 0.1.

5.2.3 � Semi‑implicit problems

The system formulations that can be handled with GRAMPC include DAE systems 
with singular mass matrix M as well as general semi-implicit systems. An applica-
tion example is the discretization of spatially distributed systems by means of finite 
elements. This is illustrated for a quasi-linear diffusion–convection–reaction system, 
which is also implemented in the testbench (PDE reactor example). The thermal 
behavior of the reactor is described on the one-dimensional spatial domain z = (0, 1) 
using the PDE formulation (Utz et al. 2010) 

with the boundary and initial conditions

for the temperature � = �(z, t) . The process is controlled by the boundary control 
u = u(t) . Diffusive and convective processes of the reactor are modeled by the 
nonlinear heat equation (43a) with the parameters q1 = 2 , q2 = −0.05 , and � = 1 , 
respectively. Reaction effects are included using the parameters r0 = 1 and r1 = 0.2 . 
The Neumann boundary condition (43b), the Robin boundary condition (43c), 
and the initial condition (43) complete the mathematical description of the system 
dynamics. Both spatial and time domain are normalized for the sake of simplicity. A 
more detailed description of the system dynamics can be found in Utz et al. (2010).

The PDE system (43) is approximated by an ODE system of the form (16a) 
by applying a finite element discretization technique (Zienkiewicz and Morgan 
1983), whereby the new state variables x ∈ ℝ

Nx approximate the temperature � on 
the discretized spatial domain z with Nx spatial grid points. The finite element dis-
cretization eventually leads to a finite-dimensional system dynamics of the form 
Mẋ = f (x, u) with the mass matrix M ∈ ℝ

Nx×Nx and the nonlinear system function 

(43a)�t� = �z
[
(q0 + q1�)�z� − ��

]
+ (r0 + r1�)�

(43b)�z�|z=0 = 0

(43c)�z�|z=1 + �(1, t) = u

(43d)�(⋅, 0) = �0
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f (x, u) . In particular, Nx = 11 grid points are chosen for the GRAMPC simulation of 
the reactor (43). The upper right plot of Fig. 11 shows the sparsity structure of the 
mass matrix M ∈ ℝ

11×11.
The control task for the reactor is the stabilization of a stationary profile xdes 

which is accounted for in the quadratic MPC cost functional

The desired setpoint (xdes, udes) as well as the initial values (x0, u0) are numerically 
determined from the stationary differential equation

with the corresponding boundary conditions

The prediction horizon and sampling time of the MPC scheme are set to T = 0.2 
and �t = 0.005 . The number of iterations are limited by (imax, jmax) = (1, 2) . The box 
constraints for the control are chosen as |u(t)| ≤ 2.

The numerical integration in GRAMPC is carried out using the solver RODAS 
(Hairer and Wanner 1996). The sparse numerics of RODAS allow one to cope with 
the banded structure of the matrices in a computationally efficient manner. Figure 11 
shows the setpoint transition from the initial temperature profile x0 to the desired 

J(u; xk) ∶=
1

2
‖‖x(T) − xdes

‖‖2 + ∫
T

0

1

2
‖‖x(t) − xdes

‖‖2 + 10−2‖‖u − udes
‖‖2 dt .

(44)0 = �z
[
(q0 + q1�(z, �))�z�(z, �) − ��(z, �)

]
+ (r0 + r1�(z, �))�(z, �)

�(0, 0) = 1, �z�(0, 0) = 0

�(0,∞) = 2, �z�(0,∞)= 0
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Fig. 11   Simulated MPC trajectories for the PDE reactor (33)
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temperature xdes = [2.00, 1.99, 1.97, 1.93, 1.88, 1.81, 1.73, 1.63, 1.51, 1.38, 1.23]� 
and desired control udes = −1.57.

5.2.4 � OCP with equality constraints

An illustrative example of an optimal control problem with equality constraints is a 
dual arm robot with closed kinematics, e.g. to handle or carry work pieces with both 
arms. For simplicity, a planar dual arm robot with the joint angles (x1, x2, x3) and 
(x4, x5, x6) for the left and right arm is considered. The dynamics are given by simple 
integrators

with the joint velocities as control input u . Given the link lengths a = [a1 , a2 , a3 , a4 , 
a5 , a6] , the forward kinematics of left and right arm are computed by

and

The closed kinematic chain is enforced by the equality constraint

A point-to-point motion from x0 = [
�

2
,−

�

2
, 0,−

�

2
,
�

2
, 0]� to xf = [−

�

2
 , �

2
 , 0, �

2
 , − �

2
,

0]� is considered as control task, which is formulated as the optimal control problem 

with the fixed end time T = 10 s and the control constraints 
−umin = umax = [1, 1, 1, 1, 1, 1]�s−1 , which limit the angular speeds of the robot 
arms. The cost functional minimizes the squared joint velocities with R = I6.

Table 4 shows the computation results of GRAMPC for solving OCP (49a) with 
increasingly restrictive values of the gradient tolerance �rel,c and constraint toler-
ance �g that are used for checking convergence of Algorithm 1 and 2. The required 

(45)ẋ =
[
ẋ1 ẋ2 ẋ3 ẋ4 ẋ5 ẋ6

]�
=
[
u1 u2 u3 u4 u5 u6

]�
= u

(46)pL(x) =

⎡⎢⎢⎣

a1 cos(x1) + a2 cos(x1 + x2) + a3 cos(x1 + x2 + x3)

a1 sin(x1) + a2 sin(x1 + x2) + a3 sin(x1 + x2 + x3)

x1 + x2 + x3

⎤⎥⎥⎦

(47)pR(x) =

⎡⎢⎢⎣

1 + a4 cos(x4) + a5 cos(x4 + x5) + a6 cos(x4 + x5 + x6)

a4 sin(x4) + a5 sin(x4 + x5) + a6 sin(x4 + x5 + x6)

x4 + x5 + x6

⎤⎥⎥⎦
.

(48)g(x) ∶= pL(x) − pR(x) − [0, 0, �]� = 0 .

(49a)min
u

J(u) ∶= ∫
T

0

1

2
u(t)�Ru(t) dt

(49b)s.t. ẋ(t) = u(t), x(0) = x0, x(T) = x
f

(49c)g(x(t)) = 0, u(t) ∈
[
umin, umax

]
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computation time tCPU as well as the average number of (inner) gradient iterations 
and the number of (outer) augmented Lagrangian iterations are shown in Table 4. 
The successive reduction of the tolerances �rel,c and �g highlights that the augmented 
Lagrangian framework is able to quickly compute a solution with moderate accu-
racy. When further tightening the tolerances, the computation time as well as the 
required iterations increase clearly. This is to be expected as augmented Lagrangian 
and gradient algorithms are linearly convergent opposed to super-linear or quadratic 
convergence of, e.g., SQP or interior point methods. However, as the main applica-
tion of GRAMPC is model predictive control, the ability to quickly compute sub-
optimal solutions that are improved over time is more important than the numerical 
solution for very small tolerances.

The resulting trajectory of the planar robot is depicted in Fig. 12 and shows that 
the solution of the optimal control problem (49a) involves moving through singular 
configurations of left and right arm, which makes this problem quite challenging.

5.2.5 � Moving horizon estimation

Another application domain for GRAMPC is moving horizon estimation (MHE) by 
taking advantage of the parameter optimization functionality. This is illustrated for 
the CSTR reactor model listed in the MPC testbench in Table 1. The system dynam-
ics of the reactor is given by Rothfuss et al. (1996) 

Table 4   Computation results for the planar two-arm robot with closed kinematics

Gradient tot. �rel,c Constraint tot. �g Gradient iterations  i 
(avg.)

Augm. Lagr. iterations j tCPU (ms)

1 × 10−5 1 × 10−3 64 189 135
1 × 10−6 1 × 10−4 65 298 214
1 × 10−7 1 × 10−5 306 190 628
1 × 10−8 1 × 10−6 222 431 1015
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Fig. 12   Solution trajectory for the planar two-arm robot with closed kinematics
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with the state vector x = [cA, cB, T , TC]
� consisting of the monomer and product 

concentrations cA , cB and the reactor and cooling temperature T and TC . The control 
variables u = [u1, u2]

� are the normalized flow rate and cooling power. The meas-
ured quantities are the temperatures y1 = T  and y2 = TC . The parameter values and a 
more detailed description of the system are given in Rothfuss et al. (1996).

The following scenario considers the interconnection of the MHE with the MPC 
from the testbench, i.e. the state x̂k at the sampling time tk is estimated and provided 
to the MPC. The cost functional of the MPC is designed according to

where �x = x − xdes and �u = u − udes penalize the deviation of the state and con-
trol from the desired setpoint (xdes, udes) . The MHE uses the cost functional defined 
in Sect. 2.3, c.f. (5a). The sampling rate for both MPC and MHE is set to �t = 1 s . 
The MPC runs with a prediction horizon of T = 20 min and 40 discretization points, 

(50a)ċA = −k1(T)cA − k2(T)c
2
A
+ (cin − cA)u1

(50b)ċB = k1(T)cA − k1(T)cB − cBu1

(50c)
Ṫ = −𝛿(k1(T)cA𝛥HAB + k1(T)𝛥HBC + k2(T)c

2

A
𝛥HAD)

+ 𝛼(TC − T) + (Tin − T)u1

(50d)ṪC = 𝛽(T − TC) + 𝛾u2

(51)J(u;xk) ∶= �xT(T)P�x(T) + ∫
T

0

�xT(t)Q�x(t) + �uT(t)R�u(t) dt ,

c A
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Fig. 13   MHE/MPC simulation results for the CSTR reactor
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while the MHE horizon is set to TMHE = 10 s with 10 discretization points. The 
GRAMPC implementation of the MHE uses only one gradient iteration per sam-
pling step, i.e. (imax, jmax) = (1, 1) , while the implementation of the MPC uses three 
gradient iterations, i.e. (imax, jmax) = (1, 3).

The simulated scenario in Fig. 13 consists of alternating setpoint changes between 
two stationary points. The two measured temperatures are subject to a Gaussian 
measurement noise with a standard deviation of 4 ◦C . The initial guess for the state 
vector x of the MHE differs from the true initial values by 100 kmol m −3 for both 
concentrations cA and cB and by 5 ◦C , respectively −7 ◦C , for the reactor and cooling 
temperature. This initial disturbance vanishes within a few iterations and the MHE 
tracks the ground truth (i.e. the simulated state values) closely, with an average error 
of �x̂ = [7.12 kmol m −3 , 6.24 kmol m −3 , 0.10 ◦C , 0.09 ◦C]� . This corresponds to 
a relative error of less than 0.1% for each state variable, when normalized to the 
respective maximum value. One iteration of the MHE requires a computation time 
of tCPU = 11 μs to calculate a new estimate of the state vector x and therefore about 
one third of the time necessary for one MPC iteration.

6 � Conclusions

The augmented Lagrangian algorithm presented in this paper is implemented in the 
nonlinear model predictive control (MPC) toolbox GRAMPC and extends its origi-
nal version that was published in 2014 in several significant aspects. The system 
class that can be handled by GRAMPC are general nonlinear systems described by 
explicit or semi-implicit differential equations or differential-algebraic equations 
(DAE) of index  1. Besides input constraints, the algorithm accounts for nonlin-
ear state and/or input dependent equality and inequality constraints as well as for 
unknown parameters and a possibly free end time as further optimization variables, 
which is relevant, for instance, for moving horizon estimation or MPC on a shrinking 
horizon. The computational efficiency of GRAMPC  is illustrated for a testbench of 
representative MPC problems and in comparison with two state-of-the-art nonlinear 
MPC toolboxes. In particular, the augmented Lagrangian algorithm implemented in 
GRAMPC is tailored to embedded MPC with very low memory requirements. This 
is demonstrated in terms of runtime results on dSPACE and ECU hardware that is 
typically used in automotive applications. GRAMPC is available at http://sourc​eforg​
e.net/proje​cts/gramp​c and is licensed under the GNU Lesser General Public License 
(version 3), which is suitable for both academic and industrial/commercial purposes.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix: Transformation of inequality to equality constraints

This appendix describes the transformation of the inequality constraints (1d) to the 
equality constraints (10) in more detail. A standard approach of augmented Lagran-
gian methods is to introduce slack variables v ≥ 0 and vT ≥ 0 in order to add (1d) to 
the existing equality constraints (1c) according to

The set of constraints (52) are then adjoined to the cost functional (1a)

with the new terminal and integral cost functions 

using the multipliers � and �T , the penalties c and cT and the corresponding diag-
onal matrices C and CT . Instead of solving the original OCP  (1), the augmented 
Lagrangian approach solves the max–min-problem 

The minimization of the cost functional (55a) with respect to v and vT can be carried 
out explicitly. In case of vT , the minimization of (55a) reduces to the strictly convex, 
quadratic problem

for which the solution follows from the stationarity condition and projection if the 
constraint vT ≥ 0 is violated

The minimization of (55a) w.r.t. the slack variables v = v(t) corresponds to

(52)

ĝT (x, p, T , vT ) =

[
gT (x, p, T)

hT (x, p, T) + vT

]
= 0 , ĝ(x, u, p, t, v) =

[
g(x, u, p, t)

h(x, u, p, t) + v

]
= 0 .

(53)

Ĵ(u, p, T ,�,�T , c, cT , v, vT ;x0) = V̂(x, p, T ,�T , cT , vT ) + ∫
T

0

l̂(x, u, p, t,�, c, v) dt

(54a)

V̂(x, p, T ,𝝁T , cT , vT ) =V(x, p, T) + 𝝁
�

T
ĝT (x, p, T , vT ) +

1

2
‖‖ĝT (x, p, T , vT )‖‖2cT

(54b)l̂(x, u, p, t,𝝁, c, v) =l(x, u, p, t) + 𝝁
�ĝ(x, p, u, t, vT ) +

1

2
‖‖ĝ(x, p, u, t, vT )‖‖2C

(55a)max
�,�T

min
u,p,T ,v,vT

Ĵ(u, p, T ,�,�T , c, cT , v, vT ;x0)

(55b)s.t. Mẋ(t) = f (x, u, p, t) , x(0) = x0

(55c)v(t) ≥ 0 , vT ≥ 0 , u(t) ∈ [umin, umax]

(55d)p ∈ [pmin, pmax] , T ∈ [Tmin, Tmax] .

(56)min
vT≥0 ��

hT

�
hT (x, p, T) + vT

�
+

1

2
‖hT (x, p, T) + vT‖2ChT

(57)vT = max
{
0,−C−1

hT
�hT

− hT (x, p, T)
}
.
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Since v only occurs in the integral and is not influenced by the dynamics  (55b), 
the minimization of (55a) w.r.t. v = v(t) can be carried out pointwise in time and 
therefore reduces to a convex, quadratic problem similar to (56) with the pointwise 
solution

Inserting the solutions (57) and (59) into  (52) eventually yields the transformed 
equality constraints (10).
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